Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Pharm ; 16(2): 756-767, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30604620

RESUMEN

Particle size distribution and stability are key attributes for the evaluation of the safety and efficacy profile of medical nanoparticles (Med-NPs). Measuring particle average size and particle size distribution is a challenging task which requires the combination of orthogonal high-resolution sizing techniques, especially in complex biological media. Unfortunately, despite its limitations, due to its accessibility, low cost, and easy handling, batch mode dynamic light scattering (DLS) is still very often used as the only approach to measure particle size distribution in the nanomedicine field. In this work the use of asymmetric flow field flow fractionation coupled to multiangle light scattering and dynamic light scattering detectors (AF4-MALS-DLS) was evaluated as an alternative to batch mode DLS to measure the physical properties of lipid-based nanoparticles. A robust standard operating procedure (SOPs) developed by the Nanomedicine Characterization Laboratory (EUNCL) was presented and tested to assess size stability, batch to batch consistency, and the behavior of the lipid-based nanoparticles in plasma. Orthogonal sizing techniques, such as transmission electron microscopy (TEM) and particle tracking analysis (PTA) measurements, were performed to support the results. While batch mode DLS could be applied as a fast and simple method to provide a preliminary insight into the integrity and polydispersity of samples, it was unsuitable to resolve small modifications of the particle size distribution. The introduction of nanoparticle sorting by field-flow fractionation coupled to online DLS and MALS allowed assessment of batch to batch variability and changes in the size of the lipid nanoparticles induced by the interaction with serum proteins, which are critical for quality control and regulatory aspects. In conclusion, if a robust SOP is followed, AF4-MALS-DLS is a powerful method for the preclinical characterization of lipid-based nanoparticles.


Asunto(s)
Fraccionamiento de Campo-Flujo/métodos , Lípidos/química , Nanopartículas/química , Dispersión Dinámica de Luz , Microscopía Electrónica de Transmisión , Nanopartículas/ultraestructura , Tamaño de la Partícula , Dispersión de Radiación
2.
Nat Commun ; 13(1): 4376, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35902572

RESUMEN

Cry11Aa and Cry11Ba are the two most potent toxins produced by mosquitocidal Bacillus thuringiensis subsp. israelensis and jegathesan, respectively. The toxins naturally crystallize within the host; however, the crystals are too small for structure determination at synchrotron sources. Therefore, we applied serial femtosecond crystallography at X-ray free electron lasers to in vivo-grown nanocrystals of these toxins. The structure of Cry11Aa was determined de novo using the single-wavelength anomalous dispersion method, which in turn enabled the determination of the Cry11Ba structure by molecular replacement. The two structures reveal a new pattern for in vivo crystallization of Cry toxins, whereby each of their three domains packs with a symmetrically identical domain, and a cleavable crystal packing motif is located within the protoxin rather than at the termini. The diversity of in vivo crystallization patterns suggests explanations for their varied levels of toxicity and rational approaches to improve these toxins for mosquito control.


Asunto(s)
Bacillus thuringiensis , Nanopartículas , Animales , Proteínas Bacterianas/toxicidad , Endotoxinas , Proteínas Hemolisinas/toxicidad , Larva , Control de Mosquitos
3.
Nat Commun ; 12(1): 3902, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162863

RESUMEN

Self-assembly of proteins holds great promise for the bottom-up design and production of synthetic biomaterials. In conventional approaches, designer proteins are pre-programmed with specific recognition sites that drive the association process towards a desired organized state. Although proven effective, this approach poses restrictions on the complexity and material properties of the end-state. An alternative, hierarchical approach that has found wide adoption for inorganic systems, relies on the production of crystalline nanoparticles that become the building blocks of a next-level assembly process driven by oriented attachment (OA). As it stands, OA has not yet been observed for protein systems. Here we employ cryo-transmission electron microscopy (cryoEM) in the high nucleation rate limit of protein crystals and map the self-assembly route at molecular resolution. We observe the initial formation of facetted nanocrystals that merge lattices by means of OA alignment well before contact is made, satisfying non-trivial symmetry rules in the process. As these nanocrystalline assemblies grow larger we witness imperfect docking events leading to oriented aggregation into mesocrystalline assemblies. These observations highlight the underappreciated role of the interaction between crystalline nuclei, and the impact of OA on the crystallization process of proteins.


Asunto(s)
Isomerasas Aldosa-Cetosa/química , Nanoestructuras/química , Proteínas Recombinantes/química , Isomerasas Aldosa-Cetosa/genética , Isomerasas Aldosa-Cetosa/metabolismo , Microscopía por Crioelectrón , Cristalización , Cristalografía por Rayos X , Cinética , Modelos Moleculares , Nanoestructuras/ultraestructura , Tamaño de la Partícula , Mutación Puntual , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura
4.
Sci Adv ; 6(14): eaaz4344, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32270043

RESUMEN

Neuronal activities depend heavily on microtubules, which shape neuronal processes and transport myriad molecules within them. Although constantly remodeled through growth and shrinkage events, neuronal microtubules must be sufficiently stable to maintain nervous system wiring. This stability is somehow maintained by various microtubule-associated proteins (MAPs), but little is known about how these proteins work. Here, we show that MAP6, previously known to confer cold stability to microtubules, promotes growth. More unexpectedly, MAP6 localizes in the lumen of microtubules, induces the microtubules to coil into a left-handed helix, and forms apertures in the lattice, likely to relieve mechanical stress. These features have not been seen in microtubules before and could play roles in maintaining axonal width or providing flexibility in the face of compressive forces during development.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/metabolismo , Animales , Ratones , Microtúbulos/metabolismo , Modelos Biológicos , Neuritas , Neuronas/ultraestructura , Unión Proteica , Transporte de Proteínas
5.
Nat Commun ; 11(1): 1153, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-32123169

RESUMEN

Cyt1Aa is the one of four crystalline protoxins produced by mosquitocidal bacterium Bacillus thuringiensis israelensis (Bti) that has been shown to delay the evolution of insect resistance in the field. Limiting our understanding of Bti efficacy and the path to improved toxicity and spectrum has been ignorance of how Cyt1Aa crystallizes in vivo and of its mechanism of toxicity. Here, we use serial femtosecond crystallography to determine the Cyt1Aa protoxin structure from sub-micron-sized crystals produced in Bti. Structures determined under various pH/redox conditions illuminate the role played by previously uncharacterized disulfide-bridge and domain-swapped interfaces from crystal formation in Bti to dissolution in the larval mosquito midgut. Biochemical, toxicological and biophysical methods enable the deconvolution of key steps in the Cyt1Aa bioactivation cascade. We additionally show that the size, shape, production yield, pH sensitivity and toxicity of Cyt1Aa crystals grown in Bti can be controlled by single atom substitution.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Endotoxinas/química , Endotoxinas/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Animales , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacología , Membrana Celular/efectos de los fármacos , Cristalografía por Rayos X , Disulfuros/química , Endotoxinas/genética , Endotoxinas/farmacología , Células HEK293 , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacología , Humanos , Concentración de Iones de Hidrógeno , Insecticidas/química , Insecticidas/metabolismo , Insecticidas/farmacología , Ratones , Microscopía de Fuerza Atómica , Células 3T3 NIH , Conformación Proteica , Células Sf9
6.
Nat Commun ; 8(1): 1953, 2017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-29209037

RESUMEN

The vast majority of phages, bacterial viruses, possess a tail ensuring host recognition, cell wall perforation and safe viral DNA transfer from the capsid to the host cytoplasm. Long flexible tails are formed from the tail tube protein (TTP) polymerised as hexameric rings around and stacked along the tape measure protein (TMP). Here, we report the crystal structure of T5 TTP pb6 at 2.2 Å resolution. Pb6 is unusual in forming a trimeric ring, although structure analysis reveals homology with all classical TTPs and related tube proteins of bacterial puncturing devices (type VI secretion system and R-pyocin). Structures of T5 tail tubes before and after interaction with the host receptor were determined by cryo-electron microscopy at 6 Å resolution. Comparison of these two structures reveals that host-binding information is not propagated to the capsid through conformational changes in the tail tube, suggesting a role of the TMP in this information transduction process.


Asunto(s)
Bacteriófagos/ultraestructura , ADN Viral/metabolismo , Siphoviridae/ultraestructura , Proteínas de la Cola de los Virus/ultraestructura , Cápside/metabolismo , Microscopía por Crioelectrón , Citoplasma/metabolismo , Escherichia coli , Homología Estructural de Proteína
7.
Sci Rep ; 6: 24601, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27080013

RESUMEN

The inducible lysine decarboxylase LdcI is an important enterobacterial acid stress response enzyme whereas LdcC is its close paralogue thought to play mainly a metabolic role. A unique macromolecular cage formed by two decamers of the Escherichia coli LdcI and five hexamers of the AAA+ ATPase RavA was shown to counteract acid stress under starvation. Previously, we proposed a pseudoatomic model of the LdcI-RavA cage based on its cryo-electron microscopy map and crystal structures of an inactive LdcI decamer and a RavA monomer. We now present cryo-electron microscopy 3D reconstructions of the E. coli LdcI and LdcC, and an improved map of the LdcI bound to the LARA domain of RavA, at pH optimal for their enzymatic activity. Comparison with each other and with available structures uncovers differences between LdcI and LdcC explaining why only the acid stress response enzyme is capable of binding RavA. We identify interdomain movements associated with the pH-dependent enzyme activation and with the RavA binding. Multiple sequence alignment coupled to a phylogenetic analysis reveals that certain enterobacteria exert evolutionary pressure on the lysine decarboxylase towards the cage-like assembly with RavA, implying that this complex may have an important function under particular stress conditions.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Carboxiliasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Adenosina Trifosfatasas/química , Secuencia de Aminoácidos , Carboxiliasas/química , Dominio Catalítico , Microscopía por Crioelectrón , Activación Enzimática , Proteínas de Escherichia coli/química , Concentración de Iones de Hidrógeno , Modelos Moleculares , Unión Proteica
8.
Elife ; 3: e03653, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25097238

RESUMEN

A 3.3 MDa macromolecular cage between two Escherichia coli proteins with seemingly incompatible symmetries-the hexameric AAA+ ATPase RavA and the decameric inducible lysine decarboxylase LdcI-is reconstructed by cryo-electron microscopy to 11 Å resolution. Combined with a 7.5 Å resolution reconstruction of the minimal complex between LdcI and the LdcI-binding domain of RavA, and the previously solved crystal structures of the individual components, this work enables to build a reliable pseudoatomic model of this unusual architecture and to identify conformational rearrangements and specific elements essential for complex formation. The design of the cage created via lateral interactions between five RavA rings is unique for the diverse AAA+ ATPase superfamily.


Asunto(s)
Adenosina Trifosfatasas/química , Carboxiliasas/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Carboxiliasas/genética , Carboxiliasas/metabolismo , Microscopía por Crioelectrón , Escherichia coli/enzimología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Modelos Moleculares , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Structure ; 21(2): 298-305, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23394943

RESUMEN

ϕRSL1 jumbo phage belongs to a new class of viruses within the Myoviridae family. Here, we report its three-dimensional structure determined by electron cryo microscopy. The icosahedral capsid, the tail helical portion, and the complete tail appendage were reconstructed separately to resolutions of 9 Å, 9 Å, and 28 Å, respectively. The head is rather complex and formed by at least five different proteins, whereas the major capsid proteins resemble those from HK97, despite low sequence conservation. The helical tail structure demonstrates its close relationship to T4 sheath proteins and provides evidence for an evolutionary link of the inner tail tube to the bacterial type VI secretion apparatus. Long fibers extend from the collar region, and their length is consistent with reaching the host cell surface upon tail contraction. Our structural analyses indicate that ϕRSL1 is an unusual member of the Myoviridae that employs conserved protein machines related to different phages and bacteria.


Asunto(s)
Bacteriófagos/ultraestructura , Ralstonia solanacearum/virología , Cápside/ultraestructura , Proteínas de la Cápside/ultraestructura , Microscopía por Crioelectrón , Modelos Moleculares , Estructura Cuaternaria de Proteína , Proteínas de la Cola de los Virus/ultraestructura
10.
Microsc Microanal ; 8(4): 305-11, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12533227

RESUMEN

A [Sigma] = 5 (310)[001] tilt grain boundary in molybdenum has been annealed at high temperature in the presence of carbon and observed in high-resolution electron microscopy. The carbon is located at the grain boundary in a 1-nm slab. Two different morphologies coexist. The first one is a grain boundary precipitation while the second one can be considered as a segregation.


Asunto(s)
Aleaciones/química , Carbono/química , Molibdeno/química , Precipitación Química , Cristalización , Calor , Microscopía Electrónica/métodos , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA