Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Exp Bot ; 72(2): 747-756, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33064808

RESUMEN

Wheat (Triticum aestivum L.) root growth in the subsoil is usually constrained by soil strength, although roots can use macropores to elongate to deeper layers. The quantitative relationship between the elongation of wheat roots and the soil pore system, however, is still to be determined. We studied the depth distribution of roots of six wheat varieties and explored their relationship with soil macroporosity from samples with the field structure preserved. Undisturbed soil cores (to a depth of 100 cm) were collected from the field and then non-destructively imaged using X-ray computed tomography (at a spatial resolution of 90 µm) to quantify soil macropore structure and root number density (the number of roots cm-2 within a horizontal cross-section of a soil core). Soil macroporosity changed significantly with depth but not between the different wheat lines. There was no significant difference in root number density between wheat varieties. In the subsoil, wheat roots used macropores, especially biopores (i.e. former root or earthworm channels) to grow into deeper layers. Soil macroporosity explained 59% of the variance in root number density. Our data suggested that the development of the wheat root system in the field was more affected by the soil macropore system than by genotype. On this basis, management practices which enhance the porosity of the subsoil may therefore be an effective strategy to improve deep rooting of wheat.


Asunto(s)
Suelo , Triticum , Genotipo , Raíces de Plantas , Porosidad
2.
Soil Tillage Res ; 205: 104754, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33390631

RESUMEN

Increased mechanical impedance induced by soil drying or compaction causes reduction in plant growth and crop yield. However, how mechanical impedance interacts with nutrient stress has been largely unknown. Here, we investigated the effect of mechanical impedance on the growth of wheat seedlings under contrasting phosphorus (P) supply in a sand culture system which allows the mechanical impedance to be independent of water and nutrient availability. Two wheat genotypes containing the Rht-B1a (tall) or Rht-B1c (gibberellin-insensitive dwarf) alleles in the Cadenza background were used and their shoot and root traits were determined. Mechanical impedance caused a significant reduction in plant growth under sufficient P supply, including reduced shoot and root biomass, leaf area and total root length. By contrast, under low P supply, mechanical impedance did not affect biomass, tiller number, leaf length, and nodal root number in both wheat genotypes, indicating that the magnitude of the growth restriction imposed by mechanical impedance was dependent on P supply. The interaction effect between mechanical impedance and P level was significant on most plant traits except for axial and lateral root length, suggesting an evident physical and nutritional interaction. Our findings provide valuable insights into the integrated effects of plants in response to both soil physical and nutritional stresses. Understanding the response patterns is critical for optimizing soil tillage and nutrient management in the field.

3.
J Exp Bot ; 64(15): 4761-77, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24043852

RESUMEN

In this review, we examine how roots penetrate a structured soil. We first examine the relationship between soil water status and its mechanical strength, as well as the ability of the soil to supply water to the root. We identify these as critical soil factors, because it is primarily in drying soil that mechanical constraints limit root elongation. Water supply to the root is important because root water status affects growth pressures and root stiffness. To simplify the bewildering complexity of soil-root interactions, the discussion is focused around the special cases of root elongation in soil with pores much smaller than the root diameter and the penetration of roots at interfaces within the soil. While it is often assumed that the former case is well understood, many unanswered questions remain. While low soil-root friction is often viewed as a trait conferring better penetration of strong soils, it may also increase the axial pressure on the root tip and in so doing reduce the rate of cell division and/or expansion. The precise trade-off between various root traits involved in root elongation in homogeneous soil remains to be determined. There is consensus that the most important factors determining root penetration at an interface are the angle at which the root attempts to penetrate the soil, root stiffness, and the strength of the soil to be penetrated. The effect of growth angle on root penetration implicates gravitropic responses in improved root penetration ability. Although there is no work that has explored the effect of the strength of the gravitropic responses on penetration of hard layers, we attempt to outline possible interactions. Impacts of soil drying and strength on phytohormone concentrations in roots, and consequent root-to-shoot signalling, are also considered.


Asunto(s)
Raíces de Plantas/fisiología , Suelo/química , Agua/metabolismo , Fenómenos Biomecánicos , Desecación , Modelos Teóricos , Raíces de Plantas/crecimiento & desarrollo , Presión , Factores de Tiempo
4.
Plant Soil ; 392(1-2): 323-332, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26213419

RESUMEN

BACKGROUND AND AIMS: We were interested in the effect of impedance to root growth on root and shoot architecture of wheat. It is known that Rht-1 semi-dwarfing alleles decrease the degree of leaf stunting due to root impedance. We compared commercial wheat cultivars containing different Rht-1 alleles to determine whether leaf stunting caused by root impedance differed between cultivars. We investigated effects of impedance to root growth on the angular spread of roots. METHODS: The wheat cultivars Avalon, Robigus and Battalion, carrying semi-dwarfing alleles of Rht-1, and cv. Cadenza, carrying the tall, wild-type allele, were grown under two levels of soil strength in a sand culture system designed to allow the mechanical impedance of the root growth environment to be adjusted independently of water and nutrient availability. RESULTS: Impeded roots grew more steeply than non-impeded roots: the angular spread of roots decreased from 55° to 43° from the vertical, but the genotypic effects were weak. Root impedance reduced leaf elongation and the number of tillers. Leaf area and total root length provided a common relationship across all genotype x treatment combinations. Leaf stunting in Cadenza was more severe. CONCLUSION: Our data support the hypothesis that the severity of leaf stunting due to root impedance is related to the Rht allele. Impeded roots had a smaller angular spread.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA