Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 474
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Reprod Dev ; 90(6): 339-357, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37379342

RESUMEN

In many multicellular organisms, mature gametes originate from primordial germ cells (PGCs). Improvements in the culture of PGCs are important not only for developmental biology research, but also for preserving endangered species, and for genome editing and transgenic animal technologies. SMAD2/3 appear to be powerful regulators of gene expression; however, their potential positive impact on the regulation of PGC proliferation has not been taken into consideration. Here, the effect of TGF-ß signaling as the upstream activator of SMAD2/3 transcription factors was evaluated on chicken PGCs' proliferation. For this, chicken PGCs at stages 26-28 Hamburger-Hamilton were obtained from the embryonic gonadal regions and cultured on different feeders or feeder-free substrates. The results showed that TGF-ß signaling agonists (IDE1 and Activin-A) improved PGC proliferation to some extent while treatment with SB431542, the antagonist of TGF-ß, disrupted PGCs' proliferation. However, the transfection of PGCs with constitutively active SMAD2/3 (SMAD2/3CA) resulted in improved PGC proliferation for more than 5 weeks. The results confirmed the interactions between overexpressed SMAD2/3CA and pluripotency-associated genes NANOG, OCT4, and SOX2. According to the results, the application of SMAD2/3CA could represent a step toward achieving an efficient expansion of avian PGCs.


Asunto(s)
Pollos , Factor de Crecimiento Transformador beta , Animales , Pollos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factores de Transcripción/metabolismo , Células Germinativas , Proliferación Celular , Células Cultivadas
2.
Exp Cell Res ; 417(1): 113205, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35568073

RESUMEN

The human endometrium is a dynamic tissue that undergoes cyclic changes in response to sex steroid hormones to provide a receptive status for embryo implantation. Disruptions in this behavior may lead to implantation failure and infertility; therefore, it is essential to develop an appropriate in vitro model to study endometrial changes in response to sex hormones. In this regard, the first choice would be human endometrial cells isolated from biopsies that could be used as monolayer cell sheets or to generate endometrial organoids. However, the need for fresh samples and short-time viability of harvested endometrial biopsy limits these approaches. In order to overcome these limitations, we sought to develop an efficient, simple, robust and reproducible method to cryopreserve human endometrial biopsies that could be stored and/or shipped frozen and later thawed to generate endometrial organoids and endometrial stromal cells (EnSCs). These cryopreserved biopsies could be thawed and used to generate simple endometrial organoids or organoids for co-culture with matched stromal cells that are functionally responsive to sex hormones as similar as the organoids generated from fresh biopsy. An optimal endometrial tissue cryopreservation method would allow the possibility for endometrial tissue biobanking to enable future organoid generation from both healthy tissues and pathological conditions, and open new venues for generate endometrial assembloids, consisting of epithelial organoids and primary stromal cells.


Asunto(s)
Bancos de Muestras Biológicas , Organoides , Biopsia , Criopreservación , Endometrio , Femenino , Hormonas , Humanos , Células del Estroma
3.
Neurol Sci ; 44(11): 3795-3807, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37410268

RESUMEN

Multiple sclerosis (MS) is a chronic autoimmune and demyelinating disease of the central nervous system (CNS) which leads to focal demyelinated lesions in the brain and spinal cord. Failure of remyelination contributes to chronic disability in young adults. Characterization of events occurring during the demyelination and remyelination processes and those of which subsequently limit remyelination or contribute to demyelination can provide the possibility of new therapies development for MS. Most of the currently available therapies and investigations modulate immune responses and mediators. Since most therapeutic strategies have unsatisfied outcomes, developing new therapies that enhance brain lesion repair is a priority. A close look at cellular and chemical components of MS lesions will pave the way to a better understanding of lesions pathology and will provide possible opportunities for repair strategies and targeted pharmacotherapy. This review summarizes the lesion components and features, particularly the detrimental elements, and discusses the possibility of suggesting new potential targets as therapies for demyelinating diseases like MS.

4.
Bioessays ; 43(6): e2100078, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33825205

RESUMEN

In this report, we look at the challenges posed by the outbreak of COVID-19 and how the Executive Board of these two congresses succeeded in overcoming those challenges and holding two congresses. The approach for a large festival with different virtual setting components provided a suitable solution that led to exemplary achievements and created an appropriate model for future virtual or combined virtual and face-to-face events. These events proved that pandemic problems could not limit the organizers, pushing them to make better use of the facilities and turning this threat into an opportunity.


Asunto(s)
COVID-19 , Congresos como Asunto/organización & administración , Genética , Gemelos , Distinciones y Premios , Investigación Biomédica , COVID-19/epidemiología , Humanos , Irán
5.
Eur J Neurosci ; 56(1): 3755-3778, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35513862

RESUMEN

Diabetes mellitus may cause tau protein hyperphosphorylation and neurodegeneration, but the exact mechanism by which diabetic conditions induce tau pathology remains unclear. Tau protein hyperphosphorylation is considered a major pathological hallmark of neurodegeneration and can be triggered by diabetes. Various tau-directed kinases, including P38, can be activated upon diabetic stress and induce tau hyperphosphorylation. Despite extensive research efforts, the exact tau specie(s) and kinases driving neurodegeneration in diabetes mellitus have not been clearly elucidated. We herein employed different techniques to determine the exact molecular mechanism of tau pathology triggered by diabetes in in vivo and in vitro models. We showed that diabetes-related stresses and glucose metabolism deficiency could induce cis P-tau (an early driver of the tau pathology) accumulation in the midbrain and corpus callosum of the diabetic mice models and cells treated with 2-deoxy-D-glucose, respectively. We found that the active phosphorylated level of P38 was increased in the treated cells and diabetic mice models. We observed that oxidative stress activated P38, which directly and indirectly drove tau pathology in the GABAergic and glutamatergic neurons of the midbrain of the diabetic mice after 96 h, which accumulated in the other neighboring brain areas after 2 months. Notably, P38 inhibition suppressed tau pathogenicity and risk-taking behaviors in the animal models after 96 h. The data establish P38 as a central mediator of diabetes mellitus-induced tau pathology. Our findings provide mechanistic insight into the consequences of this metabolic disorder on the nervous system.


Asunto(s)
Diabetes Mellitus Experimental , Proteínas tau , Animales , Diabetes Mellitus Experimental/metabolismo , Mesencéfalo/metabolismo , Ratones , Neuronas/metabolismo , Fosforilación , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas tau/metabolismo
6.
Biochem Biophys Res Commun ; 617(Pt 1): 8-15, 2022 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-35660877

RESUMEN

Mouse embryonic stem cells (mESCs) can be maintained in a pluripotent state under R2i culture conditions that inhibit the TGF-ß and ERK signaling pathways. BMP4 is another member of the TGF-ß family that plays a crucial role in maintaining the pluripotency state of mESCs. It has been reported that inhibition of BMP4 caused the death of R2i-grown cells. In this study, we used the loss-of-function approach to investigate the role of BMP4 signaling in mESC self-renewal. Inhibition of this pathway with Noggin and dorsomorphin, two bone morphogenetic protein (BMP) antagonists, elicited a quick death of the R2i-grown cells. We showed that the canonical pathway of BMP4 (BMP/SMAD) was dispensable for self-renewal and maintaining pluripotency of these cells. Transcriptome analysis of the BMPi-treated cells revealed that the p53 signaling and two adhesion (AD) and apoptotic mitochondrial change (MT) pathways could be involved in the cell death of the BMPi-treated cells. According to our results, inhibition of BMP4 signaling caused a decrease in cell adhesion and ECM detachment, which triggered anoikis in the R2i-grown cells. Altogether, these findings demonstrate that endogenous BMP signaling is required for the survival of mESCs under the R2i condition.


Asunto(s)
Células Madre Embrionarias de Ratones , Transducción de Señal , Animales , Proteína Morfogenética Ósea 4/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Sistema de Señalización de MAP Quinasas , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
7.
Cell Tissue Res ; 387(1): 143-157, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34729646

RESUMEN

The preconditioning of human sperm with sublethal nitrosative stress before cryopreservation can potentially improve the thawed sperm quality. However, the underlying mechanisms behind this protective strategy are not entirely understood. We compared the cryosurvival of human sperm exposed to 0.01 µM nitric oxide (NO) throughout the cryopreservation and used multiplexed quantitative proteomics approach to identify changes in the proteome profile of preconditioned sperm cells. Semen samples were obtained from 30 normospermia donors and then each sample was divided into three equal parts: fresh (F), frozen-control (C), and frozen exposed to nitric oxide (NO). The sperm undergoing mild sublethal stress showed higher values for motility and viability compared to the frozen control sperm. Moreover, out of 2912 identified proteins, 248 proteins were detected as differentially abundant proteins (DAPs) between cryopreserved groups and fresh group (F) (p < 0.05). Gene ontology (GO) analysis of differentially abundant proteins indicated that the abundance of proteins associated with glycolysis, gluconeogenesis, and fertilization processes was reduced while oxidative phosphorylation pathway was increased in abundance in cryopreserved sperm compared to the fresh sperm. Moreover, redox protein such as thioredoxin 17 was increased in abundance in the NO group compared to the control freezing group. Therefore, the pre-conditioning of sperm prior to cryopreservation may play an important role in maintaining the redox balance in mitochondria of sperm after freezing. Overall, our results indicate that arylsulfatase A (ARSA), serine protease 37 (PRSS37), and sperm surface protein (SP17) may potentially serve as protein biomarkers associated with screening the fertilization potential of the thawed sperm.


Asunto(s)
Criopreservación/métodos , Estrés Nitrosativo/fisiología , Proteómica/métodos , Espermatozoides/patología , Humanos , Masculino
8.
Microb Pathog ; 162: 105353, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34896202

RESUMEN

BACKGROUND: Intestinal metaplasia, gastric-to-intestinal transdifferentiation, occurs as a result of the misexpression of certain regulatory factors, leading to genetic reprogramming. Here, we have evaluated the H. pylori-induced expression patterns of these candidate genes. METHODS: The expression levels of 1) tissue-specific transcription factors (RUNX3, KLF5, SOX2, SALL4, CDX1 and CDX2), 2) stemness factors (TNFRSF19, LGR5, VIL1) and 3) tissue-specific mucins (MUC5AC, MUC2) were evaluated by quantitative real-time PCR in gastric primary cells (GPCs), in parallel with two gastric cancer (MKN45 and AGS) cell lines, up to 96h following H. pylori infection. RESULTS: Following H. pylori infection of GPCs, RUNX3 declined at 24h post infection (-6.2 ± 0.3) and remained downregulated for up to 96h. Subsequently, overexpression of self-renewal and pluripotency transcription factors, KLF5 (3.6 ± 0.2), SOX2 (7.6 ± 0.5) and SALL4 (4.3 ± 0.2) occurred. The expression of TNFRSF19 and LGR5, demonstrated opposing trends, with an early rise of the former (4.5 ± 0.3) at 8h, and a simultaneous fall of the latter (-1.8 ± 0.5). This trend was reversed at 96h, with the decline in TNFRSF19 (-5.5 ± 0.2), and escalation of LGR5 (2.6 ± 0.2) and VIL1 (1.8 ± 0.3). Ultimately, CDX1 and CDX2 were upregulated by 1.9 and 4.7-fold, respectively. The above scenario was, variably observed in MKN45 and AGS cells. CONCLUSION: Our data suggests an interdependent gene regulatory network, induced by H. pylori infection. This interaction begins with the downregulation of RUNX3, upregulation of self-renewal and pluripotency transcription factors, KLF5, SOX2 and SALL4, leading to the downregulation of TNFRSF19, upregulation of LGR5 and aberrant expression of intestine-specific transcription factors, potentially facilitating the process of gastric-to-intestinal transdifferentiation.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Factor de Transcripción CDX2/genética , Transdiferenciación Celular , Mucosa Gástrica , Humanos , Intestinos , Receptores del Factor de Necrosis Tumoral
9.
Cells Tissues Organs ; 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36380637

RESUMEN

Cell therapy is one of the promising approaches used against type1 diabetes. Efficient generation of Human embryonic stem cell (hESC)-derived pancreatic progenitors (PPs) is of great importance. Since signaling pathways underlying human pancreas development is not yet fully understood, various differentiation protocols are conducted each considering variable duration, timing and concentrations of growth factors and small molecules. Therefore, we compared two PP differentiation protocols in static suspension culture. We tested modified protocols developed by Pagliuca et al. (protocol-1) and Royan researchers (protocol-2) until early PP stage. The morphological changes of hESC aggregates during differentiation, and also gene and protein expression after differentiation were evaluated. Different morphological structures were formed in each protocol. Quantitative gene expression analysis, flow cytometry and immunostaining revealed a high level of PDX1 expression on day 13 of Royan's differentiation protocol compared to protocol-1. Our data showed that using protocol-2, cells were further differentiated until day16 showing higher efficiency of early PPs. Moreover, protocol-2 is able to produce hESCs-PPs in a static suspension culture. Since protocol-2 is inexpensive in terms of media, growth factors and chemicals, it can be used for massive production of PPs using static and dynamic suspension cultures.

10.
Reprod Biomed Online ; 45(1): 5-9, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35562236

RESUMEN

Endometriosis is a sex hormone-dependent, painful disease that affects 10-15% of women worldwide with no definitive cure, and current treatments are not always effective. This limitation is mainly due to gaps in our knowledge about the mechanisms involved in the pathogenesis of endometriosis at the cellular and molecular levels. Hormonal dysregulation appears to be responsible for inflammation, angiogenesis, endometrial non-receptivity, embryo implantation failure and infertility in women with endometriosis. Although correlative evidence about possible causes of hormonal dysregulations exists, the functional mechanisms remain unknown. Reliable research models of endometriosis are needed to investigate the exact mechanisms that underlie hormone disruptions. This Commentary discusses the available in-vivo and in-vitro systems for studying endometriosis. The authors emphasize the recently developed human endometriosis organoids as cutting-edge and innovative research models for endometriosis investigations, discuss their advantages and describe challenges that must be addressed to yield a reliable in-vitro model of human endometriosis. Moreover, it discusses microfluidic technology to address the present challenges for producing advanced endometriosis organoids and how to benefit from CRISPR technology to improve our knowledge about disturbed hormonal function in patients with endometriosis.


Asunto(s)
Endometriosis , Infertilidad Femenina , Implantación del Embrión/fisiología , Endometriosis/patología , Endometrio/patología , Femenino , Humanos , Infertilidad Femenina/terapia , Organoides/patología
11.
EMBO Rep ; 21(10): e47533, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-33252195

RESUMEN

Naïve pluripotency can be established in human pluripotent stem cells (hPSCs) by manipulation of transcription factors, signaling pathways, or a combination thereof. However, differences exist in the molecular and functional properties of naïve hPSCs generated by different protocols, which include varying similarities with pre-implantation human embryos, differentiation potential, and maintenance of genomic integrity. We show here that short treatment with two chemical agonists (2a) of nuclear receptors, liver receptor homologue-1 (LRH-1) and retinoic acid receptor gamma (RAR-γ), along with 2i/LIF (2a2iL) induces naïve-like pluripotency in human cells during reprogramming of fibroblasts, conversion of pre-established hPSCs, and generation of new cell lines from blastocysts. 2a2iL-hPSCs match several defined criteria of naïve-like pluripotency and contribute to human-mouse interspecies chimeras. Activation of TGF-ß signaling is instrumental for acquisition of naïve-like pluripotency by the 2a2iL induction procedure, and transient activation of TGF-ß signaling substitutes for 2a to generate naïve-like hPSCs. We reason that 2a2iL-hPSCs are an easily attainable system to evaluate properties of naïve-like hPSCs and for various applications.


Asunto(s)
Células Madre Pluripotentes , Animales , Blastocisto , Diferenciación Celular , Línea Celular , Humanos , Ratones , Receptores Citoplasmáticos y Nucleares/genética , Receptores de Ácido Retinoico , Receptor de Ácido Retinoico gamma
12.
Cell Mol Life Sci ; 78(2): 469-495, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32710154

RESUMEN

Stem cells and their derivatives are novel pharmaceutics that have the potential for use as tissue replacement therapies. However, the heterogeneous characteristics of stem cell cultures have hindered their biomedical applications. In theory and practice, when cell type-specific or stage-specific cell surface proteins are targeted by unique antibodies, they become highly efficient in detecting and isolating specific cell populations. There is a growing demand to identify reliable and actionable cell surface markers that facilitate purification of particular cell types at specific developmental stages for use in research and clinical applications. The identification of these markers as very important members of plasma membrane proteins, ion channels, transporters, and signaling molecules has directly benefited from proteomics and tools for proteomics-derived data analyses. Here, we review the methodologies that have played a role in the discovery of cell surface markers and introduce cutting edge single cell proteomics as an advanced tool. We also discuss currently available specific cell surface markers for stem cells and their lineages, with emphasis on the nervous system, heart, pancreas, and liver. The remaining gaps that pertain to the discovery of these markers and how single cell proteomics and identification of surface markers associated with the progenitor stages of certain terminally differentiated cells may pave the way for their use in regenerative medicine are also discussed.


Asunto(s)
Proteínas de la Membrana/análisis , Proteómica/métodos , Células Madre/citología , Animales , Diferenciación Celular , Humanos , Espectrometría de Masas/métodos , Análisis de la Célula Individual/métodos , Trasplante de Células Madre , Células Madre/química
13.
Angiogenesis ; 24(3): 657-676, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33742265

RESUMEN

Localized stimulation of angiogenesis is an attractive strategy to improve the repair of ischemic or injured tissues. Several microRNAs (miRNAs) such as miRNA-92a (miR-92a) have been reported to negatively regulate angiogenesis in ischemic disease. To exploit the clinical potential of miR-92a inhibitors, safe and efficient delivery needs to be established. Here, we used deoxycholic acid-modified polyethylenimine polymeric conjugates (PEI-DA) to deliver a locked nucleic acid (LNA)-based miR-92a inhibitor (LNA-92a) in vitro and in vivo. The positively charged PEI-DA conjugates condense the negatively charged inhibitors into nano-sized polyplexes (135 ± 7.2 nm) with a positive net charge (34.2 ± 10.6 mV). Similar to the 25 kDa-branched PEI (bPEI25) and Lipofectamine RNAiMAX, human umbilical vein endothelial cells (HUVECs) significantly internalized PEI-DA/LNA-92a polyplexes without any obvious cytotoxicity. Down-regulation of miR-92a following the polyplex-mediated delivery of LNA-92a led to a substantial increase in the integrin subunit alpha 5 (ITGA5), the sirtuin-1 (SIRT1) and Krüppel-like factors (KLF) KLF2/4 expression, formation of capillary-like structures by HUVECs, and migration rate of HUVECs in vitro. Furthermore, PEI-DA/LNA-92a resulted in significantly enhanced capillary density in a chicken chorioallantoic membrane (CAM) model. Localized angiogenesis was substantially induced in the subcutaneous tissues of mice by sustained release of PEI-DA/LNA-92a polyplexes from an in situ forming, biodegradable hydrogel based on clickable poly(ethylene glycol) (PEG) macromers. Our results indicate that PEI-DA conjugates efficiently deliver LNA-92a to improve angiogenesis. Localized delivery of RNA interference (RNAi)-based therapeutics via hydrogel-laden PEI-DA polyplex nanoparticles appears to be a safe and effective approach for different therapeutic targets.


Asunto(s)
Sistemas de Liberación de Medicamentos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Hidrogeles/farmacología , MicroARNs/antagonistas & inhibidores , Nanopartículas/uso terapéutico , Neovascularización Fisiológica/efectos de los fármacos , Animales , Embrión de Pollo , Femenino , Humanos , Hidrogeles/química , Ratones , MicroARNs/metabolismo , Nanopartículas/química
14.
Cell Tissue Res ; 386(2): 321-333, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34319434

RESUMEN

Human otic organoids generated from pluripotent stem cells (PSCs) provide a promising platform for modeling, drug testing, and cell-based therapies of inner ear diseases. However, providing the appropriate niche that resembles inner ear development and its vasculature to generate otic organoids is less conspicuous. Here, we devised a strategy to enhance maturation of otic progenitor cells toward human hair cell-like cells (HCLCs) by assembling three-dimensional (3D) otic organoids that contain human PSC-derived otic cells, endothelial cells, and mesenchymal stem cells (MSCs). Heterotopic implantation of otic organoids, designated as grafted otic organoids (GOs), in ex ovo chick embryo chorioallantoic membrane (CAM) stimulated maturation of the HCLCs. Functional analysis revealed the presence of voltage-gated potassium currents without detectable sodium currents in these cells in the GOs. Our results demonstrated that implantation of 3D heterotypic cell mixtures of otic organoids improved maturation of human HCLCs. This GO-derived HCLCs could be an attractive source for drug discovery and other biomedical applications.


Asunto(s)
Células Ciliadas Auditivas/citología , Organoides/citología , Células Madre Pluripotentes/citología , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular , Línea Celular , Embrión de Pollo , Oído Interno/citología , Humanos
15.
Cytotherapy ; 23(4): 277-284, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33541780

RESUMEN

The therapeutic potential of naturally secreted micro- and nanoscale extracellular vesicles (EVs) makes them attractive candidates for regenerative medicine and pharmaceutical science applications. To date, the results of numerous publications have shown the practicality of using EVs to replace mesenchymal stromal cells (MSCs) or liposomes. This article presents a systematic review of pre-clinical studies conducted over the past decade of MSC-derived EVs (MSC-EVs) used in animal models of disease. The authors searched the relevant literature in the PubMed and Scopus databases (9358 articles), and 690 articles met the inclusion criteria. The eligible articles were placed in the following disease categories: autoimmune, brain, cancer, eye, gastrointestinal, heart, inflammation/transplantation, liver, musculoskeletal, pancreas, spinal cord and peripheral nervous system, respiratory system, reproductive system, skin, urinary system and vascular-related diseases. Next, the eligible articles were assessed for the rate of publication and global distribution, methodology of EV isolation and characterization, route of MSC-EV administration, length of follow-up, source of MSCs and animal species. The current review classifies and critically discusses the technical aspects of these MSC-EV animal studies and discusses potential relationships between methodological details and the effectiveness of MSC-EVs as reported by these pre-clinical studies.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Animales , Encéfalo , Inflamación , Medicina Regenerativa
16.
Reprod Biomed Online ; 43(1): 139-147, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34049811

RESUMEN

RESEARCH QUESTION: Do human endometriosis organoids recapitulate aberrant progesterone signalling in the disease to serve as advanced experimental models for uncovering epigenetic mechanisms involved in attenuated progesterone response in endometriosis? DESIGN: Initially, the organoids were established from acquired biopsies (women with and without endometriosis) and characterized by morphological, histological and immunostaining analyses. RESULTS: A panel of endometriosis-related genes showed a pattern of expressions in cytochrome c oxidase subunit II (COX2), matrix metalloproteinase 2 (MMP2), MMP9, tissue inhibitor of metalloproteinase-3 (TIMP3), transforming growth factor beta 1 (TGF-ß1), and zinc finger E-box binding homeobox 1 (ZEB1), and a contradictory expression pattern for cadherin (CDH1), POU class 5 homeobox 1 (POU5F1; also known as OCT4), and Nanog homeobox (NANOG) in the endometriosis organoids that is concordant with published research. These endometriosis organoids failed to upregulate 17ß-Hydroxysteroid dehydrogenase 2 (17HSDß2), progestogen associated endometrial protein (PAEP), secreted phosphoprotein 1 (SPP1), and leukaemia inhibitory factor (LIF) in response to progesterone at the level observed in control endometrium organoids. Progesterone receptor B (PRB) gene expression significantly decreased in both eutopic and ectopic organoids compared with control endometrium organoids. DNA hypermethylation, as an epigenetic mechanism for suppression of transcription, was detected at the PRB promoter in the eutopic, but not ectopic, organoids. Therefore, other epigenetic mechanisms, such as histone modifications and microRNAs, may be responsible for PRB downregulation in ectopic organoids. CONCLUSIONS: Endometriosis organoids are powerful preclinical models that can be used to investigate the molecular mechanisms involved in endometriosis-associated progesterone resistance.


Asunto(s)
Endometriosis/metabolismo , Organoides/metabolismo , Progesterona/metabolismo , Receptores de Progesterona/metabolismo , Adulto , Metilación de ADN , Femenino , Humanos
17.
Exp Cell Res ; 389(2): 111924, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32112799

RESUMEN

Pluripotent cells transiently develop during peri-implantation embryogenesis and have the capacity to convert into three embryonic lineages. Two typical states of pluripotency, naïve and primed, can be experimentally induced in vitro. The in vitro naïve state can be stabilized in response to environmental inductive cues via a unique transcriptional regulatory program. However, interference with various signaling pathways creates a spectrum of alternative pluripotent cells that display different functions and molecular expression patterns. Similarly, human naïve pluripotent cells can be placed into two main levels - intermediate and bona fide. Here, we discuss several culture conditions that have been used to establish naïve-associated gene regulatory networks in human pluripotent cells. We also describe different transcriptional patterns in various culture systems that are associated with these two levels of human naïve pluripotency.


Asunto(s)
Blastocisto/citología , Células Madre Embrionarias/citología , Regulación del Desarrollo de la Expresión Génica , Células Madre Pluripotentes/citología , Animales , Blastocisto/metabolismo , Diferenciación Celular , Células Madre Embrionarias/metabolismo , Humanos , Células Madre Pluripotentes/metabolismo , Transducción de Señal
18.
Biochem J ; 477(12): 2281-2293, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32478824

RESUMEN

The pluripotency factor, OCT4 gene is a stemness marker that is involved in the tumorigenicity of different cancer types and knowing about molecular mechanisms of its regulation is crucially important. To date, a few microRNAs (miRNAs) are known to be regulators of OCT4 gene expression. Looking for the novel miRNAs which are capable of regulating OCT4 gene expression, our bioinformatics analysis introduced hsa-miR-3658 (miR-3658) as a bona fide candidate. Then, RT-qPCR results indicated that miR-3658 expression is decreased in colorectal cancer (CRC) tumor tissues, compared with normal pairs. Furthermore, RT-qPCR and western blot analysis showed that the OCT4 gene has been down-regulated following the miR-3658 overexpression. Consistently, dual-luciferase assay supported the direct interaction of miR-3658 with the 3'-UTR sequence of OCT4 gene. Unlike in HCT116 cells, overexpression of miR-3658 in SW480 cells brought about growth inhibition, cell cycle arrest and reduced cell migration, detected by flow cytometry, and scratch test assay. Overall, these findings demonstrated that miR-3658 as a tumor suppressor miRNA exerts its effect against OCT4 gene expression, and it has the potential of being used as a prognostic marker and therapeutic target against colorectal cancer.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Movimiento Celular , Proliferación Celular , Neoplasias del Colon/patología , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Apoptosis , Biomarcadores de Tumor/genética , Ciclo Celular , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Humanos , Factor 3 de Transcripción de Unión a Octámeros/genética , Pronóstico , Células Tumorales Cultivadas
19.
J Proteome Res ; 19(12): 4747-4753, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33124832

RESUMEN

The Chromosome-Centric Human Proteome Project (C-HPP) aims at the identification of missing proteins (MPs) and the functional characterization of functionally unannotated PE1 (uPE1) proteins. A major challenge in addressing this goal is that many human proteins and MPs are silent in adult cells. A promising approach to overcome such challenge is to exploit the advantage of novel tools such as pluripotent stem cells (PSCs), which are capable of differentiation into three embryonic germ layers, namely, the endoderm, mesoderm, and ectoderm. Here we present several examples of how the Human Y Chromosome Proteome Project (Y-HPP) benefited from this approach to meet C-HPP goals. Furthermore, we discuss how integrating CRISPR engineering, human-induced pluripotent stem cell (hiPSC)-derived disease modeling systems, and organoid technologies provides a unique platform for Y-HPP and C-HPP for MP identification and the functional characterization of human proteins, especially uPE1s.


Asunto(s)
Células Madre Pluripotentes , Proteoma , Diferenciación Celular , Cromosomas Humanos Y , Humanos , Proteoma/genética
20.
J Cell Biochem ; 121(5-6): 3438-3450, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31898360

RESUMEN

GATA4 gene is a zinc-finger transcription factor known to be involved in cardiogenesis and the progression of different cancer types. Its diverse functions might be attributed to noncoding RNAs that could be embedded within its sequence. Here, we predicted a stable RNA stem-loop structure that is located in the second intron of the GATA4 gene. Available microRNA (miRNA) sequencing data and molecular genetics tools confirmed the identity of a mature miRNA (named GATA4-miR1) originating from the predicted stem-loop. In silico analysis predicted IGF-1R and AKT1/2 genes as potential targets for GATA4-miR1. Indeed, direct interactions between GATA4-miR1 and 3' untranslated regions sequences of IGF-1R and AKT1/2 genes were documented by dual luciferase assay. In addition, overexpression of GATA4-miR1 in SW480 cells resulted in the reduction of IGF-1R and AKT1/2 genes' expression, detected by reverse transcription quantitative (RT-q) polymerase chain reaction and Western blot analysis. This observation was consistent with a deduced negative correlation between the expression patterns of GATA4-miR1 and IGF-1R genes during cardiomyocyte differentiation. Moreover, overexpressing GATA4-miR1 in SW480 and PC3 cells resulted in a significant increase of the sub-G1 population in both cell lines, as detected by propidium iodide flow cytometry. Further analysis by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay indicated a reduction in the survival and proliferation rates of SW480 cells overexpressing GATA4-miR1, but no impact was observed on apoptosis progression, as indicated by Annexin-V flow cytometry. Overall, GATA4-miR1 represents a promising candidate for further research in the fields of cancer and cardiovascular therapeutics.


Asunto(s)
Factor de Transcripción GATA4/metabolismo , Regulación de la Expresión Génica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor IGF Tipo 1/metabolismo , Apoptosis/genética , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Biología Computacional , Perfilación de la Expresión Génica , Células HEK293 , Corazón/fisiología , Humanos , Células K562 , MicroARNs/genética , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA