Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Comput Biol ; 19(6): e1011120, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37319143

RESUMEN

Stand-alone life science training events and e-learning solutions are among the most sought-after modes of training because they address both point-of-need learning and the limited timeframes available for "upskilling." Yet, finding relevant life sciences training courses and materials is challenging because such resources are not marked up for internet searches in a consistent way. This absence of markup standards to facilitate discovery, re-use, and aggregation of training resources limits their usefulness and knowledge translation potential. Through a joint effort between the Global Organisation for Bioinformatics Learning, Education and Training (GOBLET), the Bioschemas Training community, and the ELIXIR FAIR Training Focus Group, a set of Bioschemas Training profiles has been developed, published, and implemented for life sciences training courses and materials. Here, we describe our development approach and methods, which were based on the Bioschemas model, and present the results for the 3 Bioschemas Training profiles: TrainingMaterial, Course, and CourseInstance. Several implementation challenges were encountered, which we discuss alongside potential solutions. Over time, continued implementation of these Bioschemas Training profiles by training providers will obviate the barriers to skill development, facilitating both the discovery of relevant training events to meet individuals' learning needs, and the discovery and re-use of training and instructional materials.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Curriculum , Humanos , Aprendizaje , Biología Computacional/educación , Disciplinas de las Ciencias Biológicas/educación
2.
Brief Bioinform ; 20(2): 398-404, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-28968751

RESUMEN

Bioinformatics is now intrinsic to life science research, but the past decade has witnessed a continuing deficiency in this essential expertise. Basic data stewardship is still taught relatively rarely in life science education programmes, creating a chasm between theory and practice, and fuelling demand for bioinformatics training across all educational levels and career roles. Concerned by this, surveys have been conducted in recent years to monitor bioinformatics and computational training needs worldwide. This article briefly reviews the principal findings of a number of these studies. We see that there is still a strong appetite for short courses to improve expertise and confidence in data analysis and interpretation; strikingly, however, the most urgent appeal is for bioinformatics to be woven into the fabric of life science degree programmes. Satisfying the relentless training needs of current and future generations of life scientists will require a concerted response from stakeholders across the globe, who need to deliver sustainable solutions capable of both transforming education curricula and cultivating a new cadre of trainer scientists.


Asunto(s)
Disciplinas de las Ciencias Biológicas/educación , Investigación Biomédica , Biología Computacional/educación , Biología Computacional/métodos , Curaduría de Datos/métodos , Ciencia de los Datos/educación , Humanos , Encuestas y Cuestionarios
3.
Brief Bioinform ; 20(2): 405-415, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29028883

RESUMEN

Demand for training life scientists in bioinformatics methods, tools and resources and computational approaches is urgent and growing. To meet this demand, new trainers must be prepared with effective teaching practices for delivering short hands-on training sessions-a specific type of education that is not typically part of professional preparation of life scientists in many countries. A new Train-the-Trainer (TtT) programme was created by adapting existing models, using input from experienced trainers and experts in bioinformatics, and from educational and cognitive sciences. This programme was piloted across Europe from May 2016 to January 2017. Preparation included drafting the training materials, organizing sessions to pilot them and studying this paradigm for its potential to support the development and delivery of future bioinformatics training by participants. Seven pilot TtT sessions were carried out, and this manuscript describes the results of the pilot year. Lessons learned include (i) support is required for logistics, so that new instructors can focus on their teaching; (ii) institutions must provide incentives to include training opportunities for those who want/need to become new or better instructors; (iii) formal evaluation of the TtT materials is now a priority; (iv) a strategy is needed to recruit, train and certify new instructor trainers (faculty); and (v) future evaluations must assess utility. Additionally, defining a flexible but rigorous and reliable process of TtT 'certification' may incentivize participants and will be considered in future.


Asunto(s)
Disciplinas de las Ciencias Biológicas/educación , Investigación Biomédica , Biología Computacional/educación , Curaduría de Datos/métodos , Educación Continua , Curriculum , Estudios de Factibilidad , Humanos , Proyectos Piloto
4.
Bioinformatics ; 36(10): 3290-3291, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32044952

RESUMEN

SUMMARY: Dispersed across the Internet is an abundance of disparate, disconnected training information, making it hard for researchers to find training opportunities that are relevant to them. To address this issue, we have developed a new platform-TeSS-which aggregates geographically distributed information and presents it in a central, feature-rich portal. Data are gathered automatically from content providers via bespoke scripts. These resources are cross-linked with related data and tools registries, and made available via a search interface, a data API and through widgets. AVAILABILITY AND IMPLEMENTATION: https://tess.elixir-europe.org.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Programas Informáticos , Humanos , Internet , Investigadores
5.
PLoS Comput Biol ; 16(5): e1007854, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32437350

RESUMEN

Everything we do today is becoming more and more reliant on the use of computers. The field of biology is no exception; but most biologists receive little or no formal preparation for the increasingly computational aspects of their discipline. In consequence, informal training courses are often needed to plug the gaps; and the demand for such training is growing worldwide. To meet this demand, some training programs are being expanded, and new ones are being developed. Key to both scenarios is the creation of new course materials. Rather than starting from scratch, however, it's sometimes possible to repurpose materials that already exist. Yet finding suitable materials online can be difficult: They're often widely scattered across the internet or hidden in their home institutions, with no systematic way to find them. This is a common problem for all digital objects. The scientific community has attempted to address this issue by developing a set of rules (which have been called the Findable, Accessible, Interoperable and Reusable [FAIR] principles) to make such objects more findable and reusable. Here, we show how to apply these rules to help make training materials easier to find, (re)use, and adapt, for the benefit of all.


Asunto(s)
Instrucción por Computador/normas , Guías como Asunto , Biología/educación , Biología Computacional , Humanos , Almacenamiento y Recuperación de la Información
6.
Nucleic Acids Res ; 47(D1): D351-D360, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30398656

RESUMEN

The InterPro database (http://www.ebi.ac.uk/interpro/) classifies protein sequences into families and predicts the presence of functionally important domains and sites. Here, we report recent developments with InterPro (version 70.0) and its associated software, including an 18% growth in the size of the database in terms on new InterPro entries, updates to content, the inclusion of an additional entry type, refined modelling of discontinuous domains, and the development of a new programmatic interface and website. These developments extend and enrich the information provided by InterPro, and provide greater flexibility in terms of data access. We also show that InterPro's sequence coverage has kept pace with the growth of UniProtKB, and discuss how our evaluation of residue coverage may help guide future curation activities.


Asunto(s)
Bases de Datos de Proteínas , Anotación de Secuencia Molecular , Animales , Bases de Datos Genéticas , Ontología de Genes , Humanos , Internet , Familia de Multigenes , Dominios Proteicos/genética , Homología de Secuencia de Aminoácido , Programas Informáticos , Interfaz Usuario-Computador
7.
Nucleic Acids Res ; 45(D1): D190-D199, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27899635

RESUMEN

InterPro (http://www.ebi.ac.uk/interpro/) is a freely available database used to classify protein sequences into families and to predict the presence of important domains and sites. InterProScan is the underlying software that allows both protein and nucleic acid sequences to be searched against InterPro's predictive models, which are provided by its member databases. Here, we report recent developments with InterPro and its associated software, including the addition of two new databases (SFLD and CDD), and the functionality to include residue-level annotation and prediction of intrinsic disorder. These developments enrich the annotations provided by InterPro, increase the overall number of residues annotated and allow more specific functional inferences.


Asunto(s)
Biología Computacional/métodos , Bases de Datos de Proteínas , Dominios y Motivos de Interacción de Proteínas , Programas Informáticos , Humanos , Anotación de Secuencia Molecular , Filogenia
8.
Bioinformatics ; 33(16): 2607-2608, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28407033

RESUMEN

SUMMARY: The vast, uncoordinated proliferation of bioinformatics resources (databases, software tools, training materials etc.) makes it difficult for users to find them. To facilitate their discovery, various services are being developed to collect such resources into registries. We have developed BioCIDER, which, rather like online shopping 'recommendations', provides a contextualization index to help identify biological resources relevant to the content of the sites in which it is embedded. AVAILABILITY AND IMPLEMENTATION: BioCIDER (www.biocider.org) is an open-source platform. Documentation is available online (https://goo.gl/Klc51G), and source code is freely available via GitHub (https://github.com/BioCIDER). The BioJS widget that enables websites to embed contextualization is available from the BioJS registry (http://biojs.io/). All code is released under an MIT licence. CONTACT: carlos.horro@earlham.ac.uk or rafael.jimenez@elixir-europe.org or manuel@repositive.io.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Factuales , Programas Informáticos
9.
Nature ; 544(7649): 161, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28406196
10.
Nucleic Acids Res ; 43(Database issue): D213-21, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25428371

RESUMEN

The InterPro database (http://www.ebi.ac.uk/interpro/) is a freely available resource that can be used to classify sequences into protein families and to predict the presence of important domains and sites. Central to the InterPro database are predictive models, known as signatures, from a range of different protein family databases that have different biological focuses and use different methodological approaches to classify protein families and domains. InterPro integrates these signatures, capitalizing on the respective strengths of the individual databases, to produce a powerful protein classification resource. Here, we report on the status of InterPro as it enters its 15th year of operation, and give an overview of new developments with the database and its associated Web interfaces and software. In particular, the new domain architecture search tool is described and the process of mapping of Gene Ontology terms to InterPro is outlined. We also discuss the challenges faced by the resource given the explosive growth in sequence data in recent years. InterPro (version 48.0) contains 36,766 member database signatures integrated into 26,238 InterPro entries, an increase of over 3993 entries (5081 signatures), since 2012.


Asunto(s)
Bases de Datos de Proteínas , Proteínas/clasificación , Bacterias/metabolismo , Ontología de Genes , Estructura Terciaria de Proteína , Proteínas/genética , Análisis de Secuencia de Proteína , Programas Informáticos
11.
Bioinformatics ; 31(1): 140-2, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25189782

RESUMEN

SUMMARY: Rapid technological advances have led to an explosion of biomedical data in recent years. The pace of change has inspired new collaborative approaches for sharing materials and resources to help train life scientists both in the use of cutting-edge bioinformatics tools and databases and in how to analyse and interpret large datasets. A prototype platform for sharing such training resources was recently created by the Bioinformatics Training Network (BTN). Building on this work, we have created a centralized portal for sharing training materials and courses, including a catalogue of trainers and course organizers, and an announcement service for training events. For course organizers, the portal provides opportunities to promote their training events; for trainers, the portal offers an environment for sharing materials, for gaining visibility for their work and promoting their skills; for trainees, it offers a convenient one-stop shop for finding suitable training resources and identifying relevant training events and activities locally and worldwide. AVAILABILITY AND IMPLEMENTATION: http://mygoblet.org/training-portal.


Asunto(s)
Biología Computacional/educación , Curriculum , Sistemas de Administración de Bases de Datos , Investigadores/educación , Enseñanza , Humanos , Lenguajes de Programación , Diseño de Software
12.
PLoS Comput Biol ; 11(4): e1004143, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25856076

RESUMEN

In recent years, high-throughput technologies have brought big data to the life sciences. The march of progress has been rapid, leaving in its wake a demand for courses in data analysis, data stewardship, computing fundamentals, etc., a need that universities have not yet been able to satisfy--paradoxically, many are actually closing "niche" bioinformatics courses at a time of critical need. The impact of this is being felt across continents, as many students and early-stage researchers are being left without appropriate skills to manage, analyse, and interpret their data with confidence. This situation has galvanised a group of scientists to address the problems on an international scale. For the first time, bioinformatics educators and trainers across the globe have come together to address common needs, rising above institutional and international boundaries to cooperate in sharing bioinformatics training expertise, experience, and resources, aiming to put ad hoc training practices on a more professional footing for the benefit of all.


Asunto(s)
Biología Computacional/educación , Biología Computacional/organización & administración , Curriculum , Relaciones Interinstitucionales , Internacionalidad , Enseñanza/organización & administración
13.
Brief Bioinform ; 14(5): 528-37, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23803301

RESUMEN

The mountains of data thrusting from the new landscape of modern high-throughput biology are irrevocably changing biomedical research and creating a near-insatiable demand for training in data management and manipulation and data mining and analysis. Among life scientists, from clinicians to environmental researchers, a common theme is the need not just to use, and gain familiarity with, bioinformatics tools and resources but also to understand their underlying fundamental theoretical and practical concepts. Providing bioinformatics training to empower life scientists to handle and analyse their data efficiently, and progress their research, is a challenge across the globe. Delivering good training goes beyond traditional lectures and resource-centric demos, using interactivity, problem-solving exercises and cooperative learning to substantially enhance training quality and learning outcomes. In this context, this article discusses various pragmatic criteria for identifying training needs and learning objectives, for selecting suitable trainees and trainers, for developing and maintaining training skills and evaluating training quality. Adherence to these criteria may help not only to guide course organizers and trainers on the path towards bioinformatics training excellence but, importantly, also to improve the training experience for life scientists.


Asunto(s)
Disciplinas de las Ciencias Biológicas/educación , Biología Computacional/educación , Curriculum , Minería de Datos , Sistemas de Administración de Bases de Datos , Lenguajes de Programación , Diseño de Software , Enseñanza
15.
Brief Bioinform ; 13(3): 383-9, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22110242

RESUMEN

Funding bodies are increasingly recognizing the need to provide graduates and researchers with access to short intensive courses in a variety of disciplines, in order both to improve the general skills base and to provide solid foundations on which researchers may build their careers. In response to the development of 'high-throughput biology', the need for training in the field of bioinformatics, in particular, is seeing a resurgence: it has been defined as a key priority by many Institutions and research programmes and is now an important component of many grant proposals. Nevertheless, when it comes to planning and preparing to meet such training needs, tension arises between the reward structures that predominate in the scientific community which compel individuals to publish or perish, and the time that must be devoted to the design, delivery and maintenance of high-quality training materials. Conversely, there is much relevant teaching material and training expertise available worldwide that, were it properly organized, could be exploited by anyone who needs to provide training or needs to set up a new course. To do this, however, the materials would have to be centralized in a database and clearly tagged in relation to target audiences, learning objectives, etc. Ideally, they would also be peer reviewed, and easily and efficiently accessible for downloading. Here, we present the Bioinformatics Training Network (BTN), a new enterprise that has been initiated to address these needs and review it, respectively, to similar initiatives and collections.


Asunto(s)
Biología Computacional/educación , Redes Comunitarias , Humanos , Investigadores/educación
16.
Bioinformatics ; 29(15): 1919-21, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23742982

RESUMEN

SUMMARY: We present iAnn, an open source community-driven platform for dissemination of life science events, such as courses, conferences and workshops. iAnn allows automatic visualisation and integration of customised event reports. A central repository lies at the core of the platform: curators add submitted events, and these are subsequently accessed via web services. Thus, once an iAnn widget is incorporated into a website, it permanently shows timely relevant information as if it were native to the remote site. At the same time, announcements submitted to the repository are automatically disseminated to all portals that query the system. To facilitate the visualization of announcements, iAnn provides powerful filtering options and views, integrated in Google Maps and Google Calendar. All iAnn widgets are freely available. AVAILABILITY: http://iann.pro/iannviewer CONTACT: manuel.corpas@tgac.ac.uk.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Programas Informáticos , Aniversarios y Eventos Especiales , Congresos como Asunto , Internet
17.
Nucleic Acids Res ; 40(Database issue): D377-80, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22064856

RESUMEN

The NucleaRDB is a Molecular Class-Specific Information System that collects, combines, validates and disseminates large amounts of heterogeneous data on nuclear hormone receptors. It contains both experimental and computationally derived data. The data and knowledge present in the NucleaRDB can be accessed using a number of different interactive and programmatic methods and query systems. A nuclear hormone receptor-specific PDF reader interface is available that can integrate the contents of the NucleaRDB with full-text scientific articles. The NucleaRDB is freely available at http://www.receptors.org/nucleardb.


Asunto(s)
Bases de Datos de Proteínas , Receptores Citoplasmáticos y Nucleares/química , Sistemas de Información , Anotación de Secuencia Molecular , Mutación , Receptores Citoplasmáticos y Nucleares/genética , Interfaz Usuario-Computador
18.
Nucleic Acids Res ; 40(Database issue): D306-12, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22096229

RESUMEN

InterPro (http://www.ebi.ac.uk/interpro/) is a database that integrates diverse information about protein families, domains and functional sites, and makes it freely available to the public via Web-based interfaces and services. Central to the database are diagnostic models, known as signatures, against which protein sequences can be searched to determine their potential function. InterPro has utility in the large-scale analysis of whole genomes and meta-genomes, as well as in characterizing individual protein sequences. Herein we give an overview of new developments in the database and its associated software since 2009, including updates to database content, curation processes and Web and programmatic interfaces.


Asunto(s)
Bases de Datos de Proteínas , Estructura Terciaria de Proteína , Proteínas/clasificación , Proteínas/fisiología , Análisis de Secuencia de Proteína , Programas Informáticos , Terminología como Asunto , Interfaz Usuario-Computador
19.
Nucleic Acids Res ; 39(Database issue): D7-10, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21097465

RESUMEN

The present article proposes the adoption of a community-defined, uniform, generic description of the core attributes of biological databases, BioDBCore. The goals of these attributes are to provide a general overview of the database landscape, to encourage consistency and interoperability between resources and to promote the use of semantic and syntactic standards. BioDBCore will make it easier for users to evaluate the scope and relevance of available resources. This new resource will increase the collective impact of the information present in biological databases.


Asunto(s)
Bases de Datos Factuales/normas , Difusión de la Información
20.
Eur J Clin Invest ; 42(9): 1027-36, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22519700

RESUMEN

While large numbers of proteomic biomarkers have been described, they are generally not implemented in medical practice. We have investigated the reasons for this shortcoming, focusing on hurdles downstream of biomarker verification, and describe major obstacles and possible solutions to ease valid biomarker implementation. Some of the problems lie in suboptimal biomarker discovery and validation, especially lack of validated platforms with well-described performance characteristics to support biomarker qualification. These issues have been acknowledged and are being addressed, raising the hope that valid biomarkers may start accumulating in the foreseeable future. However, successful biomarker discovery and qualification alone does not suffice for successful implementation. Additional challenges include, among others, limited access to appropriate specimens and insufficient funding, the need to validate new biomarker utility in interventional trials, and large communication gaps between the parties involved in implementation. To address this problem, we propose an implementation roadmap. The implementation effort needs to involve a wide variety of stakeholders (clinicians, statisticians, health economists, and representatives of patient groups, health insurance, pharmaceutical companies, biobanks, and regulatory agencies). Knowledgeable panels with adequate representation of all these stakeholders may facilitate biomarker evaluation and guide implementation for the specific context of use. This approach may avoid unwarranted delays or failure to implement potentially useful biomarkers, and may expedite meaningful contributions of the biomarker community to healthcare.


Asunto(s)
Biomarcadores , Investigación Biomédica/métodos , Proteómica , Ensayos Clínicos como Asunto , Descubrimiento de Drogas/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA