Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Neurobiol Dis ; 149: 105228, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33359139

RESUMEN

Disruption in copper homeostasis causes a number of cognitive and motor deficits. Wilson's disease and Menkes disease are neurodevelopmental disorders resulting from mutations in the copper transporters ATP7A and ATP7B, with ATP7A mutations also causing occipital horn syndrome, and distal motor neuropathy. A 65 year old male presenting with brachial amyotrophic diplegia and diagnosed with amyotrophic lateral sclerosis (ALS) was found to harbor a p.Met1311Val (M1311V) substitution variant in ATP7A. ALS is a fatal neurodegenerative disease associated with progressive muscle weakness, synaptic deficits and degeneration of upper and lower motor neurons. To investigate the potential contribution of the ATP7AM1311V variant to neurodegeneration, we obtained and characterized both patient-derived fibroblasts and patient-derived induced pluripotent stem cells differentiated into motor neurons (iPSC-MNs), and compared them to control cell lines. We found reduced localization of ATP7AM1311V to the trans-Golgi network (TGN) at basal copper levels in patient-derived fibroblasts and iPSC-MNs. In addition, redistribution of ATP7AM1311V out of the TGN in response to increased extracellular copper was defective in patient fibroblasts. This manifested in enhanced intracellular copper accumulation and reduced survival of ATP7AM1311V fibroblasts. iPSC-MNs harboring the ATP7AM1311V variant showed decreased dendritic complexity, aberrant spontaneous firing, and decreased survival. Finally, expression of the ATP7AM1311V variant in Drosophila motor neurons resulted in motor deficits. Apilimod, a drug that targets vesicular transport and recently shown to enhance survival of C9orf72-ALS/FTD iPSC-MNs, also increased survival of ATP7AM1311V iPSC-MNs and reduced motor deficits in Drosophila expressing ATP7AM1311V. Taken together, these observations suggest that ATP7AM1311V negatively impacts its role as a copper transporter and impairs several aspects of motor neuron function and morphology.


Asunto(s)
ATPasas Transportadoras de Cobre/genética , ATPasas Transportadoras de Cobre/metabolismo , Cobre/metabolismo , Variación Genética/fisiología , Enfermedad de la Neurona Motora/genética , Enfermedad de la Neurona Motora/metabolismo , Animales , Animales Modificados Genéticamente , Animales Recién Nacidos , Células Cultivadas , Cobre/farmacología , Cobre/uso terapéutico , Relación Dosis-Respuesta a Droga , Drosophila , Variación Genética/efectos de los fármacos , Células HeLa , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Enfermedad de la Neurona Motora/tratamiento farmacológico , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología
2.
Ann Biomed Eng ; 49(2): 523-535, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32748107

RESUMEN

Many techniques for engineering and interrogating three-dimensional (3-D) muscle bundles from animal- or patient-derived myoblasts have recently been developed to overcome the limitations of existing in vitro and in vivo model systems. However, many approaches for engineering 3-D muscle bundles rely on specialized and time-consuming techniques, such as photolithography for fabrication and cryosectioning for histology. Cryosectioning also limits visualization to a single plane instead of the entire 3-D structure. To address these challenges, we first implemented a consumer-grade 3-D-printer to rapidly prototype multiple templates for engineering muscle bundles. We then employed our templates to engineer 3D muscle bundles and identify template geometries that promoted bundle survival over three weeks. Subsequently, we implemented tissue clearing, immunostaining, and confocal imaging to acquire z-stacks of intact muscle bundles labelled for myogenic markers. With this approach, we could select the imaging plane on-demand and visualize the intact 3-D structure of bundles. However, tissue clearing did cause some tissue degradation that should be considered. Together, these advances in muscle tissue engineering and imaging will accelerate the use of these 3-D tissue platforms for disease modeling and therapeutic discovery.


Asunto(s)
Músculo Esquelético , Ingeniería de Tejidos , Animales , Línea Celular , Estimulación Eléctrica , Ratones , Contracción Muscular , Músculo Esquelético/anatomía & histología , Músculo Esquelético/fisiología , Mioblastos Esqueléticos , Impresión Tridimensional
3.
Nat Med ; 24(3): 313-325, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29400714

RESUMEN

An intronic GGGGCC repeat expansion in C9ORF72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but the pathogenic mechanism of this repeat remains unclear. Using human induced motor neurons (iMNs), we found that repeat-expanded C9ORF72 was haploinsufficient in ALS. We found that C9ORF72 interacted with endosomes and was required for normal vesicle trafficking and lysosomal biogenesis in motor neurons. Repeat expansion reduced C9ORF72 expression, triggering neurodegeneration through two mechanisms: accumulation of glutamate receptors, leading to excitotoxicity, and impaired clearance of neurotoxic dipeptide repeat proteins derived from the repeat expansion. Thus, cooperativity between gain- and loss-of-function mechanisms led to neurodegeneration. Restoring C9ORF72 levels or augmenting its function with constitutively active RAB5 or chemical modulators of RAB5 effectors rescued patient neuron survival and ameliorated neurodegenerative processes in both gain- and loss-of-function C9ORF72 mouse models. Thus, modulating vesicle trafficking was able to rescue neurodegeneration caused by the C9ORF72 repeat expansion. Coupled with rare mutations in ALS2, FIG4, CHMP2B, OPTN and SQSTM1, our results reveal mechanistic convergence on vesicle trafficking in ALS and FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Demencia Frontotemporal/genética , Degeneración Nerviosa/genética , Proteínas de Unión al GTP rab5/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Expansión de las Repeticiones de ADN/genética , Modelos Animales de Enfermedad , Endosomas/genética , Demencia Frontotemporal/patología , Regulación de la Expresión Génica/genética , Haploinsuficiencia/genética , Humanos , Intrones/genética , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Mutación , Degeneración Nerviosa/fisiopatología
4.
Skelet Muscle ; 6(1): 44, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27964750

RESUMEN

BACKGROUND: Large-scale expansion of myogenic progenitors is necessary to support the development of high-throughput cellular assays in vitro and to advance genetic engineering approaches necessary to develop cellular therapies for rare muscle diseases. However, optimization has not been performed in order to maintain the differentiation capacity of myogenic cells undergoing long-term cell culture. Multiple extracellular matrices have been utilized for myogenic cell studies, but it remains unclear how different matrices influence long-term myogenic activity in culture. To address this challenge, we have evaluated multiple extracellular matrices in myogenic studies over long-term expansion. METHODS: We evaluated the consequence of propagating mouse and human myogenic stem cell progenitors on various extracellular matrices to determine if they could enhance long-term myogenic potential. For the first time reported, we comprehensively examine the effect of physiologically relevant laminins, laminin 211 and laminin 521, compared to traditionally utilized ECMs (e.g., laminin 111, gelatin, and Matrigel) to assess their capacity to preserve myogenic differentiation potential. RESULTS: Laminin 521 supported increased proliferation in early phases of expansion and was the only substrate facilitating high-level fusion following eight passages in mouse myoblast cell cultures. In human myoblast cell cultures, laminin 521 supported increased proliferation during expansion and superior differentiation with myotube hypertrophy. Counterintuitively however, laminin 211, the native laminin isoform in resting skeletal muscle, resulted in low proliferation and poor differentiation in mouse and human cultures. Matrigel performed excellent in short-term mouse studies but showed high amounts of variability following long-term expansion. CONCLUSIONS: These results demonstrate laminin 521 is a superior substrate for both short-term and long-term myogenic cell culture applications compared to other commonly utilized substrates. Since Matrigel cannot be used for clinical applications, we propose that laminin 521 could possibly be employed in the future to provide myoblasts for cellular therapy directed clinical studies.


Asunto(s)
Diferenciación Celular , Laminina/farmacología , Mioblastos/citología , Células Satélite del Músculo Esquelético/citología , Animales , Proliferación Celular , Células Cultivadas , Humanos , Masculino , Ratones , Ratones Endogámicos DBA , Mioblastos/efectos de los fármacos , Células Satélite del Músculo Esquelético/efectos de los fármacos
5.
J Cell Biol ; 215(1): 47-56, 2016 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-27697929

RESUMEN

Tongue weakness, like all weakness in Duchenne muscular dystrophy (DMD), occurs as a result of contraction-induced muscle damage and deficient muscular repair. Although membrane fragility is known to potentiate injury in DMD, whether muscle stem cells are implicated in deficient muscular repair remains unclear. We hypothesized that DMD myoblasts are less sensitive to cues in the extracellular matrix designed to potentiate structure-function relationships of healthy muscle. To test this hypothesis, we drew inspiration from the tongue and engineered contractile human muscle tissues on thin films. On this platform, DMD myoblasts formed fewer and smaller myotubes and exhibited impaired polarization of the cell nucleus and contractile cytoskeleton when compared with healthy cells. These structural aberrations were reflected in their functional behavior, as engineered tongues from DMD myoblasts failed to achieve the same contractile strength as healthy tongue structures. These data suggest that dystrophic muscle may fail to organize with respect to extracellular cues necessary to potentiate adaptive growth and remodeling.


Asunto(s)
Modelos Biológicos , Contracción Muscular , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/fisiopatología , Actinas/metabolismo , Anisotropía , Diferenciación Celular , Núcleo Celular/metabolismo , Forma del Núcleo Celular , Preescolar , Citoesqueleto/metabolismo , Humanos , Fibras Musculares Esqueléticas/patología , Mioblastos/patología , Ingeniería de Tejidos , Lengua
6.
J Biomol Screen ; 20(3): 382-90, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25394729

RESUMEN

Multiple Sclerosis is a demyelinating disease of the CNS and the primary cause of neurological disability in young adults. Loss of myelinating oligodendrocytes leads to neuronal dysfunction and death and is an important contributing factor to this disease. Endogenous oligodendrocyte precursor cells (OPCs), which on differentiation are responsible for replacing myelin, are present in the adult CNS. As such, therapeutic agents that can stimulate OPCs to differentiate and remyelinate demyelinated axons under pathologic conditions may improve neuronal function and clinical outcome. We describe the details of an automated, cell-based, morphometric-based, high-content screen that is used to identify small molecules eliciting the differentiation of OPCs after 3 days. Primary screening was performed using rat CG-4 cells maintained in culture conditions that normally support a progenitor cell-like state. From a library of 73,000 diverse small molecules within the Sanofi collection, 342 compounds were identified that increased OPC morphological complexity as an indicator of oligodendrocyte maturation. Subsequent to the primary high-content screen, a suite of cellular assays was established that identified 22 nontoxic compounds that selectively stimulated primary rat OPCs but not C2C12 muscle cell differentiation. This rigorous triaging yielded several chemical series for further expansion and bio- or cheminformatics studies, and their compelling biological activity merits further investigation.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Ensayos Analíticos de Alto Rendimiento , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de los fármacos , Oligodendroglía/citología , Oligodendroglía/efectos de los fármacos , Fenotipo , Bibliotecas de Moléculas Pequeñas , Animales , Línea Celular , Descubrimiento de Drogas , Humanos , Esclerosis Múltiple , Células-Madre Neurales/metabolismo , Ratas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
7.
Genomics ; 79(4): 603-7, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11944994

RESUMEN

The ability to generate and obtain full-length (FL) cDNAs is of critical importance to the field of genomics. Most cDNAs in a traditional cDNA library lack the initiating 5' ATG, making it difficult to obtain a FL clone. We report here on an improved protocol for the preparation of FL enriched cDNA libraries. We demonstrate that if good quality RNA is used in the cDNA synthesis, high-quality, FL cDNA can be generated for messages upward of 7 kb. In addition, we demonstrate the utility of size fractionation as a means to produce libraries containing a high percentage of initiating 5' ATG containing clones with insert sizes greater than 4 kb. The method is simple, cost efficient, and can be performed in most laboratories equipped to perform molecular biology. Lastly, the novel methodologies used in the analysis of the cDNA and library should prove useful to others working to create high-quality cDNA libraries.


Asunto(s)
Clonación Molecular/métodos , ADN Complementario/aislamiento & purificación , Biblioteca de Genes , Animales , Ratones , Datos de Secuencia Molecular
8.
Appl Environ Microbiol ; 69(1): 49-55, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12513976

RESUMEN

To further explore possible avenues for accessing microbial biodiversity for drug discovery from natural products, we constructed and screened a 5,000-clone "shotgun" environmental DNA library by using an Escherichia coli-Streptomyces lividans shuttle cosmid vector and DNA inserts from microbes derived directly (without cultivation) from soil. The library was analyzed by several means to assess diversity, genetic content, and expression of heterologous genes in both expression hosts. We found that the phylogenetic content of the DNA library was extremely diverse, representing mostly microorganisms that have not been described previously. The library was screened by PCR for sequences similar to parts of type I polyketide synthase genes and tested for the expression of new molecules by screening of live colonies and cell extracts. The results revealed new polyketide synthase genes in at least eight clones. In addition, at least five additional clones were confirmed by high-pressure liquid chromatography analysis and/or biological activity to produce heterologous molecules. These data reinforce the idea that exploiting previously unknown or uncultivated microorganisms for the discovery of novel natural products has potential value and, most importantly, suggest a strategy for developing this technology into a realistic and effective drug discovery tool.


Asunto(s)
Antibacterianos/metabolismo , Bacterias/clasificación , Productos Biológicos/metabolismo , Biblioteca de Genes , Variación Genética , Recombinación Genética , Microbiología del Suelo , Secuencia de Aminoácidos , Bacterias/genética , Bacterias/metabolismo , Cromatografía Líquida de Alta Presión , Clonación Molecular , Cósmidos , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Escherichia coli/genética , Vectores Genéticos , Datos de Secuencia Molecular , Complejos Multienzimáticos/genética , Reacción en Cadena de la Polimerasa , Streptomyces/genética , Transformación Bacteriana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA