Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1851(9): 1194-201, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25819461

RESUMEN

A decrease in skeletal muscle lipolysis and hormone sensitive-lipase (HSL) expression has been linked to insulin resistance in obesity. The purpose of this study was to identify potential intrinsic defects in lipid turnover and lipolysis in myotubes established from obese and type 2 diabetic subjects. Lipid trafficking and lipolysis were measured by pulse-chase assay with radiolabeled substrates in myotubes from non-obese/non-diabetic (lean), obese/non-diabetic (obese) and obese/diabetic (T2D) subjects. Lipolytic protein content and level of Akt phosphorylation were measured by Western blot. HSL was overexpressed by adenovirus-mediated gene delivery. Myotubes established from obese and T2D subjects had lower lipolysis (-30-40%) when compared to lean, using oleic acid as precursor. Similar observations were also seen for labelled glycerol. Incorporation of oleic acid into diacylglycerol (DAG) and free fatty acid (FFA) level was lower in T2D myotubes, and acetate incorporation into FFA and complex lipids was also lower in obese and/or T2D subjects. Both protein expression of HSL (but not ATGL) and changes in DAG during lipolysis were markedly lower in cells from obese and T2D when compared to lean subjects. Insulin-stimulated glycogen synthesis (-60%) and Akt phosphorylation (-90%) were lower in myotubes from T2D, however, overexpression of HSL in T2D myotubes did not rescue the diabetic phenotype. In conclusion, intrinsic defects in lipolysis and HSL expression co-exist with reduced insulin action in myotubes from obese T2D subjects. Despite reductions in intramyocellular lipolysis and HSL expression, overexpression of HSL did not rescue defects in insulin action in skeletal myotubes from obese T2D subjects.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Insulina/farmacología , Fibras Musculares Esqueléticas/efectos de los fármacos , Obesidad/metabolismo , Esterol Esterasa/metabolismo , Transporte Biológico , Radioisótopos de Carbono , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Diglicéridos/metabolismo , Femenino , Regulación de la Expresión Génica , Glicerol/metabolismo , Glucógeno/metabolismo , Humanos , Insulina/metabolismo , Lipólisis/efectos de los fármacos , Masculino , Persona de Mediana Edad , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Obesidad/complicaciones , Obesidad/genética , Obesidad/patología , Ácido Oléico/metabolismo , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Esterol Esterasa/genética
2.
Biochim Biophys Acta ; 1821(10): 1323-33, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22796147

RESUMEN

Development of insulin resistance is positively associated with dietary saturated fatty acids and negatively associated with monounsaturated fatty acids. To clarify aspects of this difference we have compared the metabolism of oleic (OA, monounsaturated) and palmitic acids (PA, saturated) in human myotubes. Human myotubes were treated with 100µM OA or PA and the metabolism of [(14)C]-labeled fatty acid was studied. We observed that PA had a lower lipolysis rate than OA, despite a more than two-fold higher protein level of adipose triglyceride lipase after 24h incubation with PA. PA was less incorporated into triacylglycerol and more incorporated into phospholipids after 24h. Supporting this, incubation with compounds modifying lipolysis and reesterification pathways suggested a less influenced PA than OA metabolism. In addition, PA showed a lower accumulation than OA, though PA was oxidized to a relatively higher extent than OA. Gene set enrichment analysis revealed that 24h of PA treatment upregulated lipogenesis and fatty acid ß-oxidation and downregulated oxidative phosphorylation compared to OA. The differences in lipid accumulation and lipolysis between OA and PA were eliminated in combination with eicosapentaenoic acid (polyunsaturated fatty acid). In conclusion, this study reveals that the two most abundant fatty acids in our diet are partitioned toward different metabolic pathways in muscle cells, and this may be relevant to understand the link between dietary fat and skeletal muscle insulin resistance.


Asunto(s)
Tejido Adiposo/enzimología , Lipasa/análisis , Lipólisis , Músculo Esquelético/metabolismo , Ácido Oléico/metabolismo , Ácido Palmítico/metabolismo , Adulto , Células Cultivadas , Ácido Eicosapentaenoico/farmacología , Glicerol/metabolismo , Humanos , Redes y Vías Metabólicas , Persona de Mediana Edad , Fibras Musculares Esqueléticas/metabolismo , Oxidación-Reducción , Fosforilación Oxidativa
3.
J Lipid Res ; 53(5): 839-848, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22383684

RESUMEN

We investigated here the specific role of CGI-58 in the regulation of energy metabolism in skeletal muscle. We first examined CGI-58 protein expression in various muscle types in mice, and next modulated CGI-58 expression during overexpression and knockdown studies in human primary myotubes and evaluated the consequences on oxidative metabolism. We observed a preferential expression of CGI-58 in oxidative muscles in mice consistent with triacylglycerol hydrolase activity. We next showed by pulse-chase that CGI-58 overexpression increased by more than 2-fold the rate of triacylglycerol (TAG) hydrolysis, as well as TAG-derived fatty acid (FA) release and oxidation. Oppositely, CGI-58 silencing reduced TAG hydrolysis and TAG-derived FA release and oxidation (-77%, P < 0.001), whereas it increased glucose oxidation and glycogen synthesis. Interestingly, modulations of CGI-58 expression and FA release are reflected by changes in pyruvate dehydrogenase kinase 4 gene expression. This regulation involves the activation of the peroxisome proliferator activating receptor-δ (PPARδ) by lipolysis products. Altogether, these data reveal that CGI-58 plays a limiting role in the control of oxidative metabolism by modulating FA availability and the expression of PPARδ-target genes, and highlight an important metabolic function of CGI-58 in skeletal muscle.


Asunto(s)
1-Acilglicerol-3-Fosfato O-Aciltransferasa/metabolismo , Metabolismo Energético , Lipasa/metabolismo , Lipólisis , Músculo Esquelético/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/deficiencia , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/genética , Adolescente , Animales , Células Cultivadas , Ácidos Grasos/metabolismo , Regulación Enzimológica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glucosa/metabolismo , Humanos , Hidrolasas/metabolismo , Ratones , Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/enzimología , Oxidación-Reducción , PPAR delta/metabolismo , Triglicéridos/metabolismo , Adulto Joven
4.
JCI Insight ; 4(13)2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31292296

RESUMEN

Ubiquitin-conjugating enzyme E2O (UBE2O) is expressed preferentially in metabolic tissues, but its role in regulating energy homeostasis has yet to be defined. Here we find that UBE2O is markedly upregulated in obese subjects with type 2 diabetes and show that whole-body disruption of Ube2o in mouse models in vivo results in improved metabolic profiles and resistance to high-fat diet-induced (HFD-induced) obesity and metabolic syndrome. With no difference in nutrient intake, Ube2o-/- mice were leaner and expended more energy than WT mice. In addition, hyperinsulinemic-euglycemic clamp studies revealed that Ube2o-/- mice were profoundly insulin sensitive. Through phenotype analysis of HFD mice with muscle-, fat-, or liver-specific knockout of Ube2o, we further identified UBE2O as an essential regulator of glucose and lipid metabolism programs in skeletal muscle, but not in adipose or liver tissue. Mechanistically, UBE2O acted as a ubiquitin ligase and targeted AMPKα2 for ubiquitin-dependent degradation in skeletal muscle; further, muscle-specific heterozygous knockout of Prkaa2 ablated UBE2O-controlled metabolic processes. These results identify the UBE2O/AMPKα2 axis as both a potent regulator of metabolic homeostasis in skeletal muscle and a therapeutic target in the treatment of diabetes and metabolic disorders.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Resistencia a la Insulina , Síndrome Metabólico/metabolismo , Obesidad/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Animales , Línea Celular , Diabetes Mellitus Tipo 2/complicaciones , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Femenino , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Metabolismo de los Lípidos , Masculino , Síndrome Metabólico/etiología , Ratones , Ratones Noqueados , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Mioblastos Esqueléticos , Obesidad/etiología , Cultivo Primario de Células , Proteolisis , Enzimas Ubiquitina-Conjugadoras/análisis , Enzimas Ubiquitina-Conjugadoras/genética , Ubiquitinación , Regulación hacia Arriba
5.
Sci Rep ; 7(1): 10237, 2017 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-28860475

RESUMEN

Skeletal muscle wasting is prevalent in many chronic diseases, necessitating inquiries into molecular regulation of muscle mass. Nuclear receptor co-activator peroxisome proliferator-activated receptor co-activator 1 alpha (PGC1α) and its splice variant PGC1α4 increase skeletal muscle mass. However, the effect of the other PGC1 sub-type, PGC1ß, on muscle size is unclear. In transgenic mice selectively over-expressing PGC1ß in the skeletal muscle, we have found that PGC1ß progressively decreases skeletal muscle mass predominantly associated with loss of type 2b fast-twitch myofibers. Paradoxically, PGC1ß represses the ubiquitin-proteolysis degradation pathway genes resulting in ubiquitinated protein accumulation in muscle. However, PGC1ß overexpression triggers up-regulation of apoptosis and autophagy genes, resulting in robust activation of these cell degenerative processes, and a concomitant increase in muscle protein oxidation. Concurrently, PGC1ß up-regulates apoptosis and/or autophagy transcriptional factors such as E2f1, Atf3, Stat1, and Stat3, which may be facilitating myopathy. Therefore, PGC1ß activation negatively affects muscle mass over time, particularly fast-twitch muscles, which should be taken into consideration along with its known aerobic effects in the skeletal muscle.


Asunto(s)
Músculo Esquelético/patología , Atrofia Muscular/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Apoptosis , Autofagia , Ratones , Ratones Transgénicos , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Tamaño de los Órganos , Estrés Oxidativo , Proteolisis , Ubiquitinación
6.
PLoS One ; 11(12): e0168457, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28005939

RESUMEN

Aryl Hydrocarbon Receptor Nuclear Translocator/ hypoxia-inducible factor 1 beta (ARNT/ HIF1ß), a member of bHLH-PAS family of transcriptional factors, plays a critical role in metabolic homeostasis, insulin resistance and glucose intolerance. The contributions of ARNT in pancreas, liver and adipose tissue to energy balance through gene regulation have been described. Surprisingly, the impact of ARNT signaling in the skeletal muscles, one of the major organs involved in glucose disposal, has not been investigated, especially in type II diabetes. Here we report that ARNT is expressed in the skeletal muscles, particularly in the energy-efficient oxidative slow-twitch myofibers, which are characterized by increased oxidative capacity, mitochondrial content, vascular supply and insulin sensitivity. However, muscle-specific deletion of ARNT did not change myofiber type distribution, oxidative capacity, mitochondrial content, capillarity, or the expression of genes associated with these features. Consequently, the lack of ARNT in the skeletal muscle did not affect weight gain, lean/fat mass, insulin sensitivity and glucose tolerance in lean mice, nor did it impact insulin resistance and glucose intolerance in high fat diet-induced obesity. Therefore, skeletal muscle ARNT is dispensable for controlling muscle fiber type and metabolic regulation, as well as diet-induced weight control, insulin sensitivity and glucose tolerance.


Asunto(s)
Tejido Adiposo/fisiología , Translocador Nuclear del Receptor de Aril Hidrocarburo/fisiología , Resistencia a la Insulina , Músculo Esquelético/fisiología , Neovascularización Fisiológica , Tejido Adiposo/citología , Animales , Femenino , Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/citología , Aumento de Peso
7.
Mol Metab ; 5(7): 527-537, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27408777

RESUMEN

OBJECTIVE: Recent data suggest that adipose triglyceride lipase (ATGL) plays a key role in providing energy substrate from triglyceride pools and that alterations of its expression/activity relate to metabolic disturbances in skeletal muscle. Yet little is known about its regulation. We here investigated the role of the protein G0/G1 Switch Gene 2 (G0S2), recently described as an inhibitor of ATGL in white adipose tissue, in the regulation of lipolysis and oxidative metabolism in skeletal muscle. METHODS: We first examined G0S2 protein expression in relation to metabolic status and muscle characteristics in humans. We next overexpressed and knocked down G0S2 in human primary myotubes to assess its impact on ATGL activity, lipid turnover and oxidative metabolism, and further knocked down G0S2 in vivo in mouse skeletal muscle. RESULTS: G0S2 protein is increased in skeletal muscle of endurance-trained individuals and correlates with markers of oxidative capacity and lipid content. Recombinant G0S2 protein inhibits ATGL activity by about 40% in lysates of mouse and human skeletal muscle. G0S2 overexpression augments (+49%, p < 0.05) while G0S2 knockdown strongly reduces (-68%, p < 0.001) triglyceride content in human primary myotubes and mouse skeletal muscle. We further show that G0S2 controls lipolysis and fatty acid oxidation in a strictly ATGL-dependent manner. These metabolic adaptations mediated by G0S2 are paralleled by concomitant changes in glucose metabolism through the modulation of Pyruvate Dehydrogenase Kinase 4 (PDK4) expression (5.4 fold, p < 0.001). Importantly, downregulation of G0S2 in vivo in mouse skeletal muscle recapitulates changes in lipid metabolism observed in vitro. CONCLUSION: Collectively, these data indicate that G0S2 plays a key role in the regulation of skeletal muscle ATGL activity, lipid content and oxidative metabolism.

8.
Sci Rep ; 6: 26442, 2016 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-27220353

RESUMEN

Dissecting exercise-mimicking pathways that can replicate the benefits of exercise in obesity and diabetes may lead to promising treatments for metabolic disorders. Muscle estrogen-related receptor gamma (ERRγ) is induced by exercise, and when over-expressed in the skeletal muscle mimics exercise by stimulating glycolytic-to-oxidative myofiber switch, mitochondrial biogenesis and angiogenesis in lean mice. The objective of this study was to test whether muscle ERRγ in obese mice mitigates weight gain and insulin resistance. To do so, ERRγ was selectively over-expressed in the skeletal muscle of obese and diabetic db/db mice. Muscle ERRγ over-expression successfully triggered glycolytic-to-oxidative myofiber switch, increased functional mitochondrial content and boosted vascular supply in the db/db mice. Despite aerobic remodeling, ERRγ surprisingly failed to improve whole-body energy expenditure, block muscle accumulation of triglycerides, toxic diacylglycerols (DAG) and ceramides or suppress muscle PKCε sarcolemmal translocation in db/db mice. Consequently, muscle ERRγ did not mitigate impaired muscle insulin signaling or insulin resistance in these mice. In conclusion, obesity and diabetes in db/db mice are not amenable to selective ERRγ-directed programming of classic exercise-like effects in the skeletal muscle. Other biochemical pathways or integrated whole-body effects of exercise may be critical for resisting diabetes and obesity.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Resistencia a la Insulina , Músculo Esquelético/metabolismo , Receptores de Estrógenos/fisiología , Animales , Diabetes Mellitus Tipo 2/patología , Glucólisis , Metabolismo de los Lípidos , Ratones Obesos , Ratones Transgénicos , Mitocondrias Musculares/metabolismo , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/patología , Oxidación-Reducción , Condicionamiento Físico Animal
9.
Sci Rep ; 6: 38310, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27922115

RESUMEN

Lipid droplets (LD) play a central role in lipid homeostasis by controlling transient fatty acid (FA) storage and release from triacylglycerols stores, while preventing high levels of cellular toxic lipids. This crucial function in oxidative tissues is altered in obesity and type 2 diabetes. Perilipin 5 (PLIN5) is a LD protein whose mechanistic and causal link with lipotoxicity and insulin resistance has raised controversies. We investigated here the physiological role of PLIN5 in skeletal muscle upon various metabolic challenges. We show that PLIN5 protein is elevated in endurance-trained (ET) subjects and correlates with muscle oxidative capacity and whole-body insulin sensitivity. When overexpressed in human skeletal muscle cells to recapitulate the ET phenotype, PLIN5 diminishes lipolysis and FA oxidation under basal condition, but paradoxically enhances FA oxidation during forskolin- and contraction- mediated lipolysis. Moreover, PLIN5 partly protects muscle cells against lipid-induced lipotoxicity. In addition, we demonstrate that down-regulation of PLIN5 in skeletal muscle inhibits insulin-mediated glucose uptake under normal chow feeding condition, while paradoxically improving insulin sensitivity upon high-fat feeding. These data highlight a key role of PLIN5 in LD function, first by finely adjusting LD FA supply to mitochondrial oxidation, and second acting as a protective factor against lipotoxicity in skeletal muscle.


Asunto(s)
Gotas Lipídicas/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Perilipina-5/genética , Células Satélite del Músculo Esquelético/metabolismo , Animales , Peso Corporal , Diglicéridos/metabolismo , Expresión Génica , Humanos , Resistencia a la Insulina , Gotas Lipídicas/química , Gotas Lipídicas/efectos de los fármacos , Lipólisis/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Músculo Esquelético/citología , Músculo Esquelético/efectos de los fármacos , Ácido Oléico/metabolismo , Ácido Oléico/farmacología , Oxidación-Reducción , Perilipina-5/metabolismo , Resistencia Física/fisiología , Cultivo Primario de Células , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/efectos de los fármacos , Conducta Sedentaria , Triglicéridos/metabolismo
10.
Diabetes ; 64(12): 4033-45, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26253614

RESUMEN

Circulating natriuretic peptide (NP) levels are reduced in obesity and predict the risk of type 2 diabetes (T2D). Since skeletal muscle was recently shown as a key target tissue of NP, we aimed to investigate muscle NP receptor (NPR) expression in the context of obesity and T2D. Muscle NPRA correlated positively with whole-body insulin sensitivity in humans and was strikingly downregulated in obese subjects and recovered in response to diet-induced weight loss. In addition, muscle NP clearance receptor (NPRC) increased in individuals with impaired glucose tolerance and T2D. Similar results were found in obese diabetic mice. Although no acute effect of brain NP (BNP) on insulin sensitivity was observed in lean mice, chronic BNP infusion improved blood glucose control and insulin sensitivity in skeletal muscle of obese and diabetic mice. This occurred in parallel with a reduced lipotoxic pressure in skeletal muscle due to an upregulation of lipid oxidative capacity. In addition, chronic NP treatment in human primary myotubes increased lipid oxidation in a PGC1α-dependent manner and reduced palmitate-induced lipotoxicity. Collectively, our data show that activation of NPRA signaling in skeletal muscle is important for the maintenance of long-term insulin sensitivity and has the potential to treat obesity-related metabolic disorders.


Asunto(s)
Diabetes Mellitus Tipo 2/etiología , Intolerancia a la Glucosa/etiología , Resistencia a la Insulina , Músculo Esquelético/metabolismo , Obesidad/fisiopatología , Receptores del Factor Natriurético Atrial/metabolismo , Transducción de Señal , Adulto , Animales , Índice de Masa Corporal , Células Cultivadas , Diabetes Mellitus Tipo 2/prevención & control , Dieta Reductora , Progresión de la Enfermedad , Intolerancia a la Glucosa/prevención & control , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Persona de Mediana Edad , Músculo Esquelético/citología , Músculo Esquelético/patología , Obesidad/dietoterapia , Obesidad/metabolismo , Obesidad/patología , Distribución Aleatoria , Receptores del Factor Natriurético Atrial/agonistas , Receptores del Factor Natriurético Atrial/genética , Organismos Libres de Patógenos Específicos , Pérdida de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA