Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1437055, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39166249

RESUMEN

This study aimed to identify and evaluate the genetic diversity of olive trees in Jordan, a country located in the eastern Mediterranean, where olive domestication originated. For this purpose, a total of 386 olive trees were analyzed, including 338 collected from two surveys (JOCC-1 and JOCC-2) across seven regions, and 48 selected accessions from the Olive Germplasm Bank of Jordan (JGBOC). These trees underwent comprehensive phenotypic and molecular characterization using different tools. Significant differences in morphological traits were detected among tested regions using the Chi-square test. Principal components analysis revealed that fruit color change and growth habit as the most discriminating traits, segregating the trees into two groups, with the first group including the Kanabisi cultivar and the second group including the Kfari Baladi cultivar. Utilizing Kompetitive Allele Specific PCR assay, two sets of informative SNPs were used for the genetic diversity analysis. Cladograms were constructed using the maximum likelihood method, revealing a consistent pattern where two clades containing identical genotypes were observed to cluster with the Kfari Baladi or Kanabisi. In addition, the SNP data was used to perform a comparative analysis with the Worldwide Olive Germplasm Bank of Córdoba, which revealed 73 unreported olive genotypes from Jordan. Genetic structure analyses using Discriminant Analysis of Principal Components (DAPC) identified four clusters with distinctive patterns of relatedness among 149 unique accessions, including 52 olive accessions from various Mediterranean countries (IOCC-3). ADMIXTURE analysis revealed four genetic clusters, consistent with the clustering observed in DAPC and cladogram analysis, indicating a high level of genetic admixture among Jordanian olive germplasm. In conclusion, the results show that olive trees in Jordan are highly diverse, providing valuable information for future conservation and management plans.

2.
Mitochondrial DNA B Resour ; 8(11): 1205-1208, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38239911

RESUMEN

The complete mitochondrial genome of the olive cultivar Mehras was determined using high-throughput sequencing technology. It consisted of 710,808 base pairs and comprised 70 genes, including 44 protein-coding genes, 23 tRNA genes, and three rRNA genes, with a GC content of 44.7%. Significant single nucleotide polymorphisms (SNPs) and insertions/deletions (InDels) were detected throughout the mitogenome. Phylogenetic analysis was conducted using other genotypes, including five olive cultivars, three related species, and Olea exasperata as an out-group. The analysis revealed that the olive cultivar Mehras shares an ancient common ancestor with the Frantoio cultivar from Italy and the Manzanilla cultivar from Spain, which confirms previous findings based on plastome sequencing.

3.
Mitochondrial DNA B Resour ; 6(1): 194-195, 2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33553630

RESUMEN

The complete chloroplast genome sequence of Olea europaea subsp. europaea cultivar Mehras was determined using high-throughput sequencing technology. Chloroplast genome was 155,897 bp in length, containing a pair of 25,742 bp inverted repeat (IR) regions, which were separated by large and small single-copy regions (LSC and SSC) of 86,622 and 17,791 bp, respectively. The chloroplast genome contained 130 genes (85 protein-coding, 37 tRNA, and eight rRNA). GC content was 37.8%. We performed phylogenetic analysis with other isolates. The analysis showed that O. e. subsp. europaea cultivar Mehras has an ancient common ancestor with cultivated olives in Italy, Spain, and Cyprus.

4.
Sci Rep ; 9(1): 16968, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31740728

RESUMEN

Olive is a long-living perennial species with a wide geographical distribution, showing a large genetic and phenotypic variation in its growing area. There is an urgent need to uncover how olive phenotypic traits and plasticity can change regardless of the genetic background. A two-year study was conducted, based on the analysis of fruit and oil traits of 113 cultivars from five germplasm collections established in Mediterranean Basin countries and Argentina. Fruit and oil traits plasticity, broad-sense heritability and genotype by environment interaction were estimated. From variance and heritability analyses, it was shown that fruit fresh weight was mainly under genetic control, whereas oleic/(palmitic + linoleic) acids ratio was regulated by the environment and genotype by environment interaction had the major effect on oil content. Among the studied cultivars, different level of stability was observed, which allowed ranking the cultivars based on their plasticity for oil traits. High thermal amplitude, the difference of low and high year values of temperature, negatively affected the oil content and the oleic acid percentage. Information derived from this work will help to direct the selection of cultivars with the highest global fitness averaged over the environments rather than the highest fitness in each environment separately.


Asunto(s)
Olea/fisiología , Aceite de Oliva/química , Argentina , Ácidos Grasos/análisis , Frutas/química , Frutas/fisiología , Genotipo , Ácidos Linoleicos/análisis , Región Mediterránea , Herencia Multifactorial , Olea/química , Olea/genética , Aceite de Oliva/análisis , Ácido Palmítico/análisis , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA