Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 29(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39203013

RESUMEN

Biofumigation was proposed as an alternative to synthetic pesticides for the disinfection of agricultural soils, in view of the biocidal effect of isothiocyanates (ITCs) released by some vegetal species, like Brassicaceae. However, biofumigation also presents limitations; thus, a novel and viable alternative could be the direct introduction of ITCs into agricultural soils as components loaded into biodegradable hydrogels. Thus, in this work, ITCs-based microemulsions were developed, which can be loaded into porous polymer-based hydrogel beads based on sodium alginate (ALG) or sodium carboxymethyl cellulose (CMC). Three ITCs (ethyl, phenyl, and allyl isothiocyanate) and three different surfactants (sodium dodecylsulfate, Brij 35, and Tween 80) were considered. The optimal system was characterized with attenuated ATR-FTIR spectroscopy and differential scanning calorimetry to study how the microemulsion/gels interaction affects the gel properties, such as the equilibrium water content or free water index. Finally, loading and release profiles were studied by means of UV-Vis spectrophotometry. It was found that CMC hydrogel beads showed a slightly more efficient profile of micelles' release in water with respect to ALG beads. For this reason, and due to the enhanced contribution of Fe(III) to their biocidal properties, CMC-based hydrogels are the most promising in view of the application on real agricultural soils.


Asunto(s)
Emulsiones , Hidrogeles , Isotiocianatos , Suelo , Hidrogeles/química , Emulsiones/química , Isotiocianatos/química , Isotiocianatos/farmacología , Suelo/química , Agricultura , Materiales Biocompatibles/química , Alginatos/química , Fertilizantes , Carboximetilcelulosa de Sodio/química
2.
Molecules ; 29(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39125022

RESUMEN

Olive leaves are a rich source of polyphenols with healthful properties and represent one of the most abundant waste products of olive oil production. The aims of this study were to explore the phenolic composition of olive leaves from the three main Tuscan cultivars (Leccino, Moraiolo and Frantoio) collected in Siena and Grosseto provinces and to investigate the possible use of these compounds as varietal and geographic origin markers. Discriminant factorial analysis (DFA) was used for distinguishing between different cultivars and locations. Apigenin and caffeoyl-secologanoside showed significant differences between cultivars. DFA showed that ligstroside, apigenin and luteolin have the most influence in determining the differences between sites, whereas total polyphenols, olacein and hydroxytyrosol acetate allowed for separation between leaves from the same province. The results of the present study indicate that concentrations of phenolic compounds, measured through high-resolution mass spectrometry, can be used as a marker for both the cultivar and of geographical origin of olive leaves, and possibly of olive-related products, as well as across small geographic scales (less than 50 km distance between sites).


Asunto(s)
Olea , Fenoles , Hojas de la Planta , Olea/química , Olea/clasificación , Hojas de la Planta/química , Fenoles/análisis , Fenoles/química , Italia , Polifenoles/análisis , Polifenoles/química , Biomarcadores , Geografía , Extractos Vegetales/química
3.
Molecules ; 26(13)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209620

RESUMEN

Cultural Heritage is a crucial socioeconomic resource; yet, recurring degradation processes endanger its preservation. Serendipitous approaches in restoration practice need to be replaced by systematically addressing conservation issues through the development of advanced materials for the preservation of the artifacts. In the last few decades, materials and colloid science have provided valid solutions to counteract degradation, and we report here the main highlights in the formulation and application of materials and methodologies for the cleaning, protection and consolidation of works of art. Several types of artifacts are addressed, from murals to canvas paintings, metal objects, and paper artworks, comprising both classic and modern/contemporary art. Systems, such as nanoparticles, gels, nanostructured cleaning fluids, composites, and other functional materials, are reviewed. Future perspectives are also commented, outlining open issues and trends in this challenging and exciting field.

4.
Br J Cancer ; 120(6): 601-611, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30765875

RESUMEN

BACKGROUND: Sorafenib is the first targeted agent proven to improve survival of patients with advanced hepatocellular carcinoma (HCC) and it has been used in first line treatments with heterogeneous response across patients. Most of the promising agents evaluated in first-line or second-line phase III trials for HCC failed to improve patient survival. The absence of molecular characterisation, including the identification of pathways driving resistance might be responsible for these disappointing results. METHODS: 2D DIGE and MS analyses were used to reveal proteomic signatures resulting from Notch3 inhibition in HepG2 cells, combined with brivanib treatment. The therapeutic potential of Notch3 inhibition combined with brivanib treatment was also demonstrated in a rat model of HCC and in cell lines derived from different human cancers. RESULTS: Using a proteomic approach, we have shown that Notch3 is strongly involved in brivanib resistance through a p53-dependent regulation of enzymes of the tricarboxylic acid (TCA), both in vitro and in vivo. CONCLUSION: We have demonstrated that regulation of the TCA cycle is a common mechanism in different human cancers, suggesting that Notch3 inhibitors combined with brivanib treatment may represent a strong formulation for the treatment of HCC as well as Notch3-driven cancers.


Asunto(s)
Alanina/análogos & derivados , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Receptor Notch3/antagonistas & inhibidores , Triazinas/farmacología , Alanina/farmacología , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Línea Celular Tumoral , Resistencia a Antineoplásicos , Electroforesis en Gel de Poliacrilamida , Técnicas de Silenciamiento del Gen , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , Neoplasias Hepáticas Experimentales/genética , Neoplasias Hepáticas Experimentales/terapia , Células MCF-7 , Terapia Molecular Dirigida , Proteómica , ARN Interferente Pequeño/administración & dosificación , Ratas , Ratas Wistar , Receptor Notch3/deficiencia , Receptor Notch3/genética , Electroforesis Bidimensional Diferencial en Gel
5.
Angew Chem Int Ed Engl ; 57(25): 7355-7359, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29215783

RESUMEN

Aqueous nanostructured fluids (NSFs) have been proposed to remove polymer coatings from the surface of works of art; this process usually involves film dewetting. The NSF cleaning mechanism was studied using several techniques that were employed to obtain mechanistic insight on the interaction of a methacrylic/acrylic copolymer (Paraloid B72) film laid on glass surfaces and several NSFs, based on two solvents and two surfactants. The experimental results provide a detailed picture of the dewetting process. The gyration radius and the reduction of the Tg of Paraloid B72 fully swollen in the two solvents is larger for propylene carbonate than for methyl ethyl ketone, suggesting higher mobility of polymer chains for the former, while a nonionic alcohol ethoxylate surfactant was more effective than sodium dodecylsulfate in favoring the dewetting process. FTIR 2D imaging showed that the dewetting patterns observed on model samples are also present on polymer-coated mortar tiles when exposed to NSFs.

6.
Anal Bioanal Chem ; 409(15): 3707-3712, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28397165

RESUMEN

One of the main problems connected to the conservation of street art is the selective removal of overlying undesired graffiti, i.e., drawings and tags. Unfortunately, selective and controlled removal of graffiti and overpaintings from street art is almost unachievable using traditional methodologies. Recently, the use of nanofluids confined in highly retentive pHEMA/PVP semi-interpenetrated polymer networks was proposed. Here, we report on the selective removal of acrylic overpaintings from a layer of acrylic paint on mortar mockups in laboratory tests. The results of the cleaning tests were characterized by visual and photographic observation, optical microscopy, and FT-IR microreflectance investigation. It was shown that this methodology represents a major advancement with respect to the use of nonconfined neat solvents.

7.
J Colloid Interface Sci ; 657: 178-192, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38039879

RESUMEN

HYPOTHESIS: The development of gels capable to adapt and act at the interface of rough surfaces is a central topic in modern science for Cultural Heritage preservation. To overcome the limitations of solvents or polymer solutions, commonly used in the restoration practice, poly(vinyl alcohol) (PVA) "twin-chain" polymer networks (TC-PNs) have been recently proposed. The properties of this new class of gels, that are the most performing gels available for Cultural Heritage preservation, are mostly unexplored. This paper investigates how chemical modifications affect gels' structure and their rheological behavior, producing new gelled systems with enhanced and tunable properties for challenging applications, not restricted to Cultural Heritage preservation. EXPERIMENTS: In this study, the PVA-TC-PNs structural and functional properties were changed by functionalization with sebacic acid into a new class of TC-PNs. Functionalization affects the porosity and nanostructure of the network, changing its uptake/release of fluids and favoring the uptake of organic solvents with various polarity, a crucial feature to boost the versatility of TC-PNs in practical applications. FINDINGS: The functionalized gels exhibited unprecedented performances during the cleaning of contemporary paintings from the Peggy Gugghenheim collection (Venice), whose restoration with traditional solvents and swabs would be difficult to avoid possible disfigurements to the painted layers. These results candidate the functionalized TC-PNs as a new, highly promising class of gels in art preservation.

8.
Polymers (Basel) ; 15(22)2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-38006179

RESUMEN

The UN 2030 Agenda for Sustainable Development established the goal of cutting the use of pesticides in the EU by 50% by 2030. However, a ban on pesticides could seriously affect the productivity of agriculture, resulting in severe issues due to global hunger and food deficiency. Controlled release (CR) of bioactive chemicals could play a valid alternative in this context. To this aim, two biodegradable polymers, namely sodium alginate (AL) and sodium carboxymethylcellulose (CMC), were employed to obtain crosslinked hydrogel beads for the encapsulation and CR of glycoalkaloids extracted from tomato and potato leaves to be used as biocompatible disinfectants for agricultural soils. The physico-chemical characterization of the controlled-release systems was carried out by means of Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy, Scanning Electron Microscopy (SEM), thermogravimetry (TGA), differential scanning calorimetry (DSC) (FWI > 80%) and drying kinetics. The plant extracts and the encapsulation efficiency (~84%) were, respectively, characterized and evaluated by High-performance Liquid Chromatography-Mass Spectrometry (HPLC-MS). Finally, preliminary microbiological tests were conducted to test the efficacy of the most promising systems as biocidal formulations both in the lab and on a model soil, and interesting results were obtained in the reduction of bacterial and fungal load, which could lead to sustainable perspectives in the field.

9.
Langmuir ; 28(43): 15193-202, 2012 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-23025287

RESUMEN

Nanostructured soft matter systems represent effective and long-lasting solutions with respect to traditional and often obsolete methodologies for the conservation of works of art. In particular, complex fluids such as micelles and microemulsions are the most performing media for the removal of organic materials from porous supports, like wall paintings or stones. In this Article, we report on the characterization of two systems, EAPC and XYL, which have shown good to optimal performances in the removal of organic polymers from wall paintings. EAPC is a five-components fluid composed of water, sodium dodecylsulfate (SDS), 1-pentanol (PeOH), propylene carbonate (PC), and ethyl acetate (EA), while XYL is a "classical" o/w microemulsion, where p-xylene droplets are stabilized in water by SDS and PeOH. Small-angle neutron scattering (SANS) with contrast variation is used to infer a detailed picture of the structure of these complex fluids, with a particular focus on the partition of the components between the bulk phase and the nanocompartments. We found that, differently from XYL, the EAPC system is neither a microemulsion nor a simple micellar solution, with the cosolvents partitioned between the dispersing phase and the disperse droplets. These different structural features play a key role in defining the cleaning effectiveness and specifically the kinetics of interaction between the nanofluid and the polymeric coating to be removed, which is of paramount importance for the application in the field. Both of these nanofluids are effective in polymer removal, but EAPC is considerably more efficient and versatile. The composition and the structure at the nanoscale determine the capability of removing a broad range of different polymer coatings from porous materials. A representative case study is here described, addressing a particularly challenging conservative issue, which is the removal of a multilayered aged coating that was irreversibly damaging the pictorial layer of the Annunciation Basilica in Nazareth.

10.
ACS Appl Mater Interfaces ; 14(12): 14791-14804, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35312278

RESUMEN

Soluplus is an amphiphilic graft copolymer intensively studied as a micellar solubilizer for drugs. An extensive characterization of the nanostructure of its colloidal aggregates is still lacking. Here, we provide insights into the polymer's self-assembly in water, and we assess its use as an encapsulating agent for fragrances. The self-assembly properties of Soluplus aqueous solutions were studied over a wide concentration range (1-70% w/w) by means of small-angle neutron scattering (SANS), differential scanning calorimetry, NMR, and rheometry. SANS analyses revealed the presence of polymeric micelles with a fuzzy surface interacting via a 2-Yukawa potential, up to 15% w/w polymer. Increasing the polymer concentration up to 55% w/w led to tightly packed micelles described according to the Teubner-Strey model. The ability of Soluplus to encapsulate seven perfume molecules, 2-phenyl ethanol, l-carvone, linalool, florhydral, ß-citronellol, α-pinene, and R-limonene, was then examined. We showed that the fragrance's octanol/water partition coefficient (log Kow), widely used to characterize the solubilization capacity, is not sufficient to characterize such systems and the presence of specific functional groups or molecular conformation needs to be considered. In fact, the combination of SANS, NMR, confocal laser scanning microscopy, and confocal Raman microscopy showed that the perfumes, interacting with different regions of the polymer aggregates, are able to tune the systems' structures resulting in micelles, matrix-type capsules, core-shell capsules, or oil-in-water emulsions.


Asunto(s)
Perfumes , Micelas , Polietilenglicoles/química , Polivinilos , Estudios Prospectivos , Agua/química
11.
J Colloid Interface Sci ; 615: 265-272, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35144228

RESUMEN

HYPOTHESIS: Preparation of suspensions of nanoparticles (>1 wt%) coated with a polyelectrolyte multilayers is a challenging task because of the risk of flocculation when a polyelectrolyte is added to a suspension of oppositely charged nanoparticles. This situation can be avoided if the charge density of the polymers and particles is controlled during mixing so as to separate mixing and adsorption events. EXPERIMENTS: The cationic polyethylenimine (PEI) and the anionic carboxymethylcellulose (CMC) were used as weak polyelectrolytes. Polyelectrolyte multilayers build-up was conducted by reducing the charge of one of the components during the addition of the next component. Charge density was controlled by tuning pH. Analysis of the suspension of coated nanoparticles was done by means of dynamic light scattering, electrophoresis and small angle x-ray scattering measurements, while quartz crystal microbalance was used to study the build-up process on flat silica surfaces. FINDINGS: Charge density, controlled through pH, can be used as a tool to avoid flocculation during layer-by-layer deposition of polyelectrolytes on 20 nm silica particles at high concentration (∼40 wt%). When added to silica at pH 3, PEI did not induce flocculation. Adsorption was triggered by raising the pH to 11, pH at which CMC could be added. The pH was then lowered to 3. The process was repeated, and up to five polyelectrolyte layers were deposited on concentrated silica nanoparticles while inducing minimal aggregation.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Electrólitos/química , Concentración de Iones de Hidrógeno , Nanopartículas/química , Polielectrolitos/química , Suspensiones
12.
J Colloid Interface Sci ; 606(Pt 1): 124-134, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34390987

RESUMEN

HYPOTHESIS: Nanostructured fluids (NSFs) based on water, organic solvents and surfactants are a valid alternative to the use of neat unconfined organic solvents for polymer coatings removal in art conservation. The physico-chemical processes underpinning their cleaning effectiveness in terms of swelling/dewetting of polymer films were identified as key in this context. The role of surfactants on polymers' dewetting was considered to be mainly restricted to the lowering of interfacial tensions. However, recent experiments evidenced that surfactants have an important role in swelling polymer films. EXPERIMENTS: Five different amphiphiles were selected, namely: sodium dodecylsulfate, dimethyldodecyl amine oxide, hexaoxyethylene decyl ether (C9-11E6), pentadecaoxyethylene dodecyl ether (C12E15), and methyoxypentadecaoxyethylene dodecanoate (C11COE15CH3). They were combined with a carefully selected organic solvents' mixture (1-butanol/butanone/dimethyl carbonate) to formulate new NSFs, differing for the surfactant only, and used to perform cleaning tests on surfaces coated with Paraloid B72® and Primal AC33®. Here for the first time, polymer swelling induced by surfactants was quantified and correlated with the glass transition temperature of the two polymers by differential scanning calorimetry, before and after the exposure to the fluids. Confocal laser scanning microscopy and small-angle X-ray scattering provided additional insights on the interaction mechanism. FINDINGS: Nonionics were proven more efficient than zwitterionic/ionic amphiphiles in the polymer swelling, and, overall, methyoxy pentadecaoxyethylene dodecanoate resulted the most effective among the selected surfactants. A direct relation between the effect of surfactants on the polymers' glass transition temperature and cleaning capacity was established. This finding, fundamental to understand the interaction mechanism between NSFs and polymer coatings or paint layers, is key to achieve a selective, effective and complete removal of polymer coatings, as recently shown in the removal of vandalism and over-paintings from street art.

13.
Acc Chem Res ; 43(6): 695-704, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20205447

RESUMEN

Modern civilization's inherited artworks have a powerful impact on society, from political, sociological, and anthropological points of view, so the conservation of our Cultural Heritage is fundamental for conveying to future generations our culture, traditions, and ways of thinking and behaving. In the conservation of cultural artifacts, scientists intervene in the degradation of often unique handcrafts, resulting from a delicate balance of aging, unpredicted events, environmental conditions, and sometimes incorrect previous restoration treatments, the details of which are often not precisely known. Nanoscience and nanotechnology are revolutionizing materials science in a pervasive way, in a manner similar to polymer chemistry's revolution of materials science over the preceding century. The continuous development of novel nanoparticle-based materials and the study of physicochemical phenomena at the nanoscale are creating new approaches to conservation science, leading to new methodologies that can "revert" the degradation processes of the works of art, in most cases "restoring" them to their original magnificent appearance. Until recently, serendipity and experiment have been the most frequent design principles of formulations for either cleaning or consolidation of works of art. Accordingly, the past has witnessed a number of actively detrimental treatments, such as the application of acrylic and vinyl resins to wall paintings, which can irreversibly jeopardize the appearance (or even the continued existence) of irreplaceable works of art. Current research activity in conservation science is largely based on the paradigm that compatibility of materials is the most important prerequisite for obtaining excellent and durable results. The most advanced current methodologies are (i) the use of water-based micelles and microemulsions (neat or combined with gels) for the removal of accidental contaminants and polymers used in past restorations and (ii) the application of calcium hydroxide nanoparticles for the consolidation of works of art. In this Account, we highlight how conservation science can benefit from the conceptual and the methodological background derived from both soft (microemulsions and micelles for cleaning) and hard (nanoparticles for consolidation) nanoscience. A combination of different nanotechnologies allows today's conservators to provide, in each restoration step, interventions respectful of the physicochemical characteristics of the materials used by artists. The "palette" of methods provided by nanoscience is continuously enriching the field, and the development of novel nanomaterials and the study of nanoscale physicochemical phenomena will further improve the performance of restoration formulations and our comprehension of degradation mechanisms.

14.
J Colloid Interface Sci ; 595: 187-201, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33827010

RESUMEN

HYPOTHESIS: The removal of over-paintings or graffiti is a priority for conservators and restorers. This operation is complex, especially when over-paintings lay on painted surfaces that must be preserved, as in the case of vandalism on street art, where the layers are usually chemically similar. Traditional methodologies often do not provide satisfactory results and pose health and eco-compatibility concerns. An alternative methodological approach based on an environmentally friendly nanostructured fluid loaded in a retentive hydrogel is here proposed. EXPERIMENTS: Six paints (based on vinyl, acrylic and alkyd polymers) were selected and studied by means of attenuated total reflection - Fourier transform infrared spectroscopy. The phase behavior of four alkyl carbonates (green, low-toxicity organic solvents) and a biodegradable nonionic surfactant in water was investigated with Small angle X-ray scattering (SAXS) in order to formulate a novel nanostructured cleaning system. The developed system, which also includes 2-butanol and an alkyl glycoside hydrotrope, was loaded in highly retentive hydrogels and tested in the selective removal of over-paintings from laboratory mockups and from real pieces of street art. FINDINGS: The selective and controlled removal of modern paints from substrates with similar chemical composition has been achieved using a specifically tailored NSF embedded in a retentive hydrogel. The proposed methodology and cleaning system provided excellent cleaning results, representing a new tool for the conservation of contemporary and, in particular, street art.

15.
ACS Appl Mater Interfaces ; 12(23): 26704-26716, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32394706

RESUMEN

The use of nanostructured fluids (NSFs), that is, micellar solutions and microemulsions, in art conservation is often associated with cleaning purposes as the removal of polymeric coatings and/or soil from artistic surfaces. In both cases, the use of NSFs grants significant improvements over the use of traditional cleaning techniques that employ neat unconfined organic solvents, water, or aqueous solutions. The study of the nature and properties of surfactants present in NSF formulations is important to boost the effectiveness of these systems in applicative contexts and in the search of innovative and highly performing amphiphiles. This work reports on the methoxy-pentadeca(oxyethylene) dodecanoate (MPD) surfactant in two different NSFs, whose utilization in conservation of cultural heritage is new. Its effectiveness is compared to the conventional nonionic amphiphiles used in conservation practice, as pentadeca(oxyethylene) dodecyl ether, for the cleaning of poly(ethyl methacrylate/methyl acrylate) 70:30, p(EMA/MA), and artificially soiled surfaces. The mechanism, through which NSFs interact with polymeric coatings or soiled surfaces, was investigated by confocal laser scanning microscopy, fluorescence correlation spectroscopy, photographic observation, contact angle, surface tension measurements, and small-angle X-ray scattering. The results highlighted the superior MPD's performance, both in inducing polymer removal and in detaching the soil from coated surfaces. At the microscale, the cleaning involves dewetting-like processes, where the polymer or the soil oily phase is detached from the surface and coalesce into separated droplets. This can be accounted by considering the different surface tensions and the different adsorption mechanisms of MPD with respect to ordinary nonionic surfactants (likely due to the methyl capping of the polar head chain and to the presence of the ester group between the hydrophilic and hydrophobic parts of the MPD surfactant molecule), showing how a tiny change in the surfactant architecture can lead to important differences in the cleaning capacity. Overall, this paper provides a detailed description of the mechanism and the kinetics involved in the NSFs cleaning process, opening new perspectives on simple formulations that are able to target at a specific substance to be removed. This is of utmost importance in the conservation of irreplaceable works of art.

16.
ACS Appl Mater Interfaces ; 11(30): 27288-27296, 2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31179685

RESUMEN

The removal of hydrophobic polymer coatings from artistic surfaces is a ubiquitous challenge in art restoration. Over the years, nanostructured fluids (NSFs), aqueous surfactant solutions containing a good solvent for the polymer, have been successfully applied in polymer removal interventions; however, the precise role of the surfactant in promoting polymer film dewetting is not fully understood. This contribution addresses the interaction of a NSF of water/propylene carbonate containing a nonionic surfactant with an acrylic polymer film commonly used in art conservation. Combining confocal microscopy and fluorescence correlation spectroscopy, we monitored the penetration of the fluid into the polymer film, defining its compositional changes and following the polymer swelling. The ensemble of results highlights that the surfactant role is twofold: (i) at the polymer-support interface, it promotes the detachment of the polymer film from the underlying support; (ii) inside the polymer film, it accelerates polymer swelling by increasing the chains' mobility.

17.
Drug Discov Today ; 13(21-22): 1002-9, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18755287

RESUMEN

Hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide. There is a substantial need for new chemotherapeutic drugs effective against this tumor. Doxorubicin (DOXO), used for chemoembolization of HCCs, is poorly efficacious when administered systemically at conventional doses; dose escalation is hindered by unacceptable toxicity. Here, we review preclinical experiments showing that the efficacy of DOXO against HCCs and its safety increased following conjugation to lactosaminated human albumin (L-HSA). L-HSA-DOXO was initially prepared to improve the anticancer activity of the drug on well-differentiated HCCs, which actively internalize L-HSA by means of the asialoglycoprotein receptor. Unexpectedly, it was found that the conjugate enhanced DOXO concentrations in all forms of HCCs, independently of their differentiation grade.


Asunto(s)
Albúminas/química , Antibióticos Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Doxorrubicina/administración & dosificación , Doxorrubicina/uso terapéutico , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , Animales , Antibióticos Antineoplásicos/farmacocinética , Carcinoma Hepatocelular/patología , Doxorrubicina/farmacocinética , Portadores de Fármacos , Lactosa/química , Cirrosis Hepática/tratamiento farmacológico , Pruebas de Función Hepática , Neoplasias Hepáticas Experimentales/patología , Ratas
18.
Eur J Pharm Sci ; 33(2): 191-8, 2008 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-18201877

RESUMEN

Coupling to lactosaminated human albumin (L-HSA) makes doxorubicin (DOXO) an effective drug against chemically induced rat hepatocellular carcinomas (HCCs). In the conjugate there is a large heterogeneity in the number of DOXO molecules bound to one L-HSA molecule. After lyophilization, the molecules with the higher DOXO load form large complexes (C-DOXOL), whereas those with low drug load (C-DOXOS) have the size of the carrier L-HSA. In the present experiments, we demonstrated that in C-DOXOL the molecules are not linked by covalent bonds, but are strongly aggregated probably because of mutual drug-drug interaction between the DOXO residues. In healthy rats and in animals with HCCs which received the same dose (1 microg/g) of DOXO injected in C-DOXOL or in C-DOXOS forms, penetration of the drug in tumors and in tissues was more rapid after administration of the former complex. Three hours after injection of both conjugate forms the intracellular release of DOXO from the carrier was completed. The AUCs from 0.5 to 4h of the levels of the released DOXO in HCCs, surrounding liver and bone marrow of animals injected with C-DOXOL were similar to those calculated in animals given C-DOXOS. This suggests that after administration of the dose of DOXO used in the present experiments the conjugate molecules with lower or higher drug load can exert comparable pharmacological and toxic effects.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Doxorrubicina/farmacocinética , Neoplasias Hepáticas Experimentales/metabolismo , Albúmina Sérica/química , Animales , Área Bajo la Curva , Médula Ósea/química , Médula Ósea/metabolismo , Cromatografía en Gel , Cromatografía Liquida , Dicroismo Circular , Doxorrubicina/sangre , Doxorrubicina/química , Electroforesis en Gel de Poliacrilamida , Humanos , Hígado/química , Hígado/metabolismo , Masculino , Estructura Molecular , Peso Molecular , Ratas , Ratas Wistar
19.
Materials (Basel) ; 11(7)2018 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-29976905

RESUMEN

The removal of hydrophobic materials from a porous support, such as wax stains on wall paintings, is particularly challenging. In this context, traditional methods display several drawbacks. The limitations of these methods can be overcome by amphiphile-based aqueous nanostructured fluids, such as micellar solutions and microemulsions. In this study, a microemulsion for the removal of wax spots from artistic surfaces was formulated. The nanostructured fluid includes a non-ionic surfactant, i.e., Triton X-100, and two apolar solvents, namely p-xylene and n-nonane. The solvents were selected on the basis of solubility tests of three waxes in several organic solvents. The nanostructured fluid was characterized by means of small-angle X-rays scattering (SAXS) and the information about micelle structure was used to understand the interaction between the microemulsion and the selected waxes. The microemulsion was then tested during the restoration of the frescoes in the Major Chapel of the Santa Croce Basilica in Florence, Italy. After some preliminary tests on fresco mockups reproduced in the laboratory, the nanostructured fluid was successfully used to clean some wax deposits from the real paintings, hardly removable with traditional physico-mechanical methods.

20.
ACS Appl Mater Interfaces ; 10(22): 19162-19172, 2018 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-29726255

RESUMEN

The removal of aged varnishes from the surface of easel paintings using the common conservation practice (i.e., by means of organic solvents) often causes pigment leaching, paint loss, and varnish redeposition. Recently, we proposed an innovative cleaning system based on semi-interpenetrated polymer networks (SIPNs), where a covalently cross-linked poly(hydroxyethyl methacrylate), pHEMA, network is interpenetrated by linear chains of poly(vinylpyrrolidone), PVP. This chemical gel, simply loaded with water, was designed to safely remove surface dirt from water-sensitive artifacts. Here, we modified the SIPN to confine complex cleaning fluids, able to remove aged varnishes. These complex fluids are 5-component water-based nanostructured systems, where organic solvents are partially dispersed as nanosized droplets in a continuous aqueous phase, using surfactants. The rheological behavior of the SIPN and the nanostructure of the fluids loaded into the gel were investigated, and the mechanical behavior of the gel was optimized by varying both the cross-linking density and the polymer concentration. Once loaded with the complex fluids, the hydrogels maintained their structural and mechanical features, while the complex fluids showed a decrease in the size of the dispersed solvent droplets. Two challenging case studies have been selected to evaluate the applicability of the SIPN hydrogels loaded with the complex fluids. The first case study concerns the removal of a surface layer composed by an aged brown resinous patina from a wood panel, the second case study concerns the removal of a homogeneous layer of yellowed varnish from a watercolor on paper. The results show that the confinement of complex fluids into gels allowed unprecedented removal of varnishes from artifacts overcoming the limitations of traditional cleaning methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA