Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Cancer Control ; 27(3): 1073274820945980, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32762341

RESUMEN

Uniquely in nature, living systems must acquire, store, and act upon information. The survival and replicative fate of each normal cell in a multicellular organism is determined solely by information obtained from its surrounding tissue. In contrast, cancer cells as single-cell eukaryotes live in a disrupted, heterogeneous environment with opportunities and hazards. Thus, cancer cells, unlike normal somatic cells, must constantly obtain information from their environment to ensure survival and proliferation. In this study, we build upon a simple mathematical modeling framework developed to predict (1) how information promotes population persistence in a highly heterogeneous environment and (2) how disruption of information resulting from habitat fragmentation increases the probability of population extinction. Because (1) tumors grow in a highly heterogeneous microenvironment and (2) many cancer therapies fragment tumors into isolated, small cancer cell populations, we identify parallels between these 2 systems and develop ideas for cancer cure based on lessons gleaned from Anthropocene extinctions. In many Anthropocene extinctions, such as that of the North American heath hen (Tympanuchus cupido cupido), a large and widespread population was initially reduced and fragmented owing to overexploitation by humans (a "first strike"). After this, the small surviving populations are vulnerable to extinction from environmental or demographic stochastic disturbances (a "second strike"). Following this analogy, after a tumor is fragmented into small populations of isolated cancer cells by an initial therapy, additional treatment can be applied with the intent of extinction (cure). Disrupting a cancer cell's ability to acquire and use information in a heterogeneous environment may be an important tactic for causing extinction following an effective initial therapy. Thus, information, from the scale of cells within tumors to that of species within ecosystems, can be used to identify vulnerabilities to extinction and opportunities for novel treatment strategies.


Asunto(s)
Ecosistema , Neoplasias/terapia , Citoesqueleto/fisiología , Humanos , Integrinas/fisiología , Modelos Teóricos , Neoplasias/patología , Microambiente Tumoral
2.
Cancer Cell Int ; 16: 36, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27158244

RESUMEN

BACKGROUND: Temozolomide (TMZ) is a first-line drug for the treatment of glioblastoma. Long-term TMZ-treated tumour cells acquire TMZ resistance by profound reprogramming of the transcriptome, proteome, kinome, metabolism, and demonstrate versatile and opposite changes in proliferation, invasion, in vivo growth, and drug cross-resistance. We hypothesized that chromosomal instability (CIN) may be implicated in the generation of TMZ-driven molecular and phenotype diversity. CIN refers to the rate (cell-to-cell variability) with which whole chromosomes or portions of chromosomes are gained or lost. METHODS: The long-term TMZ-treated cell lines were established in vitro (U251TMZ1, U251TMZ2, T98GTMZ and C6TMZ) and in vivo (C6R2TMZ). A glioma model was achieved by the intracerebral stereotactic implantation of C6 cells into the striatum region of rats. Genomic and phenotypic changes were analyzed by conventional cytogenetics, array CGH, trypan blue exclusion assay, soft agar colony formation assay, scratch wound healing assay, transwell invasion assay, quantitative polymerase chain reaction, and Western blotting. RESULTS: Long-term TMZ treatment increased CIN-mediated genomic diversity in U251TMZ1, U251TMZ2 and T98GTMZ cells but reduced it in C6TMZ and C6R2TMZ cells. U251TMZ1 and U251TMZ2 cell lines, established in parallel with a similar treatment procedure with the only difference in the duration of treatment, underwent individual phenotypic changes. U251TMZ1 had a reduced proliferation and invasion but increased migration, whereas U251TMZ2 had an enhanced proliferation and invasion but no changes in migration. U251TMZ1 and U251TMZ2 cells demonstrated individual patterns in expression/activation of signal transduction proteins (e.g., MDM2, p53, ERK, AKT, and ASK). C6TMZ and C6R2TMZ cells had lower proliferation, colony formation efficiency and migration, whereas T98GTMZ cells had increased colony formation efficiency without any changes in proliferation, migration, and invasion. TMZ-treated lines demonstrated a differential response to a reduction in glucose concentration and an increased resistance to TMZ re-challenge but not temsirolimus (mTOR inhibitor) or U0126 (MEK1/2 inhibitor) treatment. CONCLUSION: Long-term TMZ treatment selected resistant genotype-phenotype variants or generated novel versatile phenotypes by increasing CIN. An increase of resistance to TMZ re-challenge seems to be the only predictable trait intrinsic to all long-term TMZ-treated tumour cells. Changes in genomic diversity may be responsible for heterogeneous phenotypes of TMZ-treated cell lines.

3.
Int J Biol Sci ; 8(1): 39-48, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22211103

RESUMEN

The activation of extracellular signal-regulated kinases (ERK1/2) has been associated with specific outcomes. Sustained activation of ERK1/2 by nerve growth factor (NGF) is associated with translocation of ERKs to the nucleus of PC12 cells and precedes their differentiation into sympathetic-like neurons whereas transient activation by epidermal growth factor (EGF) leads to cell proliferation. It was demonstrated that different growth factors initiating the same cellular signaling pathways may lead to the different cell destiny, either to proliferation or to the inhibition of mitogenesis and apoptosis. Thus, further investigation on kinetic differences in activation of certain signal cascades in different cell types by biologically different agents are necessary for understanding the mechanisms as to how cells make a choice between proliferation and differentiation.It was reported that chitinase 3-like 1 (CHI3L1) protein promotes the growth of human synovial cells as well as skin and fetal lung fibroblasts similarly to insulin-like growth factor 1 (IGF1). Both are involved in mediating the mitogenic response through the signal-regulated kinases ERK1/2. In addition, CHI3L1 which is highly expressed in different tumors including glioblastomas possesses oncogenic properties. As we found earlier, chitinase 3-like 2 (CHI3L2) most closely related to human CHI3L1 also showed increased expression in glial tumors at both the RNA and protein levels and stimulated the activation of the MAPK pathway through phosphorylation of ERK1/2 in 293 and U87 MG cells. The work described here demonstrates the influence of CHI3L2 and CHI3L1 on the duration of MAPK cellular signaling and phosphorylated ERK1/2 translocation to the nucleus. In contrast to the activation of ERK1/2 phosphorylation by CHI3L1 that leads to a proliferative signal (similar to the EGF effect in PC12 cells), activation of ERK1/2 phosphorylation by CHI3L2 (similar to NGF) inhibits cell mitogenesis and proliferation.


Asunto(s)
Adipoquinas/fisiología , Proliferación Celular , Quitinasas/fisiología , Lectinas/fisiología , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Adipoquinas/genética , Adipoquinas/metabolismo , Secuencia de Aminoácidos , Butadienos/farmacología , Línea Celular , Proteína 1 Similar a Quitinasa-3 , Quitinasas/genética , Quitinasas/metabolismo , Inhibidores Enzimáticos/farmacología , Células HEK293 , Humanos , Lectinas/genética , Lectinas/metabolismo , Datos de Secuencia Molecular , Nitrilos/farmacología , Fosforilación , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA