Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Express ; 27(12): A818-A828, 2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-31252857

RESUMEN

Broadband thermal radiation sources are critical for various applications including spectroscopy and electricity generation. However, due to the difficulty in simultaneously achieving high absorptivity and low thermal mass these sources are inefficient. We show a platform that enables one to obtain enhanced emission by coupling a thermal emitter to an optical cavity. We experimentally demonstrate broadband enhancement of thermal emission between λ ~2 ̶ 4.2 µm using an inherently poor thermal emitter consisting of tens of nanometers thick SiC film with 10% emissivity (εSiC ~0.1). We measure over twofold enhancement of total emission power over the entire spectral band and threefold enhancement of thermal emission over 3 to 3.4 µm. Our platform has the potential to enable development of ideal blackbody sources operating at substantially lower heating powers.

2.
Opt Express ; 25(11): 12109-12120, 2017 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-28786569

RESUMEN

Suspended optical microresonators are promising devices for on-chip photonic applications such as radio-frequency oscillators, optical frequency combs, and sensors. Scaling up these devices demands the capability to tune the optical resonances in an integrated manner. Here, we design and experimentally demonstrate integrated on-chip thermo-optic tuning of suspended microresonators by utilizing suspended wire bridges and microheaters. We demonstrate the ability to tune the resonance of a suspended microresonator in silicon nitride platform by 9.7 GHz using 5.3 mW of heater power. The loaded optical quality factor (QL ~92,000) stays constant throughout the detuning. We demonstrate the efficacy of our approach by completely turning on and off the optical coupling between two evanescently coupled suspended microresonators.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA