Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Más filtros

Intervalo de año de publicación
1.
Acta Neurochir (Wien) ; 164(1): 141-150, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34694465

RESUMEN

BACKGROUND: Lombardy was the most affected Italian region by the first phase of the COVID-19 pandemic and underwent urgent reorganization for the management of emergencies, including subarachnoid hemorrhage from a ruptured cerebral aneurysm (aSAH). The aim of the study was to define demographics, clinical, and therapeutic features of aSAH during the COVID-19 outbreak and compare these with a historical cohort. METHODS: In this observational multicenter cohort study, patients aged 18 years or older, who were diagnosed with aSAH at the participating centers in Lombardy from March 9 to May 10, 2020, were included (COVID-19 group). In order to minimize bias related to possible SAH seasonality, the control group was composed of patients diagnosed with aSAH from March 9 to May 10 of the three previous years, 2017-2018-2019 (pre-pandemic group). Twenty-three demographic, clinical, and therapeutic features were collected. Statistical analysis was performed. RESULTS: Seventy-two patients during the COVID-19 period and 179 in the control group were enrolled at 14 centers. Only 4 patients were positive for SARS-CoV-2. The "diagnostic delay" was significantly increased (+ 68%) in the COVID-19 group vs. pre-pandemic (1.06 vs. 0.63 days, respectively, p-value = 0.030), while "therapeutic delay" did not differ significantly between the two periods (0.89 vs. 0.74 days, p-value = 0.183). Patients with poor outcome (GOS at discharge from 1 to 3) were higher during the COVID-19 period (54.2%) compared to pre-pandemic (40.2%, p = 0.044). In logistic regression analysis, in which outcome was the dichotomized Glasgow Outcome Scale (GOS), five variables showed p-values < 0.05: age at admission, WFNS grade, treatment (none), days in ICU, and ischemia. CONCLUSIONS: We documented a significantly increased "diagnostic delay" for subarachnoid hemorrhages during the first COVID-19 outbreak in Lombardy. However, despite the dramatic situation that the healthcare system was experiencing, the Lombardy regional reorganization model, which allowed centralization of neurosurgical emergencies such as SAHs, avoided a "therapeutic delay" and led to results overall comparable to the control period.


Asunto(s)
COVID-19 , Hemorragia Subaracnoidea , Estudios de Cohortes , Humanos , Pandemias , SARS-CoV-2 , Hemorragia Subaracnoidea/epidemiología , Resultado del Tratamiento
2.
J Transl Med ; 19(1): 526, 2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-34952611

RESUMEN

The host's immune system may be primed against antigens during the lifetime (e.g. microorganisms antigens-MoAs), and swiftly recalled upon growth of a tumor expressing antigens similar in sequence and structure. C57BL/6 mice were immunized in a preventive setting with tumor antigens (TuAs) or corresponding heteroclitic peptides specific for TC-1 and B16 cell lines. Immediately or 2-months after the end of the vaccination protocol, animals were implanted with cell lines. The specific anti-vaccine immune response as well as tumor growth were regularly evaluated for 2 months post-implantation. The preventive vaccination with TuA or their heteroclitic peptides (hPep) was able to delay (B16) or completely suppress (TC-1) tumor growth when cancer cells were implanted immediately after the end of the vaccination. More importantly, TC-1 tumor growth was significantly delayed, and suppressed in 6/8 animals, also when cells were implanted 2-months after the end of the vaccination. The vaccine-specific T cell response provided a strong immune correlate to the pattern of tumor growth. A preventive immunization with heteroclitic peptides resembling a TuA is able to strongly delay or even suppress tumor growth in a mouse model. More importantly, the same effect is observed also when tumor cells are implanted 2 months after the end of vaccination, which corresponds to 8 - 10 years in human life. The observed potent tumor control indicates that a memory T cell immunity elicited during the lifetime by a antigens similar to a TuA, i.e. viral antigens, may ultimately represent a great advantage for cancer patients and may lead to a novel preventive anti-cancer vaccine strategy.


Asunto(s)
Vacunas contra el Cáncer , Células T de Memoria , Animales , Antígenos de Neoplasias , Humanos , Ratones , Ratones Endogámicos C57BL , Péptidos
3.
Cardiovasc Diabetol ; 20(1): 150, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34301253

RESUMEN

BACKGROUND: Empagliflozin (EMPA), a selective inhibitor of the sodium glucose co-transporter 2, reduced the risk of hospitalization for heart failure and cardiovascular death in type 2 diabetic patients in the EMPA-REG OUTCOME trial. Recent trials evidenced several cardio-renal benefits of EMPA in non-diabetic patients through the involvement of biochemical pathways that are still to be deeply analysed. We aimed to evaluate the effects of EMPA on myocardial strain of non-diabetic mice treated with doxorubicin (DOXO) through the analysis of NLRP3 inflammasome and MyD88-related pathways resulting in anti-apoptotic and anti-fibrotic effects. METHODS: Preliminary cellular studies were performed on mouse cardiomyocytes (HL-1 cell line) exposed to doxorubicin alone or combined to EMPA. The following analysis were performed: determination of cell viability (through a modified MTT assay), study of intracellular ROS production, lipid peroxidation (quantifying intracellular malondialdehyde and 4-hydroxynonenal), intracellular Ca2+ homeostasis. Moreover, pro-inflammatory studies were also performed: expression of NLRP3 inflammasome, MyD88 myddosome and p65/NF-κB associated to secretion of cytokines involved in cardiotoxicity (Interleukins 1ß, 8, 6). C57Bl/6 mice were untreated (Sham, n = 6) or treated for 10 days with doxorubicin (DOXO, n = 6), EMPA (EMPA, n = 6) or doxorubicin combined to EMPA (DOXO-EMPA, n = 6). DOXO was injected intraperitoneally. Ferroptosis and xanthine oxidase were studied before and after treatments. Cardiac function studies, including EF, FS and radial/longitudinal strain were analysed through transthoracic echocardiography (Vevo 2100). Cardiac fibrosis and apoptosis were histologically studied through Picrosirius red and TUNEL assay, respectively and quantified through pro-collagen-1α1, MMP-9 and Caspase-3 expression. Tissue NLRP3, MyD88 and cytokines were also quantified before and after treatments through ELISA methods. RESULTS: Cardiomyocytes exposed to doxorubicin increased the intracellular Ca2+ content and expression of several pro-inflammatory markers associated to cell death; co-incubation with EMPA reduced significantly the magnitude of the effects. In preclinical study, EMPA increased EF and FS compared to DOXO groups (p < 0.05), prevented the reduction of radial and longitudinal strain after 10 days of treatment with doxorubicin (RS) 30.3% in EMPA-DOXO vs 15.7% in DOXO mice; LS - 17% in EMPA-DOXO vs - 11.7% in DOXO mice (p < 0.001 for both). Significant reductions in ferroptosis, xanthine oxidase expression, cardiac fibrosis and apoptosis in EMPA associated to DOXO were also seen. A reduced expression of pro-inflammatory cytokines, NLRP3, MyD88 and NF-kB in heart, liver and kidneys was also seen in DOXO-EMPA group compared to DOXO (p < 0.001). CONCLUSION: EMPA reduced ferroptosis, fibrosis, apoptosis and inflammation in doxorubicin-treated mice through the involvement of NLRP3 and MyD88-related pathways, resulting in significant improvements in cardiac functions. These findings provides the proof of concept for translational studies designed to reduce adverse cardiovascular outcomes in non-diabetic cancer patients treated with doxorubicin.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Citocinas/metabolismo , Glucósidos/farmacología , Cardiopatías/tratamiento farmacológico , Mediadores de Inflamación/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Función Ventricular Izquierda/efectos de los fármacos , Animales , Antiinflamatorios/farmacología , Antifibróticos/farmacología , Apoptosis/efectos de los fármacos , Cardiotoxicidad , Línea Celular , Modelos Animales de Enfermedad , Doxorrubicina , Femenino , Ferroptosis/efectos de los fármacos , Fibrosis , Cardiopatías/inducido químicamente , Cardiopatías/metabolismo , Cardiopatías/patología , Inflamasomas/metabolismo , Ratones Endogámicos C57BL , Factor 88 de Diferenciación Mieloide/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transducción de Señal
4.
J Transl Med ; 14: 58, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26911136

RESUMEN

BACKGROUND: The tumor immunosuppressive microenvironment represents a major obstacle to an effective tumor-specific cellular immune response. METHODS: In the present study, the counterbalance effect of a novel metronomic chemotherapy protocol on such an immunosuppressive microenvironment was evaluated in a mouse model upon sub-cutaneous ectopic implantation of B16 melanoma cells. The chemotherapy consisted of a novel multi-drug cocktail including taxanes and alkylating agents, administered in a daily metronomic fashion. The newly designed strategy was shown to be safe, well tolerated and significantly efficacious. RESULTS: Treated animals showed a remarkable delay in tumor growth and prolonged survival as compared to control group. Such an effect was directly correlated with CD4(+) T cell reduction and CD8(+) T cell increase. Furthermore, a significant reduction in the percentage of both CD25(+)FoxP3(+) and CD25(+)CD127(low) regulatory T cell population was found both in the spleens and in the tumor lesions. Finally, the metronomic chemotherapy induced an intrinsic CD8(+) T cell response specific to B16 naturally expressed Trp2 TAA. CONCLUSION: The novel multi-drug daily metronomic chemotherapy evaluated in the present study was very effective in counterbalancing the immunosuppressive tumor microenvironment. Consequently, the intrinsic anti-tumor T cell immunity could exert its function, targeting specific TAA and significantly containing tumor growth. Overall, the results show that this represents a promising adjuvant approach to significantly enhance efficacy of intrinsic or vaccine-elicited tumor-specific cellular immunity.


Asunto(s)
Administración Metronómica , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Melanoma Experimental/tratamiento farmacológico , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Calreticulina/metabolismo , Muerte Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ensayo de Immunospot Ligado a Enzimas , Femenino , Interferón gamma/biosíntesis , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ratones Endogámicos C57BL , Análisis de Supervivencia , Linfocitos T Reguladores/efectos de los fármacos
5.
Radiol Oncol ; 50(1): 14-20, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-27069445

RESUMEN

BACKGROUND: Pancreatic adenocarcinoma is currently one of the deadliest cancers with high mortality rate. This disease leads to an aggressive local invasion and early metastases, and is poorly responsive to treatment with chemotherapy or chemo-radiotherapy. Radical resection is still the only curative treatment for pancreatic cancer, but it is generally accepted that a multimodality strategy is necessary for its management. Therefore, new alternative therapies have been considered for local treatment. CONCLUSIONS: Chemotherapeutic resistance in pancreatic cancer is associated to a low penetration of drugs into tumour cells due to the presence of fibrotic stroma surrounding cells. In order to increase the uptake of chemotherapeutic drugs into tumour cells, electrochemotherapy can be used for treatment of pancreatic adenocarcinoma leading to an increased tumour response rate. This review will summarize the published papers reported in literature on the efficacy and safety of electrochemotherapy in pre-clinical and clinical studies on pancreatic cancer.

6.
Biochim Biophys Acta ; 1836(2): 296-303, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24120852

RESUMEN

In the last few years, the field of tumor immunology has significantly expanded and its boundaries, never particularly clear, have become less distinct. Although the immune system plays an important role in controlling tumor growth, it has also become clear that tumor growth can be promoted by inflammatory immune responses. A good example that exemplifies the ambiguous role of the immune system in cancer progression is represented by interleukin 18 (IL-18) that was first identified as an interferon-γ-inducing factor (IGIF) involved in T helper type-1 (Th1) immune response. The expression and secretion of IL-18 have been observed in various cell types from immune cells to circulating cancer cells. In this review we highlighted the multiple roles played by IL-18 in immune regulation, cancer progression and angiogenesis and the clinical potential that may result from such understanding.


Asunto(s)
Transformación Celular Neoplásica/patología , Sistema Inmunológico/inmunología , Interleucina-18/metabolismo , Neoplasias/inmunología , Neoplasias/patología , Neovascularización Patológica/inmunología , Animales , Humanos , Neoplasias/metabolismo
7.
Biochim Biophys Acta ; 1826(2): 407-14, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22579960

RESUMEN

Dendritic cells (DCs) are immunological sentinels of the organism acting as antigen-presenting cells (APC) and are critical for induction of innate and adaptive immunity. Traditionally they are divided in myeloid dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs), a rare population of circulating cells that selectively express Toll-like receptors (TLR) 7 and TLR9 and have the capacity to produce large amounts of type I interferons (IFNs) in response to pathogenic agents or danger signals. It has been demonstrated that pDCs can coordinate events during the course of viral infections, allergic and autoimmune diseases and cancer. Through the production of type I IFNs, pDCs initiate protective immunity by activating classical DCs, T cells, natural killer cells and B cells. Upon activation, pDCs also differentiate into mature DCs and may contribute to the contraction of T-cell response. Human pDCs preferentially express immunoglobulin-like transcript 7 (ILT7; LILRA4), which couples with a signaling adapter to activate a prominent immune-receptor tyrosine-based activation motif (ITAM)-mediated signaling pathway. The interaction between ILT7 and bone marrow stromal cell antigen 2 (BST2, CD317) assures an appropriate TLR response by pDCs during viral infections and likely participates in pDCs tumor crosstalk. Moreover these cells seem to play a crucial role in the initiation of the pathological process of autoimmune diseases such as lupus or psoriasis. Despite the fact that their function within a tumor context is still controversial they represent an attractive target for therapeutic manipulation of the immune system to elicit a powerful immune response against tumor antigens in combination with other therapies.


Asunto(s)
Células Dendríticas/fisiología , Neoplasias/inmunología , Animales , Ensayos Clínicos como Asunto , Humanos , Neoplasias/terapia , Fenotipo , Receptores Inmunológicos/fisiología , Transducción de Señal , Receptores Toll-Like/fisiología
8.
Proc Natl Acad Sci U S A ; 107(32): 14484-9, 2010 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-20660740

RESUMEN

Tumor growth requires neoangiogenesis. VEGF is the most potent proangiogenic factor. Dysregulation of hypoxia-inducible factor (HIF) or cytokine stimuli such as those involving the chemokine receptor 4/stromal-derived cell factor 1 (CXCR4/SDF-1) axis are the major cause of ectopic overexpression of VEGF in tumors. Although the CXCR4/SDF-1 pathway is well characterized, the transcription factors executing the effector function of this signaling are poorly understood. The multifunctional Yin Yang 1 (YY1) protein is highly expressed in different types of cancers and may regulate some cancer-related genes. The network involving CXCR4/YY1 and neoangiogenesis could play a major role in cancer progression. In this study we have shown that YY1 forms an active complex with HIF-1alpha at VEGF gene promoters and increases VEGF transcription and expression observed by RT-PCR, ELISA, and Western blot using two different antibodies against VEGFB. Long-term treatment with T22 peptide (a CXCR4/SDF-1 inhibitor) and YY1 silencing can reduce in vivo systemic neoangiogenesis (P < 0.01 and P < 0.05 vs. control, respectively) during metastasis. Moreover, using an in vitro angiogenesis assay, we observed that YY1 silencing led to a 60% reduction in branches (P < 0.01) and tube length (P < 0.02) and a 75% reduction in tube area (P < 0.001) compared with control cells. A similar reduction was observed using T22 peptide. We demonstrated that T22 peptide determines YY1 cytoplasmic accumulation by reducing its phosphorylation via down-regulation of AKT, identifying a crosstalk mechanism involving CXCR4/YY1. Thus, YY1 may represent a crucial molecular target for antiangiogenic therapy during cancer progression.


Asunto(s)
Neoplasias/irrigación sanguínea , Neovascularización Patológica , Receptores CXCR4/antagonistas & inhibidores , Factores de Crecimiento Endotelial Vascular/genética , Factor de Transcripción YY1/metabolismo , Animales , Línea Celular Tumoral , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Trasplante de Neoplasias , Neoplasias/metabolismo , Péptidos/farmacología , Ratas , Receptor Cross-Talk/fisiología , Receptores CXCR4/metabolismo , Factores de Transcripción , Trasplante Heterólogo , Factor de Transcripción YY1/fisiología
9.
Proc Natl Acad Sci U S A ; 107(16): 7497-502, 2010 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-20368414

RESUMEN

BAG3, a member of the BAG family of heat shock protein (HSP) 70 cochaperones, is expressed in response to stressful stimuli in a number of normal cell types and constitutively in a variety of tumors, including pancreas carcinomas, lymphocytic and myeloblastic leukemias, and thyroid carcinomas. Down-regulation of BAG3 results in cell death, but the underlying molecular mechanisms are still elusive. Here, we investigated the molecular mechanism of BAG3-dependent survival in human osteosarcoma (SAOS-2) and melanoma (M14) cells. We show that bag3 overexpression in tumors promotes survival through the NF-kappaB pathway. Indeed, we demonstrate that BAG3 alters the interaction between HSP70 and IKKgamma, increasing availability of IKKgamma and protecting it from proteasome-dependent degradation; this, in turn, results in increased NF-kappaB activity and survival. These results identify bag3 as a potential target for anticancer therapies in those tumors in which this gene is constitutively expressed. As a proof of principle, we show that treatment of a mouse xenograft tumor model with bag3siRNA-adenovirus that down-regulates bag3 results in reduced tumor growth and increased animal survival.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Regulación Neoplásica de la Expresión Génica , Quinasa I-kappa B/metabolismo , Animales , Antineoplásicos/farmacología , Apoptosis , Proteínas Reguladoras de la Apoptosis , Línea Celular Tumoral , Femenino , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Ratones , Ratones Endogámicos BALB C , Modelos Biológicos , FN-kappa B/metabolismo , ARN Interferente Pequeño/metabolismo
11.
Arch Ital Urol Androl ; 95(1): 11101, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36924373

RESUMEN

OBJECTIVE: The major strengths of surgical treatment of benign prostatic hyperplasia with laser are reduced morbidity compared to endoscopic resection. No studies analysed the different risk of intra/peri-operative events between patients undergoing Thulium and GreenLight procedures. MATERIALS AND METHODS: We retrospectively reviewed 100 consecutive cases undergoing GreenLight vaporization and Thulium procedures performed during the learning curve of two expert endoscopic surgeons. Pre-operative data, intra and post-operative events at 90 days were analysed. RESULTS: Patients on antiplatelet/anticoagulant therapy were pre-dominant in the Green group (p < 0.0001). Rates of blood transfusion (p < 0.0038), use of resectoscope (p < 0.0086), and transient stress urinary incontinence were statistically higher in the Thulium group. On the contrary conversions to TURP (p < 0.023) were more frequent in GreenLight patients. Readmissions were more frequently necessary in GreenLight group (24%) vs. Thulium group (26.6%). The overall complication rate in GreenLight and Thulium groups were 31% and 53% respectively; Clavien 3b complications were 13% in Thulium patients versus 1% in GreenLight patients. CONCLUSIONS: GreenLight and Thulium treatments show similar safety profiles. Randomized controlled trial are needed to better clarify the rate of major complications in Thulium group, and the incidence of post-operative storage symptoms in these patients' populations.


Asunto(s)
Terapia por Láser , Hiperplasia Prostática , Resección Transuretral de la Próstata , Masculino , Humanos , Hiperplasia Prostática/complicaciones , Tulio/uso terapéutico , Estudios Retrospectivos , Resultado del Tratamiento , Rayos Láser , Resección Transuretral de la Próstata/efectos adversos , Resección Transuretral de la Próstata/métodos , Terapia por Láser/efectos adversos , Terapia por Láser/métodos
12.
Int J Pharm ; 633: 122618, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36657553

RESUMEN

Surface functionalization of nanoparticles (NPs) with tumor-targeting peptides is an emerging approach with a huge potential to translate in the clinic and ameliorate the efficacy of nano-oncologicals. One major challenge is to find straightforward strategies for anchoring peptides on the surface of biodegradable NPs and ensuring their correct exposure and orientation to bind the target receptor. Here, we propose a non-covalent strategy to functionalize polyester aminic NPs based on the formation of either electrostatic or lipophilic interactions between NPs and the peptide modified with an anchoring moiety. We selected an iNGRt peptide containing a CendR motif (CRNGR) targeting neuropilin receptor 1 (NRP-1), which is upregulated in several cancers. iNGRt was linked with either a short poly(glutamic acid) chain (polyE) or a palmitoyl chain (Palm) and used to functionalize the surface of NPs made of a diamine poly(ε-caprolactone). iNGRt-PolyE was adsorbed on preformed cationic NPs through electrostatic interaction, whereas iNGRt-Palm was integrated into the forming NPs through interactions. In both cases, peptides were strongly associated with NPs of ∼100 nm, low polydispersity indexes, and positive zeta potential values. NPs entered MDA-MB231 breast cancer cells overexpressing NRP-1 via receptor-mediated endocytosis and showed a different cell localization depending on the mode of peptide anchoring. When loaded with the lipophilic anticancer drug docetaxel (DTX), NPs functionalized with the iNGRt-Palm variant exerted a time- and dose-dependent cytotoxicity similar to DTX in MDA-MB-231 cells but were less toxic than DTX toward control MRC-5 human fibroblasts, not expressing NRP-1. In a heterotopic mouse model of triple negative breast cancer, iNGRt-Palm NPs were tolerated better than free DTX and demonstrated superior anticancer activity and survival compared to both free DTX and NPs without peptide functionalization. We foresee that the functionalization strategy with palmitoylated peptides proposed here can be extended to other biodegradable NPs and peptide sequences designed for therapeutic or targeting purposes.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias de la Mama Triple Negativas , Ratones , Animales , Humanos , Docetaxel , Antineoplásicos/farmacología , Polímeros , Péptidos , Línea Celular Tumoral , Portadores de Fármacos
13.
Cell Death Dis ; 14(9): 613, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37723219

RESUMEN

The ß2-Adrenergic receptor (ß2-ARs) is a cell membrane-spanning G protein-coupled receptors (GPCRs) physiologically involved in stress-related response. In many cancers, the ß2-ARs signaling drives the tumor development and transformation, also promoting the resistance to the treatments. In HNSCC cell lines, the ß2-AR selective inhibition synergistically amplifies the cytotoxic effect of the MEK 1/2 by affecting the p38/NF-kB oncogenic pathway and contemporary reducing the NRF-2 mediated antioxidant cell response. In this study, we aimed to validate the anti-tumor effect of ß2-AR blockade and the synergism with MEK/ERK and EGFR pathway inhibition in a pre-clinical orthotopic mouse model of HNSCC. Interestingly, we found a strong ß2-ARs expression in the tumors that were significantly reduced after prolonged treatment with ß2-Ars inhibitor (ICI) and EGFR mAb Cetuximab (CTX) in combination. The ß2-ARs down-regulation correlated in mice with a significant tumor growth delay, together with the MAPK signaling switch-off caused by the blockade of the MEK/ERK phosphorylation. We also demonstrated that the administration of ICI and CTX in combination unbalanced the cell ROS homeostasis by blocking the NRF-2 nuclear translocation with the relative down-regulation of the antioxidant enzyme expression. Our findings highlighted for the first time, in a pre-clinical in vivo model, the efficacy of the ß2-ARs inhibition in the treatment of the HNSCC, remarkably in combination with CTX, which is the standard of care for unresectable HNSCC.


Asunto(s)
Antioxidantes , Neoplasias de Cabeza y Cuello , Animales , Ratones , Carcinoma de Células Escamosas de Cabeza y Cuello , Estrés Oxidativo , Anticuerpos , Cetuximab/farmacología , Cetuximab/uso terapéutico , Receptores ErbB , Quinasas de Proteína Quinasa Activadas por Mitógenos
14.
J Cell Mol Med ; 16(4): 920-6, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21722303

RESUMEN

Accumulating evidence suggests that chronic stress can be a cofactor for the initiation and progression of cancer. Here we evaluated the role of endothelial nitric oxide synthase (eNOS) in stress-promoted tumour growth of murine B16F10 melanoma cell line in C57BL/6 mice. Animals subjected to restraint stress showed increased levels adrenocorticotropic hormone, enlarged adrenal glands, reduced thymus weight and a 3.61-fold increase in tumour growth in respect to no-stressed animals. Tumour growth was significantly reduced in mice treated with the ß-antagonist propranolol. Tumour samples obtained from stressed mice displayed high levels of vascular endothelial growth factor (VEGF) protein in immunohistochemistry. Because VEGF can induce eNOS increase, and nitric oxide is a relevant factor in angiogenesis, we assessed the levels of eNOS protein by Western blot analysis. We found a significant increase in eNOS levels in tumour samples from stressed mice, indicating an involvement of this enzyme in stress-induced tumour growth. Accordingly, chronic stress did not promote tumour growth in eNOS(-/-) mice. These results disclose for the first time a pivotal role for eNOS in chronic stress-induced initiation and promotion of tumour growth.


Asunto(s)
Melanoma Experimental/patología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Fisiológico , Animales , Enfermedad Crónica , Inmunohistoquímica , Imagen por Resonancia Magnética , Masculino , Melanoma Experimental/enzimología , Melanoma Experimental/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptores Adrenérgicos beta/metabolismo , Transducción de Señal
15.
Cancer Immunol Immunother ; 61(10): 1713-20, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22399057

RESUMEN

Compelling evidence has emerged in recent years indicating that stromal cells play a critical role in disease progression. CXCR4 is a G-protein-coupled receptor with a major role in lymphocyte homing. Its ligand, CXCL12, is a highly efficient chemotactic factor for T cells, monocytes, pre-B cells, dendritic cells and myeloid bone marrow-derived cells (BMDCs). In addition, the CXCR4-CXCL12 axis plays a central role in tumor growth and metastasis. To evaluate the effect of genetic CXCR4 reduction on metastasis development, murine melanoma B16 cells were injected into the tail vein of C57BL/6 CXCR4(+/+) and CXCR4(+/-) mice in the presence of the CXCR4 inhibitor, Plerixafor (previously named AMD3100). Although lung metastases developed in wild-type CXCR4(+/+) and heterozygote CXCR4(+/-) mice, nodules were significantly smaller in the latter. CXCR4 pharmacological inhibition by Plerixafor further reduced lung metastases in CXCR4(+/-) mice, preserving the pulmonary architecture (4.18 ± 1.38 mm(2) vs. 1.11 ± 0.60 mm(2), p = 0.038). A reduction in LY6G-positive myeloid/granulocytic cells and in p38 MAPK activation was detected in lungs from CXCR4(+/-) mice compared to CXCR4(+/+) mice [LY6G-positive myeloid CXCR4(+/-) vs. CXCR4(+/+) (p = 0.0004); CXCR4(+/+) vs. CXCR4(+/+) Plerixafor-treated (p = 0.0031)] suggesting that CXCR4 reduction on myeloid-derived cells reduced their recruitment to the lung, consequently impairing lung metastases. Our findings argue in favor of a specific role of CXCR4 expressed in stromal cells that condition the pro-tumor microenvironment. In this scenario, CXCR4 antagonists will target neoplastic cells as well as the pro-tumor stromal microenvironment.


Asunto(s)
Neoplasias Pulmonares/inmunología , Melanoma Experimental/inmunología , Receptores CXCR4/antagonistas & inhibidores , Animales , Antígenos Ly/análisis , Antígenos Ly/inmunología , Antineoplásicos/uso terapéutico , Bencilaminas , Ciclamas , Femenino , Granulocitos/efectos de los fármacos , Granulocitos/inmunología , Compuestos Heterocíclicos/uso terapéutico , Neoplasias Pulmonares/prevención & control , Neoplasias Pulmonares/secundario , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Receptores CXCR4/inmunología , Células del Estroma/efectos de los fármacos , Células del Estroma/inmunología
16.
Breast Cancer Res Treat ; 133(2): 511-21, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21947749

RESUMEN

Two novel human antitumor immunoconjugates, made up of a human anti-ErbB2 scFv, Erbicin, fused with either a human RNase or the Fc region of a human IgG1, are selectively cytotoxic for ErbB2-positive cancer cells in vitro and in vivo. The Erbicin-derived immunoagents (EDIA) target an epitope different from that of trastuzumab, the only humanized antibody currently prescribed for treatment of ErbB2-positive breast cancer (BC). As Trastuzumab has shown cardiotoxic effects, in this study, we evaluated if any side effects were exerted also by EDIA, used as single agents or in combination with anthracyclines. Furthermore, we compared the in vitro and in vivo cardiotoxic effects of EDIA with those of the other available anti-ErbB2 drugs: Trastuzumab, 2C4 (Pertuzumab), and Lapatinib. In this article, we show that EDIA, in contrast with Trastuzumab, 2C4, and Lapatinib, have no toxic effects on human fetal cardiomyocytes in vitro, and do not induce additive toxicity when combined with doxorubicin. Furthermore, EDIA do not impair cardiac function in vivo in mice, as evaluated by Color Doppler echocardiography, whereas Trastuzumab significantly reduces radial strain (RS) at day 2 and fractional shortening (FS) at day 7 of treatment in a fashion similar to doxorubicin. Also 2C4 and Lapatinib significantly reduce RS after only 2 days of treatment, even though they showed cardiotoxic effects less pronounced than those of Trastuzumab. These results strongly indicate that RS could become a reliable marker to detect early cardiac dysfunction and that EDIA could fulfill the therapeutic need of patients ineligible to Trastuzumab treatment because of cardiac dysfunction.


Asunto(s)
Anticuerpos Monoclonales Humanizados/toxicidad , Antineoplásicos/toxicidad , Corazón/efectos de los fármacos , Receptor ErbB-2/antagonistas & inhibidores , Anticuerpos de Cadena Única/toxicidad , Animales , Anticuerpos Monoclonales Humanizados/administración & dosificación , Antineoplásicos/administración & dosificación , Línea Celular , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/administración & dosificación , Doxorrubicina/toxicidad , Sinergismo Farmacológico , Humanos , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Anticuerpos de Cadena Única/administración & dosificación , Trastuzumab
17.
Blood ; 116(2): 226-38, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20363775

RESUMEN

B-cell lymphoma is a clonal expansion of neoplastic cells that may result in fatal outcomes. Here, we report the in vivo targeting and growth inhibition of aggressive A20 murine B-cell lymphoma by idiotype-specific peptide pA20-36. pA20-36 was selected from random peptide libraries and bound specifically to the B-cell receptor (BCR) of A20 cells in mice engrafted with A20 lymphoma, as shown by histology and positron emission tomographic analysis. BCR cross-linking of A20 cells with pA20-36 resulted in massive apoptosis of targeted tumor cells and in an increased survival of the diseased animals without any detectable evidence of toxicity. The pA20-36 treatment reverted the immune suppression of the tumor microenvironment as shown by reduced expression of vascular endothelial growth factor, interleukin-10, and transforming growth factor-beta cytokines together with a lower number of CD11b+Gr-1+ inhibitor myeloid-derived suppressor cells and Foxp3+CD4+ Treg cells. Furthermore, pA20-36 treatment was associated with an increased number of tumor-infiltrating, activated CD8+ T cells that exerted a tumor-specific cytolytic activity. These findings show that a short peptide that binds specifically to the complementarity-determining regions of the A20 BCR allows in vivo detection of neoplastic cells together with significant inhibition of tumor growth in vivo.


Asunto(s)
Anticuerpos Antiidiotipos/inmunología , Inmunoterapia/métodos , Linfoma de Células B/inmunología , Péptidos/inmunología , Animales , Anticuerpos Antiidiotipos/uso terapéutico , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Especificidad de Anticuerpos , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Separación Celular , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Idiotipos de Inmunoglobulinas/inmunología , Linfoma de Células B/terapia , Ratones , Ratones Endogámicos BALB C , Microscopía Confocal , Biblioteca de Péptidos , Péptidos/uso terapéutico , Tomografía de Emisión de Positrones , Receptores de Antígenos de Linfocitos B/inmunología , Resonancia por Plasmón de Superficie
18.
Nanomedicine ; 8(5): 637-46, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21889924

RESUMEN

Amphiphilic block copolymers of poly(ɛ-caprolactone) and poly(ethylene oxide) were assembled in core-shell nanoparticles (NPs) by a melting-sonication technique (MeSo). The entrapment of the poorly water-soluble anticancer drug docetaxel (DTX), nanocarrier cytotoxicity toward different cells and toxicity in mice were investigated. The encapsulation mechanism was rationalized and related to copolymer properties such as crystallinity and drug solubility in the copolymer phase. DTX release from NPs occurred in 2 drug pulses over 30 days. DTX entrapment in NPs strongly decreased haemolysis of erythrocytes in comparison with a commercial DTX formulation. In comparison with free DTX, NPs were both more efficient in inhibiting cell growth of breast and prostate cancer cells and less toxic in experimental animal models. The results of this study indicate that MeSo is an interesting technique for the achievement of peculiar core-shell nanocarriers for the passive targeting and sustained release of poorly water-soluble anticancer drugs. FROM THE CLINICAL EDITOR: In this study, stealth nanoparticles of PEO/PCL block copolymers for passive targeting of docetaxel to solid tumors were developed using a novel technique. The studied properties of NPs suggest strong potential as anticancer drug-delivery system.


Asunto(s)
Antineoplásicos , Nanopartículas , Poliésteres , Polietilenglicoles , Taxoides , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/efectos adversos , Línea Celular Tumoral , Proliferación Celular , Docetaxel , Sistemas de Liberación de Medicamentos/efectos adversos , Sistemas de Liberación de Medicamentos/métodos , Eritrocitos/efectos de los fármacos , Congelación , Hemólisis/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos BALB C , Nanopartículas/administración & dosificación , Nanopartículas/química , Poliésteres/administración & dosificación , Poliésteres/química , Polietilenglicoles/administración & dosificación , Polietilenglicoles/química , Sonicación/métodos , Taxoides/administración & dosificación , Taxoides/efectos adversos
19.
Front Biosci (Landmark Ed) ; 27(7): 223, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35866405

RESUMEN

Breast cancer is the most common malignancy among women worldwide. Several studies indicate that, in addition to established risk factors for breast cancer, other factors such as cortisol release related to psychological stress and drug treatment with high levels of glucocorticoids may also contribute significantly to the initiation of breast cancer. There are several possible mechanisms by which glucocorticoids might promote neoplastic transformation of breast tissue. Among these, the least known and studied is the inhibition of the nuclear erythroid factor 2-related (Nrf2)-antioxidant/electrophile response element (ARE/EpRE) pathway by high levels of glucocorticoids. Specifically, Nrf2 is a potent transcriptional activator that plays a central role in the basal and inducible expression of many cytoprotective genes that effectively protect mammalian cells from various forms of stress and reduce the propensity of tissues and organisms to develop disease or malignancy including breast cancer. Consequently, a loss of Nrf2 in response to high levels of gluco-corticoids may lead to a decrease in cellular defense against oxidative stress, which plays an important role in the initiation of human mammary carcinogenesis. In the present review, we provide a comprehensive overview of the current state of knowledge of the cellular mechanisms by which both glucocorticoid pharmacotherapy and endogenous GCs (cortisol in humans and corticosterone in rodents) may contribute to breast cancer development through inhibition of the Nrf2-ARE/EpRE pathway and the protective role of melatonin against glucocorticoid-induced apoptosis in the immune system.


Asunto(s)
Neoplasias de la Mama , Carcinogénesis , Glucocorticoides , Factor 2 Relacionado con NF-E2 , Antioxidantes/farmacología , Neoplasias de la Mama/inducido químicamente , Carcinogénesis/inducido químicamente , Femenino , Glucocorticoides/efectos adversos , Humanos , Hidrocortisona , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo
20.
Front Cardiovasc Med ; 9: 930797, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36158826

RESUMEN

Background: Immune checkpoint inhibitors (ICIs) have significantly changed the oncology clinic in recent years, improving survival expectations in cancer patients. ICI therapy have a broad spectrum of side effects from endocrinopathies to cardiovascular diseases. In this study, pro-inflammatory and pro-fibrotic effects of short-term ICIs therapy in preclinical models were analyzed. Methods: Firstly, in a human in vitro model, human cardiomyocytes co-cultured with hPBMC were exposed to ICIs (with CTLA-4 or PD-1 blocking agents, at 200 nM) for 72 h. After treatment, production of DAMPs and 12 cytokines were analyzed in the supernatant through colorimetric and enzymatic assays. C57/Bl6 mice were treated with CTLA-4 or PD-1 blocking agents (15 mg/kg) for 10 days. Before (T0), after three days (T3) and after treatments (T10), ejection fraction, fractional shortening, radial and longitudinal strain were calculated by using bidimensional echocardiography (Vevo 2100, Fujfilm). Fibrosis, necrosis, hypertrophy and vascular NF-kB expression were analyzed through Immunohistochemistry. Myocardial expression of DAMPs (S100- Calgranulin, Fibronectin and Galectine-3), MyD88, NLRP3 and twelve cytokines have been analyzed. Systemic levels of SDF-1, IL-1ß, and IL-6 were analyzed before, during and after ICIs therapy. Results: Radial and longitudinal strain were decreased after 10 days of ICIs therapy. Histological analysis of NF-kB expression shows that short-term anti-CTLA-4 or anti-PD-1 treatment increased vascular and myocardial inflammation. No myocardial hypertrophy was seen with the exception of the pembrolizumab group. Myocardial fibrosis and expression of galectin-3, pro-collagen 1-α and MMP-9 were increased after treatment with all ICIs. Both anti-CTLA-4 or anti-PD-1 treatments increased the expression of DAMPs, NLRP3 inflammasome and MyD88 and induced both in vitro and in vivo the secretion of IL-1ß, TNF-α and IL-6. Systemic levels of SDF-1, IL-1ß and IL-6 were increased during and after treatment with ICIs. Conclusions: Short therapy with PD-1 and CTLA-4 blocking agents increases vascular expression of NF-kB, systemic SDF-1, IL-1ß, IL-6 levels and myocardial NLRP3, MyD88 and DAMPs expression in preclinical models. A pro-inflammatory cytokine storm was induced in myocardial tissues and in cultured cardiac cells after ICIs therapy. The overall picture of the study suggests new putative biomarkers of ICIs-mediated systemic and myocardial damages potentially useful in clinical cardioncology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA