RESUMEN
The use of flow cytometry in mice is constrained by several factors, including the limited availability of mouse-specific antibodies and the need to work with small volumes of peripheral blood. This is particularly challenging for longitudinal studies, as serial blood samples should not exceed 10% of the total blood volume in mice. To address this, we have developed two novel flow cytometry panels designed to extensively analyze immune cell populations in mice during longitudinal studies, using only 50 µL of peripheral blood per panel. Additionally, a third panel has been designed to conduct a more detailed analysis of cytotoxic and inhibitory markers at the end point. These panels have been validated on a lipopolysaccharide (LPS)-induced lung inflammation model. Two experiments were conducted to 1) validate the panels' sensitivity to immune challenges (n=12) and 2) to assess intrinsic variability of measurements (n=5). In both experiments, we collected 50 µL of peripheral blood for each cytometry panel from the maxillary venous sinus. All antibodies were titrated to identify the optimal concentration that maximized the signal from the positive population while minimizing the signal from the negative population. Samples were processed within 1 hour of collection using a MACSQuant Analyzer 16 cytometer. Our results demonstrate that these immunological panels are sensitive enough to detect changes in peripheral blood after LPS induction. Moreover, our findings help determine the sample size needed based on the immune population variability. In conclusion, the panels we have designed enable a comprehensive analysis of the murine immune system with a low blood volume requirement, enabling the measure of both absolute values and relative percentages effectively. This approach provides a robust platform for longitudinal studies in mice and can be used to uncover significant insights into immune responses.
Asunto(s)
Citometría de Flujo , Lipopolisacáridos , Animales , Citometría de Flujo/métodos , Ratones , Lipopolisacáridos/inmunología , Ratones Endogámicos C57BL , Reproducibilidad de los Resultados , Inmunofenotipificación/métodos , Femenino , Modelos Animales de Enfermedad , Neumonía/inmunología , Neumonía/sangreRESUMEN
Vulvovaginal candidiasis (VVC) is characterized as a very common fungal infection that significantly affects women's health worldwide. Essential oils (EOs) are currently being evaluated as an alternative therapy. The development of efficient techniques such as micro- or nanoencapsulation for protecting and controlling release is essential to overcome the limitations of EO applications. Therefore, the aim of this study was to develop and characterize oregano EO-loaded keratin microparticles (OEO-KMPs) as a potential treatment for VVC. OEO-KMPs were produced using high-intensity ultrasonic cycles and characterized in terms of morphological and physicochemical parameters. In vitro evaluation included assessing the toxicity of the OEO-KMPs and their effect against Candida albicans using microdilution and agar diffusion, while the activity against biofilm was quantified using colony forming units (CFU). The efficacy of the OEO-KMPs in an in vivo VVC mouse model was also studied. Female BALB/c mice were intravaginally infected with C. albicans, 24 h postinfection animals were treated intravaginally with 15 µL of OEO-KMPs and 24 h later vaginal fluid was analyzed for C. albicans and Lactobacillus growth (CFU mL-1). The results showed the stability of the OEO-KMPs over time, with high encapsulation efficiency and controlled release. This nanoparticle size facilitated penetration and completely inhibited the planktonic growth of C. albicans. In addition, an in vitro application of 2.5% of the OEO-KMPs eradicated mature C. albicans biofilms while preserving Lactobacillus species. In in vivo, a single intravaginal application of OEO-KMPs induced a reduction in C. albicans growth, while maintaining Lactobacillus species. In conclusion, this therapeutic approach with OEO-KMPs is promising as a potential alternative or complementary therapy for VVC while preserving vaginal microflora.