Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 37(2): e22732, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36694994

RESUMEN

E-cigarettes currently divide public opinion, with some considering them a useful tool for smoking cessation and while others are concerned with potentially adverse health consequences. However, it may take decades to fully understand the effects of e-cigarette use in humans given their relative newness on the market. This highlights the need for comprehensive preclinical studies investigating the effects of e-cigarette exposure on health outcomes. Here, we investigated the impact of chronic, low-level JUUL aerosol exposure on multiple lung outcomes. JUUL is a brand of e-cigarettes popular with youth and young adults. To replicate human exposures, 8- to 12-week-old male and female C57BL/6J mice were exposed to commercially available JUUL products (containing 59 mg/ml nicotine). Mice were exposed to room air, PG/VG, or JUUL daily for 4 weeks. After the exposure period, inflammatory markers were assessed via qRT-PCR, multiplex cytokine assays, and differential cell count. Proteomic and transcriptomic analyses were also performed on samples isolated from the lavage of the lungs; this included unbiased analysis of proteins contained within extracellular vesicles (EVs). Mice exposed to JUUL aerosols for 4 weeks had significantly increased neutrophil and lymphocyte populations in the BAL and some changes in cytokine mRNA expression. However, BAL cytokines did not change. Proteomic and transcriptomic analysis revealed significant changes in numerous biological pathways including neutrophil degranulation, PPAR signaling, and xenobiotic metabolism. Thus, e-cigarettes are not inert and can cause significant cellular and molecular changes in the lungs.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Adulto Joven , Adolescente , Masculino , Humanos , Femenino , Animales , Ratones , Transcriptoma , Proteómica , Ratones Endogámicos C57BL , Aerosoles/análisis , Pulmón
2.
Immunol Cell Biol ; 101(2): 156-170, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36510483

RESUMEN

Δ9 -Tetrahydrocannabinol (Δ9 -THC) and cannabidiol (CBD) are cannabinoids found in Cannabis sativa. While research supports cannabinoids reduce inflammation, the consensus surrounding receptor(s)-mediated effects has yet to be established. Here, we investigated the receptor-mediated properties of Δ9 -THC and CBD on alveolar macrophages, an important pulmonary immune cell in direct contact with cannabinoids inhaled by cannabis smokers. MH-S cells, a mouse alveolar macrophage cell line, were exposed to Δ9 -THC and CBD, with and without lipopolysaccharide (LPS). Outcomes included RNA-sequencing and cytokine analysis. Δ9 -THC and CBD alone did not affect the basal transcriptional response of MH-S cells. In response to LPS, Δ9 -THC and CBD significantly reduced the expression of numerous proinflammatory cytokines including tumor necrosis factor-alpha, interleukin (IL)-1ß and IL-6, an effect that was dependent on CB2 . The anti-inflammatory effects of CBD but not Δ9 -THC were mediated through a reduction in signaling through nuclear factor-kappa B and extracellular signal-regulated protein kinase 1/2. These results suggest that CBD and Δ9 -THC have potent immunomodulatory properties in alveolar macrophages, a cell type important in immune homeostasis in the lungs. Further investigation into the effects of cannabinoids on lung immune cells could lead to the identification of therapies that may ameliorate conditions characterized by inflammation.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Ratones , Animales , Cannabidiol/farmacología , Dronabinol/farmacología , Macrófagos Alveolares/metabolismo , Lipopolisacáridos/farmacología , Cannabis/metabolismo , Citocinas/metabolismo , Inflamación/metabolismo
3.
Respir Res ; 24(1): 95, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36978106

RESUMEN

The lungs, in addition to participating in gas exchange, represent the first line of defense against inhaled pathogens and respiratory toxicants. Cells lining the airways and alveoli include epithelial cells and alveolar macrophages, the latter being resident innate immune cells important in surfactant recycling, protection against bacterial invasion and modulation of lung immune homeostasis. Environmental exposure to toxicants found in cigarette smoke, air pollution and cannabis can alter the number and function of immune cells in the lungs. Cannabis (marijuana) is a plant-derived product that is typically inhaled in the form of smoke from a joint. However, alternative delivery methods such as vaping, which heats the plant without combustion, are becoming more common. Cannabis use has increased in recent years, coinciding with more countries legalizing cannabis for both recreational and medicinal purposes. Cannabis may have numerous health benefits owing to the presence of cannabinoids that dampen immune function and therefore tame inflammation that is associated with chronic diseases such as arthritis. The health effects that could come with cannabis use remain poorly understood, particularly inhaled cannabis products that may directly impact the pulmonary immune system. Herein, we first describe the bioactive phytochemicals present in cannabis, with an emphasis on cannabinoids and their ability to interact with the endocannabinoid system. We also review the current state-of-knowledge as to how inhaled cannabis/cannabinoids can shape immune response in the lungs and discuss the potential consequences of altered pulmonary immunity. Overall, more research is needed to understand how cannabis inhalation shapes the pulmonary immune response to balance physiological and beneficial responses with potential deleterious consequences on the lungs.


Asunto(s)
Cannabinoides , Cannabis , Enfermedades Pulmonares , Humanos , Cannabis/efectos adversos , Pulmón , Enfermedades Pulmonares/inducido químicamente , Enfermedades Pulmonares/tratamiento farmacológico , Cannabinoides/farmacología , Inmunidad
4.
Arch Toxicol ; 97(7): 1963-1978, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37179517

RESUMEN

Cannabis contains cannabinoids including Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). THC causes the psychoactive effects of cannabis, and both THC and CBD are thought to be anti-inflammatory. Cannabis is typically consumed by inhaling smoke that contains thousands of combustion products that may damage the lungs. However, the relationship between cannabis smoke exposure and alterations in respiratory health is poorly defined. To address this gap in knowledge, we first developed a mouse model of cannabis smoke exposure using a nose-only rodent inhalation exposure system. We then tested the acute effects of two dried cannabis products that differ substantially in their THC-CBD ratio: Indica-THC dominant (I-THC; 16-22% THC) and Sativa-CBD dominant (S-CBD; 13-19% CBD). We demonstrate that this smoke exposure regime not only delivers physiologically relevant levels of THC to the bloodstream, but that acute inhalation of cannabis smoke modulates the pulmonary immune response. Cannabis smoke decreased the percentage of lung alveolar macrophages but increased lung interstitial macrophages (IMs). There was also a decrease in lung dendritic cells as well as Ly6Cintermediate and Ly6Clow monocytes, but an increase in lung neutrophils and CD8+ T cells. These immune cell changes were paralleled with changes in several immune mediators. These immunological modifications were more pronounced when mice were exposed to S-CBD compared to the I-THC variety. Thus, we show that acute cannabis smoke differentially affects lung immunity based on the THC:CBD ratio, thereby providing a foundation to further explore the effect of chronic cannabis smoke exposures on pulmonary health.


Asunto(s)
Cannabidiol , Cannabis , Alucinógenos , Animales , Ratones , Cannabidiol/toxicidad , Dronabinol/toxicidad , Dronabinol/análisis , Humo/efectos adversos , Linfocitos T CD8-positivos , Agonistas de Receptores de Cannabinoides , Pulmón
5.
Int J Mol Sci ; 24(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37298489

RESUMEN

Lung cancer is the leading cause of cancer-related deaths due to its high incidence, late diagnosis, and limited success in clinical treatment. Prevention therefore is critical to help improve lung cancer management. Although tobacco control and tobacco cessation are effective strategies for lung cancer prevention, the numbers of current and former smokers in the USA and globally are not expected to decrease significantly in the near future. Chemoprevention and interception are needed to help high-risk individuals reduce their lung cancer risk or delay lung cancer development. This article will review the epidemiological data, pre-clinical animal data, and limited clinical data that support the potential of kava in reducing human lung cancer risk via its holistic polypharmacological effects. To facilitate its future clinical translation, advanced knowledge is needed with respect to its mechanisms of action and the development of mechanism-based non-invasive biomarkers in addition to safety and efficacy in more clinically relevant animal models.


Asunto(s)
Kava , Neoplasias Pulmonares , Animales , Humanos , Quimioprevención/métodos , Biomarcadores , Neoplasias Pulmonares/epidemiología , Neoplasias Pulmonares/prevención & control , Neoplasias Pulmonares/etiología
6.
FASEB J ; 35(3): e21376, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33605487

RESUMEN

Emphysema, a component of chronic obstructive pulmonary disease (COPD), is characterized by irreversible alveolar destruction that results in a progressive decline in lung function. This alveolar destruction is caused by cigarette smoke, the most important risk factor for COPD. Only 15%-20% of smokers develop COPD, suggesting that unknown factors contribute to disease pathogenesis. We postulate that the aryl hydrocarbon receptor (AHR), a receptor/transcription factor highly expressed in the lungs, may be a new susceptibility factor whose expression protects against COPD. Here, we report that Ahr-deficient mice chronically exposed to cigarette smoke develop airspace enlargement concomitant with a decline in lung function. Chronic cigarette smoke exposure also increased cleaved caspase-3, lowered SOD2 expression, and altered MMP9 and TIMP-1 levels in Ahr-deficient mice. We also show that people with COPD have reduced expression of pulmonary and systemic AHR, with systemic AHR mRNA levels positively correlating with lung function. Systemic AHR was also lower in never-smokers with COPD. Thus, AHR expression protects against the development of COPD by controlling interrelated mechanisms involved in the pathogenesis of this disease. This study identifies the AHR as a new, central player in the homeostatic maintenance of lung health, providing a foundation for the AHR as a novel therapeutic target and/or predictive biomarker in chronic lung disease.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica/etiología , Receptores de Hidrocarburo de Aril/deficiencia , Anciano , Anciano de 80 o más Años , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/fisiología , Enfisema/etiología , Volumen Espiratorio Forzado , Humanos , Pulmón/fisiopatología , Masculino , Ratones , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/fisiología , Fumar/efectos adversos
7.
Arch Toxicol ; 96(6): 1783-1798, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35254488

RESUMEN

JUUL is a popular e-cigarette brand that manufactures e-liquids in a variety of flavors, such as mango and mint. Despite their popularity, the pulmonary effects of flavored JUUL e-liquids that are aerosolized and subsequently inhaled are not known. Therefore, the purpose of this study was to evaluate if acute exposure to JUUL e-cigarette aerosols in three popular flavors elicits an immunomodulatory or oxidative stress response in mice. We first developed a preclinical model that mimics human use patterns of e-cigarettes using 1 puff/min or 4 puffs/min exposure regimes. Based on cotinine levels, these exposures were representative of light/occasional and moderate JUUL users. We then exposed C57BL/6 mice to JUUL e-cigarette aerosols in mango, mint, and Virginia tobacco flavors containing 5% nicotine for 3 days, and assessed the inflammatory and oxidative stress response in the lungs and blood. In response to the 1 puff/min regime (light/occasional user), there were minimal changes in BAL cell composition or lung mRNA expression. However, at 4 puffs/min (moderate user), mint-flavored JUUL significantly increased lung neutrophils, while mango-flavored JUUL significantly increased Tnfα and Il13 mRNA in the lungs. Both the 1- and 4 puffs/min regimes significantly increased oxidative stress markers in the blood, indicating systemic effects. Thus, JUUL products are not inert; even short-term inhalation of flavored JUUL e-cigarette aerosols differentially causes immune modulation and oxidative stress responses.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Productos de Tabaco , Aerosoles , Animales , Femenino , Aromatizantes/toxicidad , Pulmón , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , ARN Mensajero
8.
J Cell Physiol ; 236(10): 6836-6851, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33855709

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a disease of progressive scarring caused by excessive extracellular matrix (ECM) deposition and activation of α-SMA-expressing myofibroblasts. Human antigen R (HuR) is an RNA binding protein that promotes protein translation. Upon translocation from the nucleus to the cytoplasm, HuR functions to stabilize messenger RNA (mRNA) to increase protein levels. However, the role of HuR in promoting ECM production, myofibroblast differentiation, and lung fibrosis is unknown. Human lung fibroblasts (HLFs) treated with transforming growth factor ß1 (TGF-ß1) showed a significant increase in translocation of HuR from the nucleus to the cytoplasm. TGF-ß-treated HLFs that were transfected with HuR small interfering RNA had a significant reduction in α-SMA protein as well as the ECM proteins COL1A1, COL3A, and FN1. HuR was also bound to mRNA for ACTA2, COL1A1, COL3A1, and FN. HuR knockdown affected the mRNA stability of ACTA2 but not that of the ECM genes COL1A1, COL3A1, or FN. In mouse models of pulmonary fibrosis, there was higher cytoplasmic HuR in lung structural cells compared to control mice. In human IPF lungs, there was also more cytoplasmic HuR. This study is the first to show that HuR in lung fibroblasts controls their differentiation to myofibroblasts and consequent ECM production. Further research on HuR could assist in establishing the basis for the development of new target therapy for fibrotic diseases, such as IPF.


Asunto(s)
Transdiferenciación Celular , Proteína 1 Similar a ELAV/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/metabolismo , Miofibroblastos/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Transdiferenciación Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Proteína 1 Similar a ELAV/genética , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/patología , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Regulación de la Expresión Génica , Humanos , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , Pulmón/efectos de los fármacos , Pulmón/patología , Ratones , Miofibroblastos/patología , Factor de Crecimiento Transformador beta1/farmacología
9.
Am J Physiol Lung Cell Mol Physiol ; 320(3): L339-L355, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33236922

RESUMEN

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor whose physiological function is poorly understood. The AhR is highly expressed in barrier organs such as the skin, intestine, and lung. The lungs are continuously exposed to environmental pollutants such as cigarette smoke (CS) that can induce cell death mechanisms such as apoptosis, autophagy, and endoplasmic reticulum (ER) stress. CS also contains toxicants that are AhR ligands. We have previously shown that the AhR protects against apoptosis, but whether the AhR also protects against autophagy or ER stress is not known. Using cigarette smoke extract (CSE) as our in vitro surrogate of environmental tobacco exposure, we first assessed the conversion of LC3I to LC3II, a classic feature of both autophagic and ER stress-mediated cell death pathways. LC3II was elevated in CSE-exposed lung structural cells [mouse lung fibroblasts (MLFs), MLE12 and A549 cells] when AhR was absent. However, this heightened LC3II expression could not be explained by increased expression of key autophagy genes (Gabarapl1, Becn1, Map1lc3b), upregulation of upstream autophagic machinery (Atg5-12, Atg3), or impaired autophagic flux, suggesting that LC3II may be autophagy independent. This was further supported by the absence of autophagosomes in Ahr-/- lung cells. However, Ahr-/- lung cells had widespread ER dilation, elevated expression of the ER stress markers CHOP and GADD34, and an accumulation of ubiquitinated proteins. These findings collectively illustrate a novel role for the AhR in attenuating ER stress by a mechanism that may be autophagy independent.


Asunto(s)
Estrés del Retículo Endoplásmico , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Pulmón/metabolismo , Proteínas Asociadas a Microtúbulos/biosíntesis , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Autofagia , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Receptores de Hidrocarburo de Aril/genética , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo
10.
Am J Physiol Lung Cell Mol Physiol ; 320(1): L152-L157, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33112187

RESUMEN

The COVID-19 pandemic is associated with severe pneumonia and acute respiratory distress syndrome leading to death in susceptible individuals. For those who recover, post-COVID-19 complications may include development of pulmonary fibrosis. Factors contributing to disease severity or development of complications are not known. Using computational analysis with experimental data, we report that idiopathic pulmonary fibrosis (IPF)- and chronic obstructive pulmonary disease (COPD)-derived lung fibroblasts express higher levels of angiotensin-converting enzyme 2 (ACE2), the receptor for SARS-CoV-2 entry and part of the renin-angiotensin system that is antifibrotic and anti-inflammatory. In preclinical models, we found that chronic exposure to cigarette smoke, a risk factor for both COPD and IPF and potentially for SARS-CoV-2 infection, significantly increased pulmonary ACE2 protein expression. Further studies are needed to understand the functional implications of ACE2 on lung fibroblasts, a cell type that thus far has received relatively little attention in the context of COVID-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2/biosíntesis , COVID-19/patología , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/patología , Enfermedad Pulmonar Obstructiva Crónica/patología , Adulto , Animales , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Receptores Virales/biosíntesis , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/virología , SARS-CoV-2/metabolismo , Humo/efectos adversos
11.
Respir Res ; 22(1): 323, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34963461

RESUMEN

BACKGROUND: Pulmonary fibrosis is thought to be driven by recurrent alveolar epithelial injury which leads to the differentiation of fibroblasts into α-smooth muscle actin (α-SMA)-expressing myofibroblasts and subsequent deposition of extracellular matrix (ECM). Transforming growth factor beta-1 (TGF-ß1) plays a key role in fibroblast differentiation, which we have recently shown involves human antigen R (HuR). HuR is an RNA binding protein that also increases the translation of hypoxia inducible factor (HIF-1α) mRNA, a transcription factor critical for inducing a metabolic shift from oxidative phosphorylation towards glycolysis. This metabolic shift may cause fibroblast differentiation. We hypothesized that under hypoxic conditions, HuR controls myofibroblast differentiation and glycolytic reprogramming in human lung fibroblasts (HLFs). METHODS: Primary HLFs were cultured in the presence (or absence) of TGF-ß1 (5 ng/ml) under hypoxic (1% O2) or normoxic (21% O2) conditions. Evaluation included mRNA and protein expression of glycolytic and myofibroblast/ECM markers by qRT-PCR and western blot. Metabolic profiling was done by proton nuclear magnetic resonance (1H- NMR). Separate experiments were conducted to evaluate the effect of HuR on metabolic reprogramming using siRNA-mediated knock-down. RESULTS: Hypoxia alone had no significant effect on fibroblast differentiation or metabolic reprogramming. While hypoxia- together with TGFß1- increased mRNA levels of differentiation and glycolysis genes, such as ACTA2, LDHA, and HK2, protein levels of α-SMA and collagen 1 were significantly reduced. Hypoxia induced cytoplasmic translocation of HuR. Knockdown of HuR reduced features of fibroblast differentiation in response to TGF-ß1 with and without hypoxia, including α-SMA and the ECM marker collagen I, but had no effect on lactate secretion. CONCLUSIONS: Hypoxia reduced myofibroblasts differentiation and lactate secretion in conjunction with TGF-ß. HuR is an important protein in the regulation of myofibroblast differentiation but does not control glycolysis in HLFs in response to hypoxia. More research is needed to understand the functional implications of HuR in IPF pathogenesis.


Asunto(s)
Diferenciación Celular/fisiología , Hipoxia de la Célula/fisiología , Reprogramación Celular/fisiología , Proteína 1 Similar a ELAV/metabolismo , Pulmón/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Diferenciación Celular/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Células Cultivadas , Reprogramación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Proteína 1 Similar a ELAV/genética , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Pulmón/citología , Pulmón/efectos de los fármacos
12.
Exp Lung Res ; 47(2): 98-109, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33336605

RESUMEN

Purpose of the study: Macrolide therapy is effective in reducing chronic obstructive pulmonary disease (COPD) exacerbations. Our recent study has shown the effectiveness of taking azithromycin in COPD patients, not only ex-smokers but also current smokers. Beyond their anti-microbial effects, macrolides have anti-inflammatory and immunomodulatory properties. The aim of this study was to determine if pretreatment with azithromycin modulates cigarette smoke-induced inflammation in airway epithelial cells. We hypothesized that pretreatment with azithromycin decreases exacerbation frequency by modulating inflammation in human airway epithelial cells exposed to cigarette smoke. Materials and methods: BEAS-2B bronchial epithelial cells were incubated with 5% cigarette smoke extract (CSE) for 3 h, 6 h, and 24 h. Then, airway epithelial cells were pretreated with azithromycin and exposed to 5% CSE. In each stage, the expression and release of IL-6 and IL-8 mRNA were analyzed by quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Results: There was a significant increase of IL-6 and IL-8 mRNA, as well as an increase in extracellular IL-8 protein following exposure to 5% CSE. When cells were pretreated with azithromycin and exposed to 5% CSE for 3 h, there was a significant dose-dependent decrease in the expression of IL-6 mRNA. A final concentration of 9 µg/mL of azithromycin was sufficient to decrease IL-6, IL-8 mRNA, and extracellular IL-8 levels. Conclusion: Pretreatment with azithromycin decreased the expression of IL-6 and IL-8 mRNA and the release of IL-8 in bronchial epithelial cells exposed to cigarette smoke. These results demonstrate the direct effect of azithromycin on inflammatory mediators in bronchial epithelial cells exposed to cigarette smoke.


Asunto(s)
Azitromicina , Enfermedad Pulmonar Obstructiva Crónica , Azitromicina/farmacología , Bronquios , Células Epiteliales , Humanos , Mediadores de Inflamación , Humo/efectos adversos , Fumar
13.
Proc Natl Acad Sci U S A ; 115(5): E974-E981, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29339516

RESUMEN

Susceptibility to chronic obstructive pulmonary disease (COPD) beyond cigarette smoking is incompletely understood, although several genetic variants associated with COPD are known to regulate airway branch development. We demonstrate that in vivo central airway branch variants are present in 26.5% of the general population, are unchanged over 10 y, and exhibit strong familial aggregation. The most common airway branch variant is associated with COPD in two cohorts (n = 5,054), with greater central airway bifurcation density, and with emphysema throughout the lung. The second most common airway branch variant is associated with COPD among smokers, with narrower airway lumens in all lobes, and with genetic polymorphisms within the FGF10 gene. We conclude that central airway branch variation, readily detected by computed tomography, is a biomarker of widely altered lung structure with a genetic basis and represents a COPD susceptibility factor.


Asunto(s)
Bronquios/fisiopatología , Factor 10 de Crecimiento de Fibroblastos/genética , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Tráquea/fisiopatología , Anciano , Anciano de 80 o más Años , Bronquios/anatomía & histología , Susceptibilidad a Enfermedades , Femenino , Genotipo , Humanos , Procesamiento de Imagen Asistido por Computador , Pulmón/fisiopatología , Masculino , Persona de Mediana Edad , Fenotipo , Polimorfismo de Nucleótido Simple , Estudios Prospectivos , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfisema Pulmonar/fisiopatología , Respiración , Fumar , Tomografía Computarizada por Rayos X , Tráquea/anatomía & histología
14.
Int J Mol Sci ; 22(21)2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34769392

RESUMEN

Chronic obstructive pulmonary disease (COPD) is an incurable and prevalent respiratory disorder that is characterized by chronic inflammation and emphysema. COPD is primarily caused by cigarette smoke (CS). CS alters numerous cellular processes, including the post-transcriptional regulation of mRNAs. The identification of RNA-binding proteins (RBPs), microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) as main factors engaged in the regulation of RNA biology opens the door to understanding their role in coordinating physiological cellular processes. Dysregulation of post-transcriptional regulation by foreign particles in CS may lead to the development of diseases such as COPD. Here we review current knowledge about post-transcriptional events that may be involved in the pathogenesis of COPD.


Asunto(s)
Regulación de la Expresión Génica , Enfermedad Pulmonar Obstructiva Crónica/patología , Procesamiento Postranscripcional del ARN , Animales , Humanos , Enfermedad Pulmonar Obstructiva Crónica/genética
15.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34884756

RESUMEN

Pulmonary fibrosis is a chronic, fibrotic lung disease affecting 3 million people worldwide. The ACE2/Ang-(1-7)/MasR axis is of interest in pulmonary fibrosis due to evidence of its anti-fibrotic action. Current scientific evidence supports that inhibition of ACE2 causes enhanced fibrosis. ACE2 is also the primary receptor that facilitates the entry of SARS-CoV-2, the virus responsible for the current COVID-19 pandemic. COVID-19 is associated with a myriad of symptoms ranging from asymptomatic to severe pneumonia and acute respiratory distress syndrome (ARDS) leading to respiratory failure, mechanical ventilation, and often death. One of the potential complications in people who recover from COVID-19 is pulmonary fibrosis. Cigarette smoking is a risk factor for fibrotic lung diseases, including the idiopathic form of this disease (idiopathic pulmonary fibrosis), which has a prevalence of 41% to 83%. Cigarette smoke increases the expression of pulmonary ACE2 and is thought to alter susceptibility to COVID-19. Cannabis is another popular combustible product that shares some similarities with cigarette smoke, however, cannabis contains cannabinoids that may reduce inflammation and/or ACE2 levels. The role of cannabis smoke in the pathogenesis of pulmonary fibrosis remains unknown. This review aimed to characterize the ACE2-Ang-(1-7)-MasR Axis in the context of pulmonary fibrosis with an emphasis on risk factors, including the SARS-CoV-2 virus and exposure to environmental toxicants. In the context of the pandemic, there is a dire need for an understanding of pulmonary fibrotic events. More research is needed to understand the interplay between ACE2, pulmonary fibrosis, and susceptibility to coronavirus infection.


Asunto(s)
Angiotensina I/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/metabolismo , Fibrosis/metabolismo , Fragmentos de Péptidos/metabolismo , Proto-Oncogenes Mas/metabolismo , Cannabis , Fumar Cigarrillos , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Inflamación , Pulmón/patología , Pandemias , Respiración Artificial , Síndrome de Dificultad Respiratoria , Insuficiencia Respiratoria/metabolismo , Factores de Riesgo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
16.
Int J Mol Sci ; 21(10)2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32429092

RESUMEN

E-cigarettes have a liquid that may contain flavors, solvents, and nicotine. Heating this liquid generates an aerosol that is inhaled into the lungs in a process commonly referred to as vaping. E-cigarette devices can also contain cannabis-based products including tetrahydrocannabinol (THC), the psychoactive component of cannabis (marijuana). E-cigarette use has rapidly increased among current and former smokers as well as youth who have never smoked. The long-term health effects are unknown, and emerging preclinical and clinical studies suggest that e-cigarettes may not be harmless and can cause cellular alterations analogous to traditional tobacco smoke. Here, we review the historical context and the components of e-cigarettes and discuss toxicological similarities and differences between cigarette smoke and e-cigarette aerosol, with specific reference to adverse respiratory outcomes. Finally, we outline possible clinical disorders associated with vaping on pulmonary health and the recent escalation of acute lung injuries, which led to the declaration of the vaping product use-associated lung injury (EVALI) outbreak. It is clear there is much about vaping that is not understood. Consequently, until more is known about the health effects of vaping, individual factors that need to be taken into consideration include age, current and prior use of combustible tobacco products, and whether the user has preexisting lung conditions such as asthma and chronic obstructive pulmonary disease (COPD).


Asunto(s)
Exposición por Inhalación/efectos adversos , Pulmón/patología , Vapeo/efectos adversos , Células/patología , Fumar Cigarrillos/efectos adversos , Humanos , Enfermedades Pulmonares/etiología
17.
Respir Res ; 20(1): 234, 2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31665016

RESUMEN

BACKGROUND: Asthma is a heterogenous disease characterized by chronic inflammation and airway remodeling. An increase in the severity of airway remodeling is associated with a more severe form of asthma. There is increasing interest in the epithelial to mesenchymal transition process and mechanisms involved in the differentiation and repair of the airway epithelium, especially as they apply to severe asthma. Growing evidence suggests that Epithelial-Mesenchymal transition (EMT) could contribute to airway remodeling and fibrosis in asthma. Severe asthmatic patients with remodeled airways have a neutrophil driven inflammation. Neutrophils are an important source of TGF-ß1, which plays a role in recruitment and activation of inflammatory cells, extracellular matrix (ECM) production and fibrosis development, and is a potent inducer of EMT. OBJECTIVE: As there is little data examining the contribution of neutrophils and/or their mediators to the induction of EMT in airway epithelial cells, the objective of this study was to better understand the potential role of neutrophils in severe asthma in regards to EMT. METHODS: We used an in vitro system to investigate the neutrophil-epithelial cell interaction. We obtained peripheral blood neutrophils from severe asthmatic patients and control subjects and examined for their ability to induce EMT in primary airway epithelial cells. RESULTS: Our data indicate that neutrophils from severe asthmatic patients induce changes in morphology and EMT marker expression in bronchial epithelial cells consistent with the EMT process when co-cultured. TGF-ß1 levels in the culture medium of severe asthmatic patients were increased compared to that from co-cultures of non-asthmatic neutrophils and epithelial cells. CONCLUSIONS AND CLINICAL RELEVANCE: As an inducer of EMT and an important source of TGF-ß1, neutrophils may play a significant role in the development of airway remodeling and fibrosis in severe asthmatic airways.


Asunto(s)
Asma/metabolismo , Bronquios/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Neutrófilos/metabolismo , Mucosa Respiratoria/metabolismo , Índice de Severidad de la Enfermedad , Adulto , Asma/patología , Bronquios/citología , Células Cultivadas , Técnicas de Cocultivo/métodos , Medios de Cultivo Condicionados/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Humanos , Masculino , Persona de Mediana Edad
18.
J Physiol ; 596(14): 2865-2881, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29663403

RESUMEN

KEY POINTS: Chronic obstructive pulmonary disease (COPD) is largely caused by smoking, and patient limb muscle exhibits a fast fibre shift and atrophy. We show that this fast fibre shift is associated with type grouping, suggesting recurring cycles of denervation-reinnervation underlie the type shift. Compared to patients with normal fat-free mass index (FFMI), patients with low FFMI exhibited an exacerbated fibre type shift, marked accumulation of very small persistently denervated muscle fibres, and a blunted denervation-responsive transcript profile, suggesting failed denervation precipitates muscle atrophy in patients with low FFMI. Sixteen weeks of passive tobacco smoke exposure in mice caused neuromuscular junction degeneration, consistent with a key role for smoke exposure in initiating denervation in COPD. ABSTRACT: A neurological basis for the fast fibre shift and atrophy seen in limb muscle of patients with chronic obstructive pulmonary disease (COPD) has not been considered previously. The objective of our study was: (1) to determine if denervation contributes to fast fibre shift and muscle atrophy in COPD; and (2) to assess using a preclinical smoking mouse model whether chronic tobacco smoke (TS) exposure could initiate denervation by causing neuromuscular junction (NMJ) degeneration. Vastus lateralis muscle biopsies were obtained from severe COPD patients [n = 10 with low fat-free mass index (FFMI), 65 years; n = 15 normal FFMI, 65 years) and healthy age- and activity-matched non-smoker control subjects (CON; n = 11, 67 years), to evaluate morphological and transcriptional markers of denervation. To evaluate the potential for chronic TS exposure to initiate these changes, we examined NMJ morphology in male adult mice following 16 weeks of passive TS exposure. We observed a high proportion of grouped fast fibres and a denervation transcript profile in COPD patients, suggesting that motor unit remodelling drives the fast fibre type shift in COPD patient limb muscle. A further exacerbation of fast fibre grouping in patients with low FFMI, coupled with blunted reinnervation signals, accumulation of very small non-specific esterase hyperactive fibres and neural cell adhesion molecule-positive type I and type II fibres, suggests denervation-induced exhaustion of reinnervation contributes to muscle atrophy in COPD. Evidence from a smoking mouse model showed significant NMJ degeneration, suggesting that recurring denervation in COPD is probably caused by decades of chronic TS exposure.


Asunto(s)
Fibras Musculares Esqueléticas/patología , Atrofia Muscular/etiología , Unión Neuromuscular/patología , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Fumar/fisiopatología , Anciano , Animales , Biomarcadores/análisis , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Fumar/efectos adversos
19.
Pediatr Res ; 83(6): 1165-1171, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29538357

RESUMEN

BackgroundOsteogenesis imperfecta (OI) is most often caused by mutations in type I collagen genes. Respiratory complications have been largely attributed to spine and ribcage deformities. We hypothesized that direct involvement of the pulmonary parenchyma and/or diaphragm by the disease may occur.MethodsIn Col1a1Jrt/+ mice, a model of severe dominant OI, mean linear intercept length (Lm) was used to assess the distal airspace size. Cross-sectional area (CSA) and myosin heavy chain (MyHC) phenotype of the diaphragm muscle fibers, as well as contractile properties, were determined. OI mice were also treated with neutralizing antibodies against transforming growth factor-ß (TGF-ß).ResultsDistal airspace enlargement occurred in OI mice (Lm +27%). Diaphragmatic thickness and fiber number were reduced, with increases in fast-twitch type IIx/IIb MyHC fibers. Ex vivo force generation (normalized for CSA) of the diaphragm was also significantly reduced. The increased Lm values found in OI mice were not prevented by anti-TGF-ß antibody treatment.ConclusionsThe Col1a1Jrt/+ mouse model of OI demonstrates: (1) pulmonary airspace enlargement not driven by TGF-ß; and (2) reduced muscle mass and intrinsic contractile weakness of the diaphragm. These results suggest a complex and multifaceted basis for respiratory complications in OI that cannot be solely attributed to bone manifestations.


Asunto(s)
Colágeno Tipo I/genética , Diafragma/patología , Pulmón/patología , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/fisiopatología , Animales , Anticuerpos Neutralizantes/química , Huesos/patología , Cadena alfa 1 del Colágeno Tipo I , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Mutantes , Contracción Muscular , Cadenas Pesadas de Miosina/genética , Fenotipo , Alveolos Pulmonares/patología , Respiración , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Factor de Crecimiento Transformador beta1/genética
20.
Int J Mol Sci ; 19(12)2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30563036

RESUMEN

Much of what is known about the Aryl Hydrocarbon Receptor (AhR) centers on its ability to mediate the deleterious effects of the environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; dioxin). However, the AhR is both ubiquitously-expressed and evolutionarily-conserved, suggesting that it evolved for purposes beyond strictly mediating responses to man-made environmental toxicants. There is growing evidence that the AhR is required for the maintenance of health, as it is implicated in physiological processes such as xenobiotic metabolism, organ development and immunity. Dysregulation of AhR expression and activity is also associated with a variety of disease states, particularly those at barrier organs such as the skin, gut and lungs. The lungs are particularly vulnerable to inhaled toxicants such as cigarette smoke. However, the role of the AhR in diseases such as chronic obstructive pulmonary disease (COPD)-a respiratory illness caused predominately by cigarette smoking-and lung cancer remains largely unexplored. This review will discuss the growing body of literature that provides evidence that the AhR protects the lungs against the damaging effects of cigarette smoke.


Asunto(s)
Fumar Cigarrillos/efectos adversos , Contaminantes Ambientales/toxicidad , Neoplasias Pulmonares , Pulmón/metabolismo , Proteínas de Neoplasias/metabolismo , Dibenzodioxinas Policloradas/toxicidad , Enfermedad Pulmonar Obstructiva Crónica , Receptores de Hidrocarburo de Aril/metabolismo , Humanos , Pulmón/patología , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Enfermedad Pulmonar Obstructiva Crónica/inducido químicamente , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA