Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38563675

RESUMEN

Strain LB-N7T, a novel Gram-negative, orange, translucent, gliding, rod-shaped bacterium, was isolated from water samples collected from an open system of Atlantic salmon (Salmo salar) smolts in a fish farm in Chile during a flavobacterial infection outbreak in 2015. Phylogenetic analysis based on 16S rRNA sequences (1337 bp) revealed that strain LB-N7T belongs to the genus Flavobacterium and is closely related to the type strains Flavobacterium ardleyense A2-1T (98.8 %) and Flavobacterium cucumis R2A45-3T (96.75 %). The genome size of strain LB-N7T was 2.93 Mb with a DNA G+C content 32.6 mol%. Genome comparisons grouped strain LB-N7T with Flavobacterium cheniae NJ-26T, Flavobacterium odoriferum HXWNR29T, Flavobacterium lacisediminis TH16-21T and Flavobacterium celericrescens TWA-26T. The calculated digital DNA-DNA hybridization values between strain LB-N7T and the closest related Flavobacterium strains were 23.3 % and the average nucleotide identity values ranged from 71.52 to 79.39 %. Menaquinone MK-6 was the predominant respiratory quinone, followed by MK-7. The major fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The primary polar lipids detected included nine unidentified lipids, two amounts of aminopospholipid and phospholipids, and a smaller amount of aminolipid. Phenotypic, genomic, and chemotaxonomic data suggest that strain LB-N7T (=CECT 30406T=RGM 3221T) represents as a novel bacterial species, for which the name Flavobacterium psychraquaticum sp. nov. is proposed.


Asunto(s)
Flavobacterium , Salmo salar , Animales , Flavobacterium/genética , Chile , Filogenia , ARN Ribosómico 16S/genética , Composición de Base , Ácidos Grasos/química , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana
2.
J Fish Dis ; 47(2): e13888, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37950508

RESUMEN

Tenacibaculum dicentrarchi is the second most important pathogen in Chilean salmon farming. This microorganism causes severe skin lesions on the body surface of farmed fish. The bacterium can also adhere to surfaces and form biofilm, survive in fish skin mucus, and possess different systems for iron acquisition. However, the virulence mechanisms are still not fully elucidated. Outer membrane vesicles (OMV) are nanostructures released by pathogenic Gram-negative bacteria during growth, but none has been described yet for T. dicentrarchi. In this study, we provide the first reported evidence of the fish pathogen T. dicentrarchi producing and releasing OMV from 24 h after incubation, increasing thereafter until 120 h. Analyses were conducted with T. dicentrarchi TdCh05, QCR29, and the type strain CECT 7612T . The OMV sizes, determined via scanning electron microscopy, ranged from 82.25 nm to 396.88 nm as per the strain and incubation time point (i.e., 24 to 120 h). SDS-PAGE revealed that the number of protein bands evidenced a drastically downward trend among the T. dicentrarchi strains. In turn, the OMV shared five proteins (i.e., 22.2, 31.9, 47.7, 56.3, and 107.1 kDa), but no protein pattern was identical. A heterogeneous amount of protein, RNA, and DNA were obtained, depending on the time at which OMV were extracted. Purified OMV were biologically active and induced a cytotoxic effect in macrophage-enriched cell cultures from rainbow trout (Oncorhynchus mykiss) head kidneys. This is the first step towards understanding the role that OMV could play in the pathogenesis of T. dicentrarchi.


Asunto(s)
Enfermedades de los Peces , Oncorhynchus mykiss , Tenacibaculum , Animales , Riñón Cefálico , Enfermedades de los Peces/microbiología , Macrófagos , Tenacibaculum/genética
3.
J Fish Dis ; 47(3): e13897, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38031399

RESUMEN

Flavobacterial infection associated with diseased fish is caused by multiple bacterial species within the family Flavobacteriaceae. In the present study, the Chilean isolate FP99, from the gills of a diseased, farmed rainbow trout (Oncorhynchus mykiss), was characterized using phenotypic and genomic analyses. Additionally assessed was pathogenic activity. Phylogenetic analysis based on 16S rRNA gene sequencing confirmed that isolate FP99 belonged to the genus Epilithonimonas, an average nucleotide identity value of 100% was detected with the Chilean isolate identified as Epilithonimonas sp. FP211-J200. In silico genome analysis, mechanisms for toxins production, and superantigens, adhesion, or other genes associated with virulence were not detected. However, genes encoding proteins for antibiotic resistance were found, including the chrA gene and the nucleotide sequence that encodes for multiple antibiotic resistance MarC proteins. Furthermore, the blaESP-1 gene (87.85% aminoacidic sequence identity), encoding an extended-spectrum subclass B3 metallo-ß-lactamase and conferring carbapenem-hydrolysing activity, and the tet(X) gene, which encodes a monooxygenase that catalyses the degradation of tetracycline-class antimicrobials were carried by this isolate. Phenotyping analyses also supported assignment as E. ginsengisoli. Challenge trials against healthy rainbow trout resulted in no observed pathogenic effect. Our findings identify for the first time the species E. ginsengisoli as associated with fish farming, suggesting that this isolate may be a component of the microbiota of the freshwater system. Notwithstanding, poor environmental conditions and any stressors associated with aquaculture situations or lesions caused by other pathogenic bacteria, such as F. psychrophilum, could favour the entry of E. ginsengisoli into rainbow trout.


Asunto(s)
Chryseobacterium , Enfermedades de los Peces , Infecciones por Flavobacteriaceae , Oncorhynchus mykiss , Animales , Oncorhynchus mykiss/microbiología , Chile , Flavobacterium , ARN Ribosómico 16S/genética , Filogenia , Enfermedades de los Peces/microbiología , Genómica , Infecciones por Flavobacteriaceae/microbiología
4.
J Fish Dis ; : e13984, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38943549

RESUMEN

A strategy for vaccine design involves identifying proteins that could be involved in pathogen-host interactions. The aim of this proteomic study was to determine how iron limitation affects the protein expression of Tenacibaculum dicentrarchi, with a primary focus on virulence factors and proteins associated with iron uptake. The proteomic analysis was carried out using two strains of T. dicentrarchi grown under normal (control) and iron-limited conditions, mimicking the host environment. Our findings revealed differences in the proteins expressed by the type strain CECT 7612T and the Chilean strain TdCh05 of T. dicentrarchi. Nonetheless, both share a common response to iron deprivation, with an increased expression of proteins associated with iron oxidation and reduction metabolism (e.g., SufA, YpmQ, SufD), siderophore transport (e.g., ExbD, TonB-dependent receptor, HbpA), heme compound biosynthesis, and iron transporters under iron limitation. Proteins involved in gliding motility, such as GldL and SprE, were also upregulated in both strains. A negative differential regulation of metabolic proteins, particularly those associated with amino acid biosynthesis, was observed under iron limitation, reflecting the impact of iron availability on bacterial metabolism. Additionally, the TdCh05 strain exhibited unique proteins associated with gliding motility machinery and phage infection control compared to the type strain. These groups of proteins have been identified as virulence factors within the Flavobacteriaceae family, including the genus Tenacibaculum. These results build upon our previous report on iron acquisition mechanisms and could lay the groundwork for future studies aimed at elucidating the role of some of the described proteins in the infectious process of tenacibaculosis, as well as in the development of potential vaccines.

5.
J Fish Dis ; : e13965, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801516

RESUMEN

The diversity of Tenacibaculum maritimum in Chile remains poorly understood, particularly in terms of antigenic and genetic diversity. This information is crucial for the future development of a vaccine against tenacibaculosis and would increase understanding of this important fish pathogen. With this aim, the biochemical, antigenic, and genetic characteristics were analysed for 14 T. maritimum isolates, recovered from diseased Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) farmed in Chile between 1998 and 2022. Biochemical analysis showed a homogeneity among all the Chilean T. maritimum isolates and all four other strains included for comparison purposes. Serological characterization using dot-blot assaying revealed antigenic heterogeneity with the use of unabsorbed antisera. The majority of isolates showed cross-reactions, identifying three main serological patterns. When the PCR-based serotyping scheme was performed, the existence of antigenic heterogeneity was confirmed. Four Atlantic salmon isolates were 4-0; and most isolates, including the rainbow trout isolate, were 3-1 (n = 9). A turbot (Scophthalmus maximus) isolate was 1-0. Using an existing Multilocus Sequence Typing system, two newly identified sequence types (ST193 and ST198) in the database were detected. ST193 encompassed nine isolates obtained from Atlantic salmon and rainbow trout, while ST198 regrouped four isolates, all retrieved from diseased Atlantic salmon in 2022. These findings highlight significant antigenic and genetic diversity among the Chilean isolates. This information is useful for epizootiology and the selection of suitable candidate strain(s) for vaccine development against tenacibaculosis caused by T. maritimum in Chilean salmon farming.

6.
Int J Mol Sci ; 25(12)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38928053

RESUMEN

The innate immune response in Salmo salar, mediated by pattern recognition receptors (PRRs), is crucial for defending against pathogens. This study examined DDX41 protein functions as a cytosolic/nuclear sensor for cyclic dinucleotides, RNA, and DNA from invasive intracellular bacteria. The investigation determined the existence, conservation, and functional expression of the ddx41 gene in S. salar. In silico predictions and experimental validations identified a single ddx41 gene on chromosome 5 in S. salar, showing 83.92% homology with its human counterpart. Transcriptomic analysis in salmon head kidney confirmed gene transcriptional integrity. Proteomic identification through mass spectrometry characterized three unique peptides with 99.99% statistical confidence. Phylogenetic analysis demonstrated significant evolutionary conservation across species. Functional gene expression analysis in SHK-1 cells infected by Piscirickettsia salmonis and Renibacterium salmoninarum indicated significant upregulation of DDX41, correlated with increased proinflammatory cytokine levels and activation of irf3 and interferon signaling pathways. In vivo studies corroborated DDX41 activation in immune responses, particularly when S. salar was challenged with P. salmonis, underscoring its potential in enhancing disease resistance. This is the first study to identify the DDX41 pathway as a key component in S. salar innate immune response to invading pathogens, establishing a basis for future research in salmonid disease resistance.


Asunto(s)
Enfermedades de los Peces , Inmunidad Innata , Filogenia , Piscirickettsia , Infecciones por Piscirickettsiaceae , Renibacterium , Salmo salar , Animales , Piscirickettsia/genética , Inmunidad Innata/genética , Salmo salar/microbiología , Salmo salar/genética , Salmo salar/inmunología , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/genética , Infecciones por Piscirickettsiaceae/microbiología , Infecciones por Piscirickettsiaceae/inmunología , Infecciones por Piscirickettsiaceae/genética , Infecciones por Piscirickettsiaceae/veterinaria , Renibacterium/genética , Renibacterium/inmunología , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Proteínas de Peces/inmunología , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Evolución Molecular
7.
Artículo en Inglés | MEDLINE | ID: mdl-37010890

RESUMEN

Strain I-SCBP12nT, a novel Gram-stain-negative, aerobic, non-spore-forming, motile-by-gliding and rod-shaped bacterium, was isolated from a chinstrap penguin chick (Pygoscelis antarcticus) during a 2015 expedition to the Chilean Antarctic territory. Phylogenetic analysis based on 16S rRNA gene sequencing confirmed that strain I-SCBP12nT belonged to the genus Flavobacterium, being closely related to strains Flavobacterium chryseum P3160T (98.52 %), Flavobacterium hercynium WB 4.2-33T (98.47 %) and Flavobacterium chilense LM-19-FpT (98.47 %). The genome size of strain I-SCBP12nT was 3.69 Mb with DNA G+C content 31.95 mol%. Genomic comparisons of strain I-SCBP12nT with type species in the genus Flavobacterium were performed, with obtained average values near 75.17 and 84.33 % for the blast and MUMer analyses of average nucleotide identity, respectively, and 0.86 for the tetranucleotides frequency analysis. These values are far from the accepted species cut-off values. Strain I-SCBP12nT contained MK-6 as the predominant menaquinone and the major polar lipids were aminophospholipid, an unidentified aminolipid and unidentified lipids. The predominant fatty acids (> 5 %) were iso-C14 : 0, iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0, iso-C16 : 1, iso-C16 : 0 3-OH, C15 : 1 ω6c and summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c). Phenotypic, chemotaxonomic and genomic data supported the assignment of strain I-SCBP12nT (=CECT 30404T=RGM 3223T) to a novel species of Flavobacterium, for which the name Flavobacterium pygoscelis sp. nov.is proposed.


Asunto(s)
Ácidos Grasos , Spheniscidae , Animales , Ácidos Grasos/química , Flavobacterium , Filogenia , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Composición de Base , Técnicas de Tipificación Bacteriana , Vitamina K 2
8.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37906096

RESUMEN

Strain PVT-9aT, a novel Gram-stain-negative, aerobic, non-spore-forming, motile-by-gliding and rod-shaped bacterium, was isolated from a skin lesion of Atlantic salmon (Salmo salar L.) during a tenacibaculosis outbreak that occurred in 2016 at a Chilean fish farm. Phylogenetic analysis based on 16S rRNA gene sequencing confirmed that strain PVT-9aT belonged to the genus Tenacibaculum, being related to the closest type strains Tenacibaculum haliotis KCTC 52419T (98.49 % sequence similarity), Tenacibaculum aestuariivivum JDTF-79T (97.36 %), Tenacibaculum insulae JDTF-31T (97.29 %) and Tenacibaculum ovolyticum IFO 15947T (97.15 %). The genome size of strain PVT-9aT was 2.73 Mb with a DNA G+C content 31.09 mol%. Average nucleotide identity analysis among 30 Tenacibaculum species rendered the most similar strains as follows: T. haliotis KCTC 52419T (87.91 %), T. ovolyticum IFO 15947T (82.47 %), Tenacibaculum dicentrarchi 35/09T (81.08 %), Tenacibaculum finnmarkense gv finnmarkense TNO006T (80.91 %) and T. finnmarkense gv ulcerans TNO010T (80.96 %). Menaquinone MK-6 was the predominant respiratory quinone. The predominant cell fatty acids (>10 %) were iso-C15 : 0, iso-C15 : 1 G and iso-C15 : 0 3-OH. Phenotypic, chemotaxonomic and genomic data supported the assignment of strain PVT-9aT (=DSM 115155T=RGM 3472T) as representing a novel species of Tenacibaculum, for which the name Tenacibaculum bernardetii sp. nov. is proposed.


Asunto(s)
Salmo salar , Tenacibaculum , Animales , Ácidos Grasos/química , Agua de Mar/microbiología , Chile , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Composición de Base , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana
9.
Fish Shellfish Immunol ; 136: 108747, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37059254

RESUMEN

Tenacibaculosis caused by Tenacibaculum dicentrarchi is the second most important bacterial disease that affects the Chilean salmon industry. The impacted fish show severe external gross skin lesions on different areas of the body. The external mucus layer that covers fish skin contains numerous immune substances that act as one of the main defense barriers against microbial colonization and invasions by potential pathogens. The present in vitro study aimed to evaluate and elucidate the role of the external mucus layer in the susceptibility of Atlantic salmon (Salmo salar) to three Chilean T. dicentrarchi strains and the type strain. For this, mucus collected from healthy and diseased (i.e., with T. dicentrarchi) Atlantic salmon were used, and various antibacterial and inflammatory parameters were analysed. The T. dicentrarchi strains were attracted to the mucus of Atlantic salmon regardless of health status. All four strains adhered to the skin mucus and very quickly grew using the mucus nutrients. Once infection was established, different mucosal defense components were activated in the fish, but the levels of bactericidal activity and of other enzymes were insufficient to eliminate T. dicentrarchi. Alternatively, this pathogen may be able to neutralize or evade these mechanisms. Therefore, the survival of T. dicentrarchi in fish skin mucus could be relevant to facilitate the colonization and subsequent invasion of hosts. The given in vitro results suggest that greater attention should be given to fish skin mucus as a primary defense against T. dicentrarchi.


Asunto(s)
Enfermedades de los Peces , Salmo salar , Tenacibaculum , Animales , Piel , Moco , Estado de Salud
10.
J Fish Dis ; 46(5): 517-526, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36727560

RESUMEN

Tenacibaculosis is an emerging disease that severely affects salmonid farming in Chile, producing high mortalities and causing great economic losses. This work describes a novel PCR assay for the specific detection of Tenacibaculum piscium, a species recently described and identified in tenacibaculosis outbreaks in Norway and Chile. The designed primers amplified a 678-bp fragment of the peptidase gene (peptidase M23 family) from T. piscium. This method is specific for T. piscium; no other chromosomal DNA amplification products were obtained for other Tenacibaculum species. In pure cultures, the PCR assay detected up to 500 pg of DNA, or the equivalent of 2.44 ± 0.06 × 104 CFU/ml. For seeded fish samples (i.e., gills, liver, kidney, and mucus), the sensitivity limit was 4.88 ± 0.11 × 106 CFU/g, sufficient to detect T. piscium in acute infections in fish. Notably, this sensitivity level was 100-fold lower for DNA extracted from mucus samples. As compared to other existing methodologies (e.g., gene sequencing), the PCR approach described in this work allowed for the easiest detection of T. piscium in mucus samples obtained from challenged fish, an important outcome considering that the identification of this bacterium is difficult. Our results indicate that the designed specific primers and PCR method provide a rapid and specific diagnosis of T. piscium.


Asunto(s)
Enfermedades de los Peces , Salmonidae , Tenacibaculum , Animales , Tenacibaculum/genética , Enfermedades de los Peces/microbiología , Reacción en Cadena de la Polimerasa/métodos , Cartilla de ADN , ADN
11.
J Fish Dis ; 46(9): 1001-1012, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37309564

RESUMEN

Iron uptake during infection is an essential pathogenicity factor of several bacteria, including Tenacibaculum dicentrarchi, an emerging pathogen for salmonid and red conger eel (Genypterus chilensis) farms in Chile. Iron-related protein families were recently found in eight T. dicentrarchi genomes, but biological studies have not yet confirmed functions. The investigation reported herein clearly demonstrated for the first time that T. dicentrarchi possesses different systems for iron acquisition-one involving the synthesis of siderophores and another allowing for the utilization of heme groups. Using 38 isolates of T. dicentrarchi and the type strain CECT 7612T , all strains grew in the presence of the chelating agent 2.2'-dipyridyl (from 50 to 150 µM) and produced siderophores on chrome azurol S plates. Furthermore, 37 of the 38 T. dicentrarchi isolates used at least four of the five iron sources (i.e. ammonium iron citrate, ferrous sulfate, iron chloride hexahydrate, haemoglobin and/or hemin) when added to iron-deficient media, although the cell yield was less when using hemin. Twelve isolates grew in the presence of hemin, and 10 of them used only 100 µM. Under iron-supplemented or iron-restricted conditions, whole cells of three isolates and the type strain showed at least one membrane protein induced in iron-limiting conditions (c.a. 37.9 kDa), regardless of the isolation host. All phenotypic results were confirmed by in-silico genomic T. dicentrarchi analysis. Future studies will aim to establish a relationship between iron uptake ability and virulence in T. dicentrarchi through in vivo assays.


Asunto(s)
Enfermedades de los Peces , Tenacibaculum , Animales , Hierro/metabolismo , Sideróforos , Hemina/metabolismo , Enfermedades de los Peces/microbiología , Tenacibaculum/genética , Peces
12.
J Fish Dis ; 46(10): 1085-1096, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37357563

RESUMEN

Flavobacterium psychrophilum is a pathogenic bacterium affecting Chilean salmonid farms. High antigenic and genetic diversity exists among Chilean F. psychrophilum isolates, but the distribution thereof among farms is poorly understood. These epidemiological data are key for developing isolate-specific vaccines. The present study isolated F. psychrophilum in diseased Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) from five freshwater farms between 2018 and 2019. Each farm only raised one salmonid species and was geographically separated from and did not share culturing water with the other farms. Antigenic and genetic analyses were conducted to shed light on the possibility of isolates coexisting within the same farm during outbreaks. A total of 68 Chilean F. psychrophilum isolates were recovered from skin lesions, gills, fins, kidney and spleen of moribund and live fish. Among the 68 Chilean isolates, mPCR-serotyping indicated three major serotypes (i.e. 23.5% type 0; 47.1% type 2; and 26.5% type 4) and, to a lesser degree, serotype 1 (2.9%). Sixteen antigenic groups were detected by slide agglutination. Genetic characterizations by 16S rRNA alleles identified 71% of the isolates as the virulent genogroup CSF259-93 allele. A predominant serotype was associated with each farm, with types 0 and 4 related to Atlantic salmon and types 1 and 2 to rainbow trout. Notwithstanding, several antigenic groups coexisted within some farms. Likewise, the experimental intramuscular challenges (n = 20) demonstrated that the type-2 isolates from rainbow trout were the most pathogenic among isolates recovered from infectious outbreaks in Atlantic salmon, especially as compared to those from types-0 and -4. These results allow us to suggest that prevention measures, specifically vaccines, should be developed according to dominant isolates and with specificity to each farm, that is the use of autogenous or site-specific vaccines.


Asunto(s)
Enfermedades de los Peces , Infecciones por Flavobacteriaceae , Oncorhynchus mykiss , Animales , Chile/epidemiología , ARN Ribosómico 16S/genética , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/microbiología , Oncorhynchus mykiss/microbiología , Flavobacterium , Brotes de Enfermedades/veterinaria , Infecciones por Flavobacteriaceae/epidemiología , Infecciones por Flavobacteriaceae/veterinaria , Infecciones por Flavobacteriaceae/microbiología
13.
J Fish Dis ; 46(5): 499-506, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36696457

RESUMEN

Renibacterium salmoninarum (Rs) is the etiological agent of bacterial kidney disease (BKD), which significantly affects farmed and wild salmonids worldwide. Although the whole genome of Rs (~3.1 million nucleotides) is highly conserved, genomic epidemiology analyses have identified four sub-lineages from Chilean isolates. A total of 94 Rs genomes from the BIGSdb aquaculture database were aligned and compared using bioinformatics tools, identifying 2199 independent single-nucleotide polymorphisms (SNPs) spread along the genome. A detailed analysis of the distribution of the SNPs showed five local zones of a length in the range of 10-15 kbp that should be used to unambiguously identify a specific sub-lineage. Based on the Rs type strain DSM 20767T , we designed multiplex PCR primers that produce specific amplification products which were further sequenced by the Sanger method to obtain the genotype of the sub-lineage. For the genetic typing, we evaluated 27 Rs isolates recovered from BKD outbreaks from different fish species and regions of Chile. Based on the findings reported here, we propose the PCR approach as a valuable tool for the rapid and reliable studying of the relationships between Rs isolates and the different sub-lineages without requiring the sequencing of the entire genome.


Asunto(s)
Enfermedades de los Peces , Micrococcaceae , Animales , Salmón , Chile , Enfermedades de los Peces/microbiología , Acuicultura
14.
J Fish Dis ; 46(2): 157-163, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36404601

RESUMEN

Yersinia ruckeri causes important economic losses for rainbow trout (Oncorhynchus mykiss) farms worldwide. This bacterial disease is likely the most common among trout in Peru; however, no commercial vaccine is available nationally, which is, in part, due to a lack of information on the bacterium. The aim of the current study was to characterize 29 Y. ruckeri isolates sampled from seven cage-reared farms in the Puno Region, the focal point for aquaculture activities in Peru. For this, samples were taken from fish with clinical signs (i.e. haemorrhages, uni- or bilateral exophthalmia, hyphaemia and/or melanosis). Notable among our findings was the existence of both Y. ruckeri biotype 1 (9 isolates) and biotype 2 (20 isolates; negative for sorbitol and Tween 80). The isolates further differed in API profiles 5307100 (21 isolates), 1307100 (4 isolates), 1305100 (2 isolates), 1307120 (1 isolate) and 5305100 (1 isolate), with the main differences being in the tests for lysine decarboxylase, gelatine hydrolysis and D-saccharose fermentation. Despite these differences, all isolates shared identical ERIC-PCR and REP-PCR profiles and belonged to the O1a serotype. Fingerprints were identical to the reference strain CECT 955 (serotype O1a). The information obtained will be used for epidemiological purposes by health authorities and for the development of a vaccine against Y. ruckeri, a prominent request made by fish farmers in Peru.


Asunto(s)
Enfermedades de los Peces , Oncorhynchus mykiss , Yersiniosis , Animales , Yersinia ruckeri/genética , Oncorhynchus mykiss/microbiología , Yersiniosis/epidemiología , Yersiniosis/veterinaria , Serogrupo , Perú/epidemiología , Enfermedades de los Peces/microbiología
15.
J Aquat Anim Health ; 35(3): 187-198, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37749801

RESUMEN

OBJECTIVE: The first objective of the study aimed to detect the presence of Lactococcus petauri, L. garvieae, and L. formosensis in fish (n = 359) and environmental (n = 161) samples from four lakes near an affected fish farm in California during an outbreak in 2020. The second objective was to compare the virulence of the Lactococcus spp. in Rainbow Trout Oncorhynchus mykiss and Largemouth Bass Micropterus salmoides. METHODS: Standard bacterial culture methods were used to isolate Lactococcus spp. from brain and posterior kidney of sampled fish from the four lakes. Quantitative PCR (qPCR) was utilized to detect Lactococcus spp. DNA in fish tissues and environmental samples from the four lakes. Laboratory controlled challenges were conducted by injecting fish intracoelomically with representative isolates of L. petauri (n = 17), L. garvieae (n = 2), or L. formosensis (n = 4), and monitored for 14 days postchallenge (dpc). RESULT: Lactococcus garvieae was isolated from the brains of two Largemouth Bass in one of the lakes. Lactococcus spp. were detected in 14 fish (8 Bluegills Lepomis macrochirus and 6 Largemouth Bass) from 3 out of the 4 lakes using a qPCR assay. Of the collected environmental samples, all 4 lakes tested positive for Lactococcus spp. in the soil samples, while 2 of the 4 lakes tested positive in the water samples through qPCR. Challenged Largemouth Bass did not show any signs of infection postinjection throughout the challenge period. Rainbow Trout infected with L. petauri showed clinical signs within 3 dpc and presented a significantly higher cumulative mortality (62.4%; p < 0.0001) at 14 dpc when compared to L. garvieae (0%) and L. formosensis (7.5%) treatments. CONCLUSION: The study suggests that qPCR can be used for environmental DNA monitoring of Lactococcus spp. and demonstrates virulence diversity between the etiological agents of piscine lactococcosis.


Asunto(s)
Enfermedades de los Peces , Infecciones por Bacterias Grampositivas , Oncorhynchus mykiss , Animales , Virulencia , Infecciones por Bacterias Grampositivas/epidemiología , Infecciones por Bacterias Grampositivas/veterinaria , Infecciones por Bacterias Grampositivas/microbiología , Lagos , Lactococcus/genética , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/microbiología
16.
J Fish Dis ; 45(6): 795-799, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35262919

RESUMEN

Tenacibaculosis caused by Tenacibaculum dicentrarchi is the third most important bacterial fish infection affecting the Chilean salmon industry. Losses to this disease are most frequently controlled by treatments with florfenicol and oxytetracycline. However, recent tenacibaculosis outbreaks were controlled through the extra-label, oral administration of tiamulin, resulting in high treatment efficiency. In this study, we present an analysis of susceptibility patterns of 32 T. dicentrarchi isolates and the type strain CECT 7612T to tiamulin by determining the minimum inhibitory concentrations (MICs) according to the procedures recommended by the Clinical and Laboratory Standard Institute, but fixing incubation temperature to the more appropriate for the growth of T. dicentrarchi (18 ºC). The MICs of the T. dicentrarchi isolates were unimodally distributed (0.06-1.0 µg/ml range), while the CECT 7612T strain presented an MIC of 0.5 µg/ml. Calculations using Normalized Resistance Interpretation provided epidemiological cut-off values of ≤1.0 µg/ml, with the 33 T. dicentrarchi classified as wild type. In Chile, tiamulin is authorized for use in other livestock species, but application in salmonids is extra-label. Our presented in vitro results suggest that tiamulin is a viable alternative to florfenicol, specifically as tiamulin requires comparatively lower concentrations to inhibit T. dicentrarchi. Considering that tiamulin is also exclusively for veterinary use, is classified as "least important" by the World Health Organization and has not resulted in the development of bacterial resistance, pharmaceutical companies should be requested to register tiamulin and provide alternative antimicrobial treatments for the salmonid industry.


Asunto(s)
Enfermedades de los Peces , Infecciones por Flavobacteriaceae , Salmonidae , Tenacibaculum , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Diterpenos , Enfermedades de los Peces/microbiología , Infecciones por Flavobacteriaceae/veterinaria , Pruebas de Sensibilidad Microbiana
17.
J Fish Dis ; 45(8): 1173-1188, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35604683

RESUMEN

Renibacterium salmoninarum, a Gram-positive intracellular pathogen, is the causative agent of bacterial kidney disease (BKD), the impacts of which are high mortalities and economic losses for the salmon industry. This study provides novel analyses for the whole-genome sequences of 50 R. salmoninarum isolates and the reference strain ATCC 33209 using a pan-genomic approach to elucidate phylogenomic relationships and identify unique and shared genes associated with pathogenicity and infection mechanisms. Genome size varied from 3,061,638 to 3,155,332 bp; gene count from 3452 to 3580; and predicted coding sequences from 3402 to 3527. Comparative analyses revealed an open, but approaching closed, pan-genome. The pan-genome analysis recovered 4064 genes, with a core genome containing 3306 genes. Phylogenetic analysis of R. salmoninarum showed high genomic homogeneity, apart from one isolate obtained from Salmo trutta in Norway. All genomes presented the 57-kDa protein (p57). Strain ATCC 33209 and the Chilean isolates H-2 and DJ2R presented two copies of the msa gene, while the remaining isolates had one copy. The pan-genome analysis further identified differences in the number of copies and length of the signalling peptide for p57, the principal virulence factor reported for this bacterium. This heterogeneity could be associated with the secretion levels of p57, potentially influencing virulence. Additionally identified were numerous common genes related to iron uptake, the stress response and regulation, and cell signalling-all of which constitute the pathogenic repertoire of R. salmoninarum. This investigation provides information that is applicable in future studies for identifying therapeutic targets and/or for designing new strategies (e.g., vaccines) to prevent BKD infections in salmon farming.


Asunto(s)
Enfermedades de los Peces , Enfermedades Renales , Micrococcaceae , Animales , Enfermedades de los Peces/microbiología , Genómica , Enfermedades Renales/microbiología , Micrococcaceae/genética , Filogenia , Renibacterium , Salmón , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
18.
J Fish Dis ; 45(2): 289-300, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34791674

RESUMEN

Renibacterium salmoninarum, a slow-growing facultative intracellular pathogen, is the causative agent of bacterial kidney disease, a chronic, progressive and granulomatous infection that threatens farmed and wild salmonids worldwide. Pathogenic R. salmoninarum colonizes tissues and invades the host through cell surface-associated and secreted proteins. While correlations between iron acquisition genes and virulence have been demonstrated in vitro, these mechanisms have not undergone proteomic characterization. The present study applied a proteomic approach to elucidate the differences between the virulent Chilean R. salmoninarum H-2 strain and the type strain ATCC 33209T . Analyses were conducted under normal (control) and iron-limited conditions (DIP) emulating the host environment. Interestingly, strain H-2 apparently responded better to the iron-limited condition-for example, only this strain presented a significantly enriched iron ion homeostasis pathway. Furthermore, key virulence factors related to an iron-limited environment were more abundant in strain H-2. Importantly, the lack of iron favoured the expression of the 57-kDa protein in strain H-2, the principal virulence factor for R. salmoninarum. Our findings can be employed in the design and development of treatments targeted to iron uptake mechanisms (e.g. siderophore synthesis or haem uptake), which represents a promising therapeutic approach for treating this persistent fastidious bacterium.


Asunto(s)
Enfermedades de los Peces , Micrococcaceae , Animales , Hierro , Proteómica , Renibacterium
19.
J Fish Dis ; 45(6): 847-859, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35306674

RESUMEN

Piscine lactococcosis is an emergent bacterial disease that is associated with high economic losses in many farmed and wild aquatic species worldwide. Early and accurate detection of the causative agent of piscine lactococcosis is essential for management of the disease in fish farms. In this study, a TaqMan quantitative polymerase chain reaction (qPCR) targeting the 16S-23S rRNA internal transcribed spacer region was developed and validated. Validation of the qPCR was performed with DNA of previously typed L. petauri and L. garvieae recovered from different aquatic hosts from distinct geographical locations, closely related bacterial species and common pathogens in trout aquaculture. Further diagnostic sensitivity and specificity was investigated by screening of fish, water and faecal samples. The developed qPCR assay showed high specificity, sensitivity and accuracy in detection of L. petauri and L. garvieae with lack of signals from non-target pathogens, and in screening of rainbow trout (Oncorhynchus mykiss) posterior kidney and environmental samples. The detection limit of the qPCR was four amplicon copies. Moreover, the sensitivity of the qPCR assay was not affected by presence of non-target DNA from either fish or environmental samples. The robustness, specificity and sensitivity of the developed qPCR will facilitate fast and accurate diagnosis of piscine lactococcosis to establish appropriate control measures in fish farms and aquaria.


Asunto(s)
Enfermedades de los Peces , Oncorhynchus mykiss , Animales , ADN , Enfermedades de los Peces/microbiología , Lactococcus/genética , Oncorhynchus mykiss/microbiología , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética
20.
Environ Res ; 196: 110344, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33068585

RESUMEN

The air humidity in Antarctica is very low and this peculiar weather parameter make the use of flame retardants in research facilities highly needed for safety reasons, as fires are a major risk. Legacy and novel flame retardants (nFRs) including polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDs), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), Dechlorane Plus (DP), and other nFRs were measured in indoor dust samples collected at research Stations in Antarctica: Gabriel de Castilla, Spain (GCS), Julio Escudero, Chile (JES), and onboard the RRS James Clark Ross, United Kingdom (RRS JCR). The GC-HRMS and LC-MS-MS analyses of dust samples revealed ∑7PBDEs of 41.5 ± 43.8 ng/g in rooms at GCS, 18.7 ± 11.6 ng/g at JES, and 27.2 ± 37.9 ng/g onboard the RRS JCR. PBDE pattern was different between the sites and most abundant congeners were BDE-183 (40%) at GCS, BDE-99 (50%) at JES, and BDE-153 (37%) onboard the RRS JCR. The ∑(4)HBCDs were 257 ± 407 ng/g, 14.9 ± 14.5 ng/g, and 761 ± 1043 ng/g in indoor dust collected in rooms at GCS, JES, and RRS JCR, respectively. The ∑9nFRs were 224 ± 178 ng/g at GCS, 14.1 ± 13.8 ng/g at JES, and 194 ± 392 ng/g on the RRS JCR. Syn- and anti-DP were detected in most of the samples and both isomers showed the highest concentrations at GCS: 163 ± 93.6 and 48.5 ± 61.1 ng/g, respectively. The laboratory and living room showed the highest concentration of HBCDs, DPs, BTBPE. The wide variations in FR levels in dust from the three research facilities and between differently used rooms reflect the different origin of furnishing, building materials and equipment. The potential health risk associated to a daily exposure via dust ingestion was assessed for selected FRs: BDEs 47, 99, and 153, α-, ß-, and γ-HBCD, BTBPE, syn- and anti-DP. Although the estimated exposures are below the available reference doses, caution is needed given the expected increasing use of novel chemicals without a comprehensive toxicological profile.


Asunto(s)
Contaminación del Aire Interior , Retardadores de Llama , Contaminación del Aire Interior/análisis , Regiones Antárticas , Chile , Polvo/análisis , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente , Retardadores de Llama/análisis , Éteres Difenilos Halogenados/análisis , Humanos , España , Reino Unido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA