RESUMEN
INTRODUCTION: One of the hallmarks of injured skeletal muscle is the appearance of elevated skeletal muscle proteins in circulation. Human skeletal muscle generally consists of a mosaic of slow (type I) and fast (type IIa, IIx/d) fibers, defined by their myosin isoform expression. Recently, measurement of circulating fiber-type specific isoforms of troponin I has been used as a biomarker to suggest that muscle injury in healthy volunteers (HV) results in the appearance of muscle proteins from fast but not slow fibers. We sought to understand if this is also the case in severe myopathy patients with Becker and Duchenne muscular dystrophy (BMD, DMD). METHODS: An enzyme-linked immunosorbent assay (ELISA) that selectively measures fast and slow skeletal troponin I (TNNI2 and TNNI1) was used to measure a cross-section of patient plasma samples from HV (N = 50), BMD (N = 49), and DMD (N = 132) patients. Creatine kinase (CK) activity was also measured from the same samples for comparison. RESULTS: TNNI2 was elevated in BMD and DMD and correlated with the injury biomarker, CK. In contrast, TNNI1 levels were indistinguishable from levels in HV. There was an inverse relationship between CK and TNNI2 levels and age, but no relationship for TNNI1. DISCUSSION: We define a surprising discrepancy between TNNI1 and TNNI2 in patient plasma that may have implications for the interpretation of elevated muscle protein levels in dystrophinopathies.
Asunto(s)
Distrofia Muscular de Duchenne/sangre , Distrofia Muscular de Duchenne/diagnóstico , Troponina I/sangre , Adolescente , Adulto , Biomarcadores/sangre , Niño , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Adulto JovenRESUMEN
INTRODUCTION: Global health, a practice that prioritizes improving health and achieving health equity for all people worldwide, is a priority for pharmacists, schools, and pharmacy colleges. Several initiatives aim to enhance faculty and student exchanges while promoting projects and initiatives among thriving universities and under-resourced countries and institutions. While many organizations recognize the benefit of global collaboration, as demonstrated by the adoption of the 2012 American Association of Colleges of Pharmacy Strategic Plan, which calls for increased global experiences for faculty and students, the COVID-19 pandemic created a demand for international engagement within pharmacy practice. The objective of this study was to evaluate students' perceptions and attitudes toward incorporating a global pharmacy pen pal (PPP) exchange within the pharmacy curricula at two schools/colleges of pharmacy. METHODS: This mixed-method study included assigned engagement within a required or elective didactic course, followed by a post-experience survey. Each student was pre-assigned a pen pal from a cohort of pharmacy students residing in 11 countries for the assignment. RESULTS: In total, 184 students completed the learning experience, and across both sites, 63 students completed the post-experience survey. The students' impressions of the PPP varied by site, yet most participants reported an improved awareness of pharmacy practice in other countries.
Asunto(s)
COVID-19 , Educación en Farmacia , Estudiantes de Farmacia , Humanos , Estados Unidos , Educación en Farmacia/métodos , Farmacéuticos , Proyectos Piloto , PandemiasRESUMEN
Pharmacological glucocorticoids are the most prescribed anti-inflammatory medications, and are chemical variants of cortisol, the circadian and stress hormone. Both endogenous and pharmacological glucocorticoids bind the glucocorticoid receptor (NR3C1) with high affinity, and both then bind downstream gene promoter elements (GRE) to drive positive gene transcription of many proteins. Glucocorticoid/GR complexes also bind distinct negative gene promoter elements (nGRE) to inhibit expression of genes involved in NF-κB innate immunity signaling. We sought to define the acute response of a single dose of prednisone (0.2 mg/kg) in young adult volunteers, with blood samples taken at baseline, 2, 3, 4 and 6 h post-oral dose. To control for circadian morning cortisol hitting the same molecular pathways, a day of blood draws was done without oral prednisone (same time of day), one day prior to drug day. Serum samples were processed for steroid hormone profiles (mass spectrometry; 9 steroidal hormones), proteomics (SOMAscan aptamer panels, 1,305 proteins), and inflammatory markers (Meso Scale Discovery; 10 pro-inflammatory cytokines). The pharmacological effect of the prednisone dose was shown by significant declines of adrenal steroids by 3 h after dosing. IL-10 showed drug-related increase to 4 hrs, then decrease to 6 hrs. IL-8 showed drug-related decrease in serum by 4 h, consistent with direct negative action of GR/ligand on IL-8 gene promoter. Proteomics data showed beta-2 microglobulin, TNFSF15, TSH, CST3, NBL1 to show time-related decreases with prednisone, while CXCL13 showed increases, although these require validation. In summary, a single low dose of prednisone leads to broad suppression of the adrenal axis within 3 h, and down-regulation of inflammatory serum proteins by 6 h.
Asunto(s)
Citocinas , Receptores de Glucocorticoides , Proteínas Sanguíneas , Citocinas/genética , Glucocorticoides/uso terapéutico , Humanos , Prednisona/farmacología , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Miembro 15 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral , Voluntarios , Adulto JovenRESUMEN
Duchenne muscular dystrophy (DMD) is a progressive muscle disease involving complex skeletal muscle pathogenesis. The pathogenesis is triggered by sarcolemma instability due to the lack of dystrophin protein expression, leading to Ca2+ influx, muscle fiber apoptosis, inflammation, muscle necrosis, and fibrosis. Our lab recently used two high-throughput multiplexing techniques (e.g., SomaScan® aptamer assay and tandem mass tag-(TMT) approach) and identified a series of serum protein biomarkers tied to different pathobiochemical pathways. In this study, we focused on validating the circulating levels of three proinflammatory chemokines (CCL2, CXCL10, and CCL18) that are believed to be involved in an early stage of muscle pathogenesis. We used highly specific and reproducible MSD ELISA assays and examined the association of these chemokines with DMD pathogenesis, age, disease severity, and response to glucocorticoid treatment. As expected, we confirmed that these three chemokines were significantly elevated in serum and muscle samples of DMD patients relative to age-matched healthy controls (p-value < 0.05, CCL18 was not significantly altered in muscle samples). These three chemokines were not significantly elevated in Becker muscular dystrophy (BMD) patients, a milder form of dystrophinopathy, when compared in a one-way ANOVA to a control group but remained significantly elevated in the age-matched DMD group (p < 0.05). CCL2 and CCL18 but not CXCL10 declined with age in DMD patients, whereas all three chemokines remained unchanged with age in BMD and controls. Only CCL2 showed significant association with time to climb four steps in the DMD group (r = 0.48, p = 0.038) and neared significant association with patients' reported outcome in the BMD group (r = 0.39, p = 0.058). Furthermore, CCL2 was found to be elevated in a serum of the mdx mouse model of DMD, relative to wild-type mouse model. This study suggests that CCL2 might be a suitable candidate biomarker for follow-up studies to demonstrate its physiological significance and clinical utility in DMD.
RESUMEN
Blood-accessible molecular biomarkers are becoming highly attractive tools to assess disease progression and response to therapies in Duchenne muscular dystrophy (DMD) especially in very young patients for whom other outcome measures remain subjective and challenging. In this study, we have standardized a highly specific and reproducible multiplexing mass spectrometry method using the tandem mass tag (TMT) strategy in combination with depletion of abundant proteins from serum and high-pH reversed-phase peptide fractionation. Differential proteome profiling of 4 year-old DMD boys (n = 9) and age-matched healthy controls (n = 9) identified 38 elevated and 50 decreased serum proteins (adjusted P < 0.05, FDR <0.05) in the DMD group relative to the healthy control group. As expected, we confirmed previously reported biomarkers but also identified novel biomarkers. These included novel muscle injury-associated biomarkers such as telethonin, smoothelin-like protein 1, cofilin-1, and plectin, additional muscle-specific enzymes such as UTP-glucose-1-phosphate uridylyltransferase, aspartate aminotransferase, pyruvate kinase PKM, lactotransferrin, tissue alpha-l-fucosidase, pantetheinase, and ficolin-1, and some pro-inflammatory and cell adhesion-associated biomarkers such as leukosialin, macrophage receptor MARCO, vitronectin, galectin-3-binding protein, and ProSAAS. The workflow including serum depletion, sample processing, and mass spectrometry analysis was found to be reproducible and stable over time with CV < 20%. Furthermore, the method was found to be superior in terms of specificity compared to other multiplexing affinity-based methods. These findings demonstrate the specificity and reliability of TMT-based mass spectrometry methods in detection and identification of serum biomarkers in presymptomatic young DMD patients.