Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell ; 186(12): 2690-2704.e20, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37295405

RESUMEN

Biofilm formation is generally recognized as a bacterial defense mechanism against environmental threats, including antibiotics, bacteriophages, and leukocytes of the human immune system. Here, we show that for the human pathogen Vibrio cholerae, biofilm formation is not only a protective trait but also an aggressive trait to collectively predate different immune cells. We find that V. cholerae forms biofilms on the eukaryotic cell surface using an extracellular matrix comprising primarily mannose-sensitive hemagglutinin pili, toxin-coregulated pili, and the secreted colonization factor TcpF, which differs from the matrix composition of biofilms on other surfaces. These biofilms encase immune cells and establish a high local concentration of a secreted hemolysin to kill the immune cells before the biofilms disperse in a c-di-GMP-dependent manner. Together, these results uncover how bacteria employ biofilm formation as a multicellular strategy to invert the typical relationship between human immune cells as the hunters and bacteria as the hunted.


Asunto(s)
Vibrio cholerae , Animales , Humanos , Vibrio cholerae/metabolismo , Conducta Predatoria , Biopelículas , Fimbrias Bacterianas , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
2.
Proc Natl Acad Sci U S A ; 119(36): e2120680119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35998224

RESUMEN

The systemic immune response to viral infection is shaped by master transcription factors, such as NF-κB, STAT1, or PU.1. Although long noncoding RNAs (lncRNAs) have been suggested as important regulators of transcription factor activity, their contributions to the systemic immunopathologies observed during SARS-CoV-2 infection have remained unknown. Here, we employed a targeted single-cell RNA sequencing approach to reveal lncRNAs differentially expressed in blood leukocytes during severe COVID-19. Our results uncover the lncRNA PIRAT (PU.1-induced regulator of alarmin transcription) as a major PU.1 feedback-regulator in monocytes, governing the production of the alarmins S100A8/A9, key drivers of COVID-19 pathogenesis. Knockout and transgene expression, combined with chromatin-occupancy profiling, characterized PIRAT as a nuclear decoy RNA, keeping PU.1 from binding to alarmin promoters and promoting its binding to pseudogenes in naïve monocytes. NF-κB-dependent PIRAT down-regulation during COVID-19 consequently releases a transcriptional brake, fueling alarmin production. Alarmin expression is additionally enhanced by the up-regulation of the lncRNA LUCAT1, which promotes NF-κB-dependent gene expression at the expense of targets of the JAK-STAT pathway. Our results suggest a major role of nuclear noncoding RNA networks in systemic antiviral responses to SARS-CoV-2 in humans.


Asunto(s)
COVID-19 , Regulación de la Expresión Génica , Monocitos , ARN Largo no Codificante , SARS-CoV-2 , Alarminas/genética , COVID-19/genética , COVID-19/inmunología , Humanos , Quinasas Janus/genética , Monocitos/inmunología , FN-kappa B/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , RNA-Seq , SARS-CoV-2/inmunología , Factores de Transcripción STAT/genética , Transducción de Señal/genética , Análisis de la Célula Individual
3.
Proc Natl Acad Sci U S A ; 117(16): 9042-9053, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32241891

RESUMEN

RNA has been proposed as an important scaffolding factor in the nucleus, aiding protein complex assembly in the dense intracellular milieu. Architectural contributions of RNA to cytosolic signaling pathways, however, remain largely unknown. Here, we devised a multidimensional gradient approach, which systematically locates RNA components within cellular protein networks. Among a subset of noncoding RNAs (ncRNAs) cosedimenting with the ubiquitin-proteasome system, our approach unveiled ncRNA MaIL1 as a critical structural component of the Toll-like receptor 4 (TLR4) immune signal transduction pathway. RNA affinity antisense purification-mass spectrometry (RAP-MS) revealed MaIL1 binding to optineurin (OPTN), a ubiquitin-adapter platforming TBK1 kinase. MaIL1 binding stabilized OPTN, and consequently, loss of MaIL1 blunted OPTN aggregation, TBK1-dependent IRF3 phosphorylation, and type I interferon (IFN) gene transcription downstream of TLR4. MaIL1 expression was elevated in patients with active pulmonary infection and was highly correlated with IFN levels in bronchoalveolar lavage fluid. Our study uncovers MaIL1 as an integral RNA component of the TLR4-TRIF pathway and predicts further RNAs to be required for assembly and progression of cytosolic signaling networks in mammalian cells.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Interferón Tipo I/genética , Proteínas de Transporte de Membrana/metabolismo , ARN no Traducido/metabolismo , Infecciones del Sistema Respiratorio/inmunología , Receptor Toll-Like 4/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Adulto , Anciano , Capa Leucocitaria de la Sangre/citología , Líquido del Lavado Bronquioalveolar/inmunología , Femenino , Regulación de la Expresión Génica/inmunología , Técnicas de Silenciamiento del Gen , Humanos , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/sangre , Interferón Tipo I/inmunología , Macrófagos , Masculino , Persona de Mediana Edad , Fosforilación/genética , Cultivo Primario de Células , Proteínas Serina-Treonina Quinasas/metabolismo , Estabilidad Proteica , ARN no Traducido/sangre , ARN no Traducido/genética , RNA-Seq , Infecciones del Sistema Respiratorio/sangre , Infecciones del Sistema Respiratorio/microbiología , Transducción de Señal/genética , Transducción de Señal/inmunología , Adulto Joven
4.
J Immunol ; 202(6): 1786-1797, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30718296

RESUMEN

Obesity and insulin resistance influences metabolic processes, but whether it affects macrophage metabolism is not known. In this study, we demonstrate that chronic exposure of macrophages to insulin either in culture or in vivo in diet-induced, glucose-intolerant mice rendered them resistant to insulin signals marked by failure to induce Akt2 phosphorylation. Similarly, macrophages lacking Akt2 or IGF1 receptor were also resistant to insulin signals. Insulin-resistant macrophages had increased basal mTORC1 activity, possessed an M2-like phenotype, and reduced LPS responses. Moreover, they exhibited increased glycolysis and increased expression of key glycolytic enzymes. Inhibition of mTORC1 reversed the M2-like phenotype and suppressed glycolysis in insulin-resistant macrophages. In the context of polymicrobial sepsis, mice harboring insulin-resistant macrophages exhibited reduced sepsis-induced lung injury. Thus, macrophages obtain resistance to insulin characterized by increased glycolysis and a unique M2-like phenotype, termed M-insulin resistant, which accounts for obesity-related changes in macrophage responses and a state of trained immunity.


Asunto(s)
Resistencia a la Insulina/fisiología , Activación de Macrófagos/fisiología , Macrófagos/inmunología , Macrófagos/metabolismo , Animales , Inflamación/inmunología , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/complicaciones , Fenotipo
5.
Front Genet ; 11: 527484, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329688

RESUMEN

The classic understanding of molecular disease-mechanisms is largely based on protein-centric models. During the past decade however, genetic studies have identified numerous disease-loci in the human genome that do not encode proteins. Such non-coding DNA variants increasingly gain attention in diagnostics and personalized medicine. Of particular interest are long non-coding RNA (lncRNA) genes, which generate transcripts longer than 200 nucleotides that are not translated into proteins. While most of the estimated ~20,000 lncRNAs currently remain of unknown function, a growing number of genetic studies link lncRNA gene aberrations with the development of human diseases, including diabetes, AIDS, inflammatory bowel disease, or cancer. This suggests that the protein-centric view of human diseases does not capture the full complexity of molecular patho-mechanisms, with important consequences for molecular diagnostics and therapy. This review illustrates well-documented lncRNA gene aberrations causatively linked to human diseases and discusses potential lessons for molecular disease models, diagnostics, and therapy.

6.
PLoS One ; 13(2): e0193066, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29451908

RESUMEN

CRISPR/Cas9-based approaches have greatly facilitated targeted genomic deletions. Contrary to coding genes however, which can be functionally knocked out by frame-shift mutagenesis, non-coding RNA (ncRNA) gene knockouts have remained challenging. Here we present a universal ncRNA knockout approach guided by epigenetic hallmarks, which enables robust gene silencing even in provisionally annotated gene loci. We build on previous work reporting the presence of overlapping histone H3 lysine 4 tri-methylation (H3K4me3) and DNaseI hypersensitivity sites around the transcriptional start sites of most genes. We demonstrate that excision of this gene-proximal signature leads to loss of microRNA and lincRNA transcription and reveals ncRNA phenotypes. Exemplarily we demonstrate silencing of the constitutively transcribed MALAT1 lincRNA gene as well as of the inducible miR-146a and miR-155 genes in human monocytes. Our results validate a role of miR-146a and miR-155 in negative feedback control of the activity of inflammation master-regulator NFκB and suggest that cell-cycle control is a unique feature of miR-155. We suggest that our epigenetically guided CRISPR approach may improve existing ncRNA knockout strategies and contribute to the development of high-confidence ncRNA phenotyping applications.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Desoxirribonucleasa I/metabolismo , Técnicas de Inactivación de Genes/métodos , Silenciador del Gen , MicroARNs/genética , Northern Blotting , Desoxirribonucleasa I/genética , Citometría de Flujo , Regulación de la Expresión Génica/genética , Histonas/genética , Humanos , Monocitos/metabolismo , ARN Largo no Codificante/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
Oncotarget ; 8(6): 9053-9066, 2017 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-28118607

RESUMEN

Middle East Respiratory Syndrome Corona Virus (MERS-CoV) is transmitted via the respiratory tract and causes severe Acute Respiratory Distress Syndrome by infecting lung epithelial cells and macrophages. Macrophages can readily recognize the virus and eliminate it. MERS-CoV infects cells via its Spike (S) glycoprotein that binds on Dipeptidyl-Peptidase 4 (DPP4) receptor present on macrophages. Whether this Spike/DPP4 association affects macrophage responses remains unknown. Herein we demonstrated that infection of macrophages with lentiviral particles pseudotyped with MERS-CoV S glycoprotein results in suppression of macrophage responses since it reduced the capacity of macrophages to produce TNFα and IL-6 in naive and LPS-activated THP-1 macrophages and augmented LPS-induced production of the immunosuppressive cytokine IL-10. MERS-CoV S glycoprotein induced the expression of the negative regulator of TLR signaling IRAK-M as well as of the transcriptional repressor PPARγ. Inhibition of DPP4 by its inhibitor sitagliptin or siRNA abrogated the effects of MERS-CoV S glycoprotein on IRAK-M, PPARγ and IL-10, confirming that its immunosuppressive effects were mediated by DPP4 receptor. The effect was observed both in THP-1 macrophages and human primary peripheral blood monocytes. These findings support a DPP4-mediated suppressive action of MERS-CoV in macrophages and suggest a potential target for effective elimination of its pathogenicity.


Asunto(s)
Dipeptidil Peptidasa 4/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Activación de Macrófagos , Macrófagos/enzimología , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , PPAR gamma/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Dipeptidil Peptidasa 4/genética , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Interacciones Huésped-Patógeno , Humanos , Quinasas Asociadas a Receptores de Interleucina-1/genética , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/virología , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , PPAR gamma/genética , Interferencia de ARN , Transducción de Señal , Glicoproteína de la Espiga del Coronavirus/genética , Células THP-1 , Transfección , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA