Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Acc Chem Res ; 55(4): 504-515, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35119260

RESUMEN

The electrochemical conversion of carbon dioxide to value-added chemicals provides an environmentally benign alternative to current industrial practices. However, current electrocatalytic systems for the CO2 reduction reaction (CO2RR) are not practical for industrialization, owing to poor specific product selectivity and/or limited activity. Interfacial engineering presents a versatile and effective method to direct CO2RR selectivity by fine-tuning the local chemical dynamics. This Account describes interfacial design strategies developed in our laboratory that use electrolyte engineering and porous carbon materials to modify the local composition at the electrode-electrolyte interface.Our first strategy for influencing surface reactivity is to perturb the electrochemical double layer by tuning the electrolyte composition. We approached this investigation by considering how charged molecular additives can organize at the electrode surface and impact CO2 activation. Using a combination of advanced electrochemical techniques and in situ vibrational spectroscopy, we show that the surfactant properties (the identity of the headgroup, alkyl chain length, and concentration) as well as the electrolyte cation identity can affect how surfactant molecules assemble at a biased electrode. The interplay between the electrolyte cations and the surfactant additives can be regulated to favor specific carbon products, such as HCOO-, and suppress the parasitic hydrogen evolution reaction (HER). Together, our findings highlight how molecular assemblies can be used to design selective electrocatalytic systems.In addition to the electrolyte design, the local spatial confinement of reaction intermediates presents another strategy to direct CO2RR selectivity. We were interested in uncovering the role of porous carbon-supported catalysts toward selective carbon product formation. In our initial study, we show that carbon porosity can be optimized to enhance C2H4 and CO selectivity in a series of Cu catalysts embedded in a tunable carbon aerogel matrix. These results suggested that local confinement of the active surface plays a role in CO2 activation and motivated an investigation into probing how this phenomenon can be translated to a planar Cu electrode. Our findings show that carbon modifiers facilitated surface reconstruction and regulated CO2 diffusion to suppress HER and improve the C2-3 product selectivity. Given the ubiquity of carbon materials in catalysis, this work demonstrates that carbon plays an active role in regulating selectivity by restricting the diffusion of substrate and reaction intermediates. Our work in tuning the composition of the electrochemical double layer for increased CO2RR selectivity demonstrates the potential versatility in boosting catalytic performance across an array of catalytic systems.


Asunto(s)
Dióxido de Carbono , Técnicas Electroquímicas , Dióxido de Carbono/química , Catálisis , Electrodos , Tensoactivos/química
2.
J Chem Phys ; 158(21)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37278475

RESUMEN

We present a Raman scattering spectroscopic study of boron imidazolate metal-organic frameworks (BIFs) with three different magnetic metal ions and one non-magnetic in a wide frequency range from 25 to 1700 cm-1, which covers local vibrations of the imidazolate linkers as well as collective lattice vibrations. We show that the spectral region above 800 cm-1 belongs to the local vibrations of the linkers, which have the same frequencies for the studied BIFs without any dependence on the structure of the BIFs and are easily interpreted based on the spectra of imidazolate linkers. In contrast, collective lattice vibrations, observed below 100 cm-1, show a distinction between cage and two-dimensional BIFs structures, with a weak dependence on the metal node. We identify the range of vibrations around 200 cm-1, which are distinct for each metal-organic framework, depending on a metal node. Our work demonstrates the energy hierarchy in the vibrational response of BIFs.

3.
Inorg Chem ; 56(17): 10735-10747, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28825793

RESUMEN

The reaction of R-benzofuroxan (R = H, Me, Cl) with the metal precursor [Ru(Cl)(H)(CO)(PPh3)3] (A) or [Ru(Cl)(H)(CH3CN)(CO)(PPh3)2] (B) in CH3CN at 298 K resulted in the intermediate complex [Ru(Cl)(L1)(CH3CN)(CO)(PPh3)2] (L1 = monodentate 2-nitroanilido) (1, pink), which however underwent slow transformation to the final product [Ru(Cl)(L2)(CO)(PPh3)2] (L2 = bidentate 2-nitroanilido) (2, green). On the contrary, the same reaction in refluxing CH3CN directly yielded 2 without any tractable intermediate 1. Structural characterization of the intermediates 1a-1c and the corresponding final products 2a-2c (R = H, Me, Cl) authenticated their identities, revealing ruthenium-hydride mediated unsymmetrical cleavage of benzofuroxan to hydrogen bonded monodentate 2-nitroanilido (L1) in the former and bidentate 2-nitroanilido (L2) in the latter. The spectrophotometric monitoring of the transformations of B → 1 as well as 1 → 2 with time and temperature established the first order rate process with associatively activated pathway for both cases. Both 1 and 2 exhibited one reversible oxidation and an irreversible reduction within ±1.5 V versus saturated calomel reference electrode in CH3CN with slight variation in potential based on substituents in the benzofuroxan framework (R = H, Me, Cl). Spectroscopic (electron paramagnetic resonance and UV-vis) and density functional theory calculations collectively suggested varying contribution of metal based orbitals along with the ligand in the singly occupied molecular orbital of 1+ or 2+, ascertaining the noninnocent potential of the in situ generated (L1) or (L2).

4.
Inorg Chem ; 55(24): 12832-12843, 2016 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-27989189

RESUMEN

The article describes one-pot synthesis and structural elucidation of tc-[RuII(pap)2(L•-)]ClO4 [1]ClO4 and tc-[RuII(pap)2(L'-)]ClO4 [2]ClO4, which were obtained from tc-[RuII(pap)2(EtOH)2](ClO4)2 and benzofuroxan (L = 1,2-dinitrosobenzene, an intermediate tautomeric form of the biologically active benzofuroxan, L'- = 2-nitrosoanilido, pap = 2-phenylazopyridine, tc = trans and cis corresponding to pyridine and azo nitrogen donors of pap, respectively). The same reaction with the newly synthesized and structurally characterized metal precursor cc-RuII(2,6-dichloropap)2Cl2, however, affords isomeric ct-[RuII(2,6-dichloropap)2(L•-)]+ (3a+) and tc-[RuII(2,6-dichloropap)2(L•-)]+ (3b+) (cc, ct, and tc with respect to pyridine and azo nitrogens of 2,6-dichloropap) with the structural authentication of elusive ct-isomeric form of {Ru(pap)2} family. The impact of trans or cis orientation of the nitroso group of L/L' with respect to the N═N (azo) function of pap in the complexes was reflected in the relative lengthening or shortening of the latter distance, respectively. The redox-sensitive bond parameters of 1+ and 3+ reveal the intermediate radical form of L•-, while 2+ involves in situ generated L'-. The multiple redox processes of the complexes in CH3CN are analyzed via experimental and density functional theory (DFT) and time-dependent DFT calculations. One-electron oxidation of the electron paramagnetic resonance-active radical species (1+ and 3+) leads to [RuII(pap)2(L)]2+ involving fully oxidized L0 in 12+ and 32+; the same in 2+ results in a radical species [RuII(pap)2(L'•)]2+ (22+). Successive reductions in each case are either associated with pap or L/L'--based orbitals, revealing a competitive scenario relating to their π-accepting features. The isolated or electrochemically generated radical species either by oxidation or reduction exhibits near-IR transitions in each case, attributing diverse electronic structures of the complexes in accessible redox states.

5.
ACS Cent Sci ; 6(10): 1671-1684, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33145407

RESUMEN

Metal-organic and covalent-organic frameworks can serve as a bridge between the realms of homo- and heterogeneous catalytic systems. While there are numerous molecular complexes developed for electrocatalysis, homogeneous catalysts are hindered by slow catalyst diffusion, catalyst deactivation, and poor product yield. Heterogeneous catalysts can compensate for these shortcomings, yet they lack the synthetic and chemical tunability to promote rational design. To narrow this knowledge gap, there is a burgeoning field of framework-related research that incorporates molecular catalysts within porous architectures, resulting in an exceptional catalytic performance as compared to their molecular analogues. Framework materials provide structural stability to these catalysts, alter their electronic environments, and are easily tunable for increased catalytic activity. This Outlook compares molecular catalysts and corresponding framework materials to evaluate the effects of such integration on electrocatalytic performance. We describe several different classes of molecular motifs that have been included in framework materials and explore how framework design strategies improve on the catalytic behavior of their homogeneous counterparts. Finally, we will provide an outlook on new directions to drive fundamental research at the intersection of reticular-and electrochemistry.

6.
J Phys Chem Lett ; 11(14): 5457-5463, 2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32524821

RESUMEN

The presence of cetyltrimethylammonium bromide (CTAB) near the surface of a Cu electrode promotes the electrochemical reduction of CO2 to fuels. CTAB increases the CO2 reduction rate by as much as 10× and decreased the HER rate by 4×, leading to ∼75% selectivity toward the reduction of CO2. Surface enhanced infrared absorption spectroscopy (SEIRAS) was used to probe the effects of CTAB adsorption on the structure of interfacial water and CO2 reduction intermediates. HER suppression was found to arise from the displacement of interfacial water molecules from CTAB adsorption within the double layer. The enhanced CO2 reduction rate can be correlated to an increased population of atop-bound CO and the emergence of a low frequency atop-CO band. These results unravel the role of additives in improving CO2-to-fuels electrocatalysis and establishing this as a powerful methodology for directing product selectivity.


Asunto(s)
Dióxido de Carbono/química , Cetrimonio/química , Tensoactivos/química , Agua/química , Adsorción , Cobre/química , Técnicas Electroquímicas/instrumentación , Electrodos , Oxidación-Reducción , Espectrofotometría Infrarroja/métodos
7.
J Phys Chem B ; 124(7): 1311-1321, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31985221

RESUMEN

Surfactants modulate interfacial processes. In electrochemical CO2 reduction, cationic surfactants promote carbon product formation and suppress hydrogen evolution. The interfacial field produced by the surfactants affects the energetics of electrochemical intermediates, mandating their detailed understanding. We have used two complementary tools-vibrational Stark shift spectroscopy which probes interfacial fields at molecular length scales and electrochemical impedance spectroscopy (EIS) which probes the entire double layer-to study the electric fields at metal-surfactant interfaces. Using a nitrile as a probe, we found that at open-circuit potentials, cationic surfactants produce larger effective interfacial fields (∼-1.25 V/nm) when compared to anionic surfactants (∼0.4 V/nm). At a high bulk surfactant concentration, the surface field reaches a terminal value, suggesting the formation of a full layer, which is also supported by EIS. We propose an electrostatic model that explains these observations. Our results help in designing tailored surfactants for influencing electrochemical reactions via the interfacial field effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA