Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 30(Pt 1): 24-34, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36601923

RESUMEN

The study of virus structures by X-ray free-electron lasers (XFELs) has attracted increased attention in recent decades. Such experiments are based on the collection of 2D diffraction patterns measured at the detector following the application of femtosecond X-ray pulses to biological samples. To prepare an experiment at the European XFEL, the diffraction data for the tick-borne encephalitis virus (TBEV) was simulated with different parameters and the optimal values were identified. Following the necessary steps of a well established data-processing pipeline, the structure of TBEV was obtained. In the structure determination presented, a priori knowledge of the simulated virus orientations was used. The efficiency of the proposed pipeline was demonstrated.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Humanos , Electrones , Rayos X , Rayos Láser
2.
Soft Matter ; 18(8): 1591-1602, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-34994372

RESUMEN

Depending on the volume fraction and interparticle interactions, colloidal suspensions can form different phases, ranging from fluids, crystals, and glasses to gels. For soft microgels that are made from thermoresponsive polymers, the volume fraction can be tuned by temperature, making them excellent systems to experimentally study phase transitions in dense colloidal suspensions. However, investigations of phase transitions at high particle concentration and across the volume phase transition temperature in particular, are challenging due to the deformability and possibility for interpenetration between microgels. Here, we investigate the dense phases of composite core-shell microgels that have a small gold core and a thermoresponsive microgel shell. Employing Ultra Small-Angle X-ray Scattering, we make use of the strong scattering signal from the gold cores with respect to the almost negligible signal from the shells. By changing the temperature we study the freezing and melting transitions of the system in situ. Using Bragg peak analysis and the Williamson-Hall method, we characterize the phase transitions in detail. We show that the system crystallizes into an rhcp structure with different degrees of in-plane and out-of-plane stacking disorder that increase upon particle swelling. We further find that the melting process is distinctly different, where the system separates into two different crystal phases with different melting temperatures and interparticle interactions.

3.
Phys Chem Chem Phys ; 24(18): 10944-10951, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35466339

RESUMEN

We show that the decomposition of caesium lead halide perovskite nanocrystals under continuous X-ray illumination depends on the surface ligand. For oleic acid/oleylamine, we observe a fast decay accompanied by the formation of elemental lead and halogen. Upon surface functionalization with a metal porphyrin derivative, the decay is markedly slower and involves the disproportionation of lead to Pb0 and Pb3+. In both cases, the decomposition is preceded by a contraction of the atomic lattice, which appears to initiate the decay. We find that the metal porphyrin derivative induces a strong surface dipole on the nanocrystals, which we hold responsible for the altered and slower decomposition pathway. These results are important for application of lead halide perovskite nanocrystals in X-ray scintillators.

4.
Light Sci Appl ; 13(1): 15, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216563

RESUMEN

The idea of using ultrashort X-ray pulses to obtain images of single proteins frozen in time has fascinated and inspired many. It was one of the arguments for building X-ray free-electron lasers. According to theory, the extremely intense pulses provide sufficient signal to dispense with using crystals as an amplifier, and the ultrashort pulse duration permits capturing the diffraction data before the sample inevitably explodes. This was first demonstrated on biological samples a decade ago on the giant mimivirus. Since then, a large collaboration has been pushing the limit of the smallest sample that can be imaged. The ability to capture snapshots on the timescale of atomic vibrations, while keeping the sample at room temperature, may allow probing the entire conformational phase space of macromolecules. Here we show the first observation of an X-ray diffraction pattern from a single protein, that of Escherichia coli GroEL which at 14 nm in diameter is the smallest biological sample ever imaged by X-rays, and demonstrate that the concept of diffraction before destruction extends to single proteins. From the pattern, it is possible to determine the approximate orientation of the protein. Our experiment demonstrates the feasibility of ultrafast imaging of single proteins, opening the way to single-molecule time-resolved studies on the femtosecond timescale.

5.
J Appl Crystallogr ; 55(Pt 3): 444-454, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35719305

RESUMEN

Single particle imaging (SPI) at X-ray free-electron lasers is particularly well suited to determining the 3D structure of particles at room temperature. For a successful reconstruction, diffraction patterns originating from a single hit must be isolated from a large number of acquired patterns. It is proposed that this task could be formulated as an image-classification problem and solved using convolutional neural network (CNN) architectures. Two CNN configurations are developed: one that maximizes the F1 score and one that emphasizes high recall. The CNNs are also combined with expectation-maximization (EM) selection as well as size filtering. It is observed that the CNN selections have lower contrast in power spectral density functions relative to the EM selection used in previous work. However, the reconstruction of the CNN-based selections gives similar results. Introducing CNNs into SPI experiments allows the reconstruction pipeline to be streamlined, enables researchers to classify patterns on the fly, and, as a consequence, enables them to tightly control the duration of their experiments. Incorporating non-standard artificial-intelligence-based solutions into an existing SPI analysis workflow may be beneficial for the future development of SPI experiments.

6.
Nat Commun ; 13(1): 892, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35173165

RESUMEN

We correlate spatially resolved fluorescence (-lifetime) measurements with X-ray nanodiffraction to reveal surface defects in supercrystals of self-assembled cesium lead halide perovskite nanocrystals and study their effect on the fluorescence properties. Upon comparison with density functional modeling, we show that a loss in structural coherence, an increasing atomic misalignment between adjacent nanocrystals, and growing compressive strain near the surface of the supercrystal are responsible for the observed fluorescence blueshift and decreased fluorescence lifetimes. Such surface defect-related optical properties extend the frequently assumed analogy between atoms and nanocrystals as so-called quasi-atoms. Our results emphasize the importance of minimizing strain during the self-assembly of perovskite nanocrystals into supercrystals for lighting application such as superfluorescent emitters.

8.
Struct Dyn ; 8(4): 044305, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34476285

RESUMEN

Second-order intensity interferometry was employed to study the spatial and temporal properties of the European X-ray Free-Electron Laser (EuXFEL). Measurements were performed at the soft x-ray Self-Amplified Spontaneous Emission (SASE3) undulator beamline at a photon energy of 1.2 keV in the Self-Amplified Spontaneous Emission (SASE) mode. Two high-power regimes of the SASE3 undulator settings, i.e., linear and quadratic undulator tapering at saturation, were studied in detail and compared with the linear gain regime. The statistical analysis showed an exceptionally high degree of spatial coherence up to 90% for the linear undulator tapering. Analysis of the measured data in spectral and spatial domains provided an average pulse duration of about 10 fs in our measurements. The obtained results will be valuable for the experiments requiring and exploiting short pulse duration and utilizing high coherence properties of the EuXFEL.

9.
Adv Mater ; 32(36): e2002254, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32725688

RESUMEN

The assembly of colloidal semiconductive nanocrystals into highly ordered superlattices predicts novel structure-related properties by design. However, those structure-property relationships, such as charge transport depending on the structure or even directions of the superlattice, have remained unrevealed so far. Here, electric transport measurements and X-ray nanodiffraction are performed on self-assembled lead sulfide nanocrystal superlattices to investigate direction-dependent charge carrier transport in microscopic domains of these materials. By angular X-ray cross-correlation analysis, the structure and orientation of individual superlattices is determined, which are directly correlated with the electronic properties of the same microdomains. By that, strong evidence for the effect of superlattice crystallinity on the electric conductivity is found. Further, anisotropic charge transport in highly ordered monocrystalline domains is revealed, which is attributed to the dominant effect of shortest interparticle distance. This implies that transport anisotropy should be a general feature of weakly coupled nanocrystal superlattices.

10.
IUCrJ ; 7(Pt 6): 1102-1113, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33209321

RESUMEN

An improved analysis for single-particle imaging (SPI) experiments, using the limited data, is presented here. Results are based on a study of bacteriophage PR772 performed at the Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source as part of the SPI initiative. Existing methods were modified to cope with the shortcomings of the experimental data: inaccessibility of information from half of the detector and a small fraction of single hits. The general SPI analysis workflow was upgraded with the expectation-maximization based classification of diffraction patterns and mode decomposition on the final virus-structure determination step. The presented processing pipeline allowed us to determine the 3D structure of bacteriophage PR772 without symmetry constraints with a spatial resolution of 6.9 nm. The obtained resolution was limited by the scattering intensity during the experiment and the relatively small number of single hits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA