Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Pathol ; 242(2): 178-192, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28299802

RESUMEN

The functional role of bone morphogenetic protein (BMP) signalling in colorectal cancer (CRC) is poorly defined, with contradictory results in cancer cell line models reflecting the inherent difficulties of assessing a signalling pathway that is context-dependent and subject to genetic constraints. By assessing the transcriptional response of a diploid human colonic epithelial cell line to BMP ligand stimulation, we generated a prognostic BMP signalling signature, which was applied to multiple CRC datasets to investigate BMP heterogeneity across CRC molecular subtypes. We linked BMP and Notch signalling pathway activity and function in human colonic epithelial cells, and normal and neoplastic tissue. BMP induced Notch through a γ-secretase-independent interaction, regulated by the SMAD proteins. In homeostasis, BMP/Notch co-localization was restricted to cells at the top of the intestinal crypt, with more widespread interaction in some human CRC samples. BMP signalling was downregulated in the majority of CRCs, but was conserved specifically in mesenchymal-subtype tumours, where it interacts with Notch to induce an epithelial-mesenchymal transition (EMT) phenotype. In intestinal homeostasis, BMP-Notch pathway crosstalk is restricted to differentiating cells through stringent pathway segregation. Conserved BMP activity and loss of signalling stringency in mesenchymal-subtype tumours promotes a synergistic BMP-Notch interaction, and this correlates with poor patient prognosis. BMP signalling heterogeneity across CRC subtypes and cell lines can account for previous experimental contradictions. Crosstalk between the BMP and Notch pathways will render mesenchymal-subtype CRC insensitive to γ-secretase inhibition unless BMP activation is concomitantly addressed. © 2017 The Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Proteínas Morfogenéticas Óseas/genética , Neoplasias Colorrectales/genética , Transición Epitelial-Mesenquimal , Receptores Notch/genética , Transducción de Señal , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Estudios de Cohortes , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/patología , Células Epiteliales/patología , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Modelos Biológicos , Fenotipo , Pronóstico , Receptores Notch/metabolismo , Proteínas Smad/genética , Proteínas Smad/metabolismo
2.
Cell Signal ; 123: 111352, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39173855

RESUMEN

Cellular signaling pathways rely on posttranslational modifications (PTMs) to finely regulate protein functions, particularly transcription factors. The Hedgehog (Hh) signaling cascade, crucial for embryonic development and tissue homeostasis, is susceptible to aberrations that lead to developmental anomalies and various cancers. At the core of Hh signaling are Gli proteins, whose dynamic balance between activator (GliA) and repressor (GliR) states shapes cellular outcomes. Phosphorylation, orchestrated by multiple kinases, is pivotal in regulating Gli activity. While kinases in this context have been extensively studied, the role of protein phosphatases, particularly Protein Phosphatase 2A (PP2A), remains less explored. This study unveils a novel role for the B″gamma subunit of PP2A, PPP2R3C, in Hh signaling regulation. PPP2R3C interacts with Gli proteins, and its disruption reduces Hedgehog pathway activity as measured by reduced expression of Gli1/2 and Hh target genes upon Hh signaling activation, and reduced growth of a Hh signaling-dependent medulloblastoma cell line. Moreover, we establish an antagonistic connection between PPP2R3C and MEKK1 kinase in Gli protein phosphorylation, underscoring the intricate interplay between kinases and phosphatases in Hh signaling pathway. This study sheds light on the previously understudied role of protein phosphatases in Hh signaling and provides insights into their significance in cellular regulation.


Asunto(s)
Proteínas Hedgehog , Proteína Fosfatasa 2 , Transducción de Señal , Proteína con Dedos de Zinc GLI1 , Proteínas Hedgehog/metabolismo , Proteína Fosfatasa 2/metabolismo , Humanos , Proteína con Dedos de Zinc GLI1/metabolismo , Fosforilación , Células HEK293 , Animales , Línea Celular Tumoral , Proteína Gli2 con Dedos de Zinc/metabolismo , Ratones
3.
Cell Signal ; 80: 109907, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33383157

RESUMEN

Dynamic bidirectional transport between the nucleus and the cytoplasm is critical for the regulation of many transcription factors, whose levels inside the nucleus must be tightly controlled. Efficient shuttling across the nuclear membrane is especially crucial with regard to the Hedgehog (Hh) pathway, where the transcriptional signal depends on the fine balance between the amounts of Gli protein activator and repressor forms in the nucleus. The nuclear export machinery prevents the unchecked nuclear accumulation of Gli proteins, but the mechanistic insight into this process is limited. We show that the atypical exportin Xpo7 functions as a major nuclear export receptor that actively excludes Gli2 from the nucleus and controls the outcome of Hh signaling. We show that Xpo7 interacts with several domains of Gli2 and that this interaction is modulated by SuFu, a key negative regulator of Hh signaling. Our data pave the way for a more complete understanding of the nuclear shuttling of Gli proteins and the regulation of their transcriptional activity.


Asunto(s)
Núcleo Celular/metabolismo , Transducción de Señal , Proteína Gli2 con Dedos de Zinc/metabolismo , Proteína de Unión al GTP ran/metabolismo , Transporte Activo de Núcleo Celular , Animales , Sistemas CRISPR-Cas/genética , Línea Celular , Proteínas Hedgehog/metabolismo , Humanos , Carioferinas/antagonistas & inhibidores , Carioferinas/genética , Carioferinas/metabolismo , Ratones , Interferencia de ARN , ARN Guía de Kinetoplastida/metabolismo , ARN Interferente Pequeño/metabolismo , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Transcripción Genética , Proteína Gli2 con Dedos de Zinc/genética , Proteína de Unión al GTP ran/antagonistas & inhibidores , Proteína de Unión al GTP ran/genética , Proteína Exportina 1
4.
Cells ; 8(2)2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30754706

RESUMEN

Gli proteins are transcriptional effectors of the Hedgehog signaling pathway. They play key roles in the development of many organs and tissues, and are deregulated in birth defects and cancer. We review the molecular mechanisms of Gli protein regulation in mammals, with special emphasis on posttranslational modifications and intracellular transport. We also discuss how Gli proteins interact with co-activators and co-repressors to fine-tune the expression of Hedgehog target genes. Finally, we provide an overview of the regulation of developmental processes and tissue regeneration by Gli proteins and discuss how these proteins are involved in cancer progression, both through canonical regulation via the Hedgehog pathway and through cross-talk with other signaling pathways.


Asunto(s)
Desarrollo Embrionario , Neoplasias/metabolismo , Transactivadores/metabolismo , Animales , Cilios/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Procesamiento Proteico-Postraduccional
5.
Front Plant Sci ; 10: 761, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31244877

RESUMEN

Meiosis is a process of essential importance for sexual reproduction, as it leads to production of gametes. The recombination event (crossing-over) generates genetic variation by introducing new combination of alleles. The first step of crossing-over is introduction of a targeted double-strand break (DSB) in DNA. DMC1 (Disrupted Meiotic cDNA1) is a recombinase that is specific only for cells undergoing meiosis and takes part in repair of such DSBs by searching and invading homologous sequences that are subsequently used as a template for the repair process. Although role of the DMC1 gene has been validated in Arabidopsis thaliana, a functional analysis of its homolog in barley, a crop species of significant importance in agriculture, has never been performed. Here, we describe the identification of barley mutants carrying substitutions in the HvDMC1 gene. We performed mutational screening using TILLING (Targeting Induced Local Lesions IN Genomes) strategy and the barley TILLING population, HorTILLUS, developed after double-treatment of spring barley cultivar 'Sebastian' with sodium azide and N-methyl-N-nitrosourea. One of the identified alleles, dmc1.c, was found independently in two different M2 plants. The G2571A mutation identified in this allele leads to a substitution of the highly conserved amino acid (arginine-183 to lysine) in the DMC1 protein sequence. Two mutant lines carrying the same dmc1.c allele show similar disturbances during meiosis. The chromosomal aberrations included anaphase bridges and chromosome fragments in anaphase/telophase I and anaphase/telophase II, as well as micronuclei in tetrads. Moreover, atypical tetrads containing three or five cells were observed. A highly increased frequency of all chromosome aberrations during meiosis have been observed in the dmc1.c mutants compared to parental variety. The results indicated that DMC1 is required for the DSB repair, crossing-over and proper chromosome disjunction during meiosis in barley.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA