Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 142(1): 144-57, 2010 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-20603020

RESUMEN

In the mammalian brain, the specification of a single axon and multiple dendrites occurs early in the differentiation of most neuron types. Numerous intracellular signaling events for axon specification have been described in detail. However, the identity of the extracellular factor(s) that initiate neuronal polarity in vivo is unknown. Here, we report that transforming growth factor beta (TGF-beta) initiates signaling pathways both in vivo and in vitro to fate naive neurites into axons. Neocortical neurons lacking the type II TGF-beta receptor (TbetaR2) fail to initiate axons during development. Exogenous TGF-beta is sufficient to direct the rapid growth and differentiation of an axon, and genetic enhancement of receptor activity promotes the formation of multiple axons. Finally, we show that the bulk of these TGF-beta-dependent events are mediated by site-specific phosphorylation of Par6. These results define an extrinsic cue for neuronal polarity in vivo that patterns neural circuits in the developing brain.


Asunto(s)
Axones/metabolismo , Neocórtex/citología , Neocórtex/embriología , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Embrión de Mamíferos/metabolismo , Ratones , Neuronas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/metabolismo
2.
Cereb Cortex ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38679479

RESUMEN

Normative ferret brain development was characterized using magnetic resonance imaging. Brain growth was longitudinally monitored in 10 ferrets (equal numbers of males and females) from postnatal day 8 (P8) through P38 in 6-d increments. Template T2-weighted images were constructed at each age, and these were manually segmented into 12 to 14 brain regions. A logistic growth model was used to fit data from whole brain volumes and 8 of the individual regions in both males and females. More protracted growth was found in males, which results in larger brains; however, sex differences were not apparent when results were corrected for body weight. Additionally, surface models of the developing cortical plate were registered to one another using the anatomically-constrained Multimodal Surface Matching algorithm. This, in turn, enabled local logistic growth parameters to be mapped across the cortical surface. A close similarity was observed between surface area expansion timing and previous reports of the transverse neurogenic gradient in ferrets. Regional variation in the extent of surface area expansion and the maximum expansion rate was also revealed. This characterization of normative brain growth over the period of cerebral cortex folding may serve as a reference for ferret studies of brain development.


Asunto(s)
Encéfalo , Hurones , Imagen por Resonancia Magnética , Animales , Hurones/crecimiento & desarrollo , Imagen por Resonancia Magnética/métodos , Masculino , Femenino , Encéfalo/crecimiento & desarrollo , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología , Estudios Longitudinales , Caracteres Sexuales
3.
Am J Physiol Cell Physiol ; 322(5): C1011-C1021, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35385329

RESUMEN

Arachidonic acid metabolites epoxyeicosatrienoates (EETs) and hydroxyeicosatetraenoates (HETEs) are important regulators of myocardial blood flow and coronary vascular resistance (CVR), but their mechanisms of action are not fully understood. We applied a chemoproteomics strategy using a clickable photoaffinity probe to identify G protein-coupled receptor 39 (GPR39) as a microvascular smooth muscle cell (mVSMC) receptor selective for two endogenous eicosanoids, 15-HETE and 14,15-EET, which act on the receptor to oppose each other's activity. The former increases mVSMC intracellular calcium via GPR39 and augments coronary microvascular resistance, and the latter inhibits these actions. Furthermore, we find that the efficacy of both ligands is potentiated by zinc acting as an allosteric modulator. Measurements of coronary perfusion pressure (CPP) in GPR39-null hearts using the Langendorff preparation indicate the receptor senses these eicosanoids to regulate microvascular tone. These results implicate GPR39 as an eicosanoid receptor and key regulator of myocardial tissue perfusion. Our findings will have a major impact on understanding the roles of eicosanoids in cardiovascular physiology and disease and provide an opportunity for the development of novel GPR39-targeting therapies for cardiovascular disease.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Eicosanoides , Ácido Araquidónico/metabolismo , Vasos Coronarios/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Eicosanoides/análisis , Eicosanoides/metabolismo , Eicosanoides/farmacología , Resistencia Vascular
4.
Physiol Genomics ; 53(7): 295-308, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34097533

RESUMEN

Aging is a significant risk factor for cardiovascular disease. Despite the fact that endothelial cells play critical roles in cardiovascular function and disease, the molecular impact of aging on this cell population in many organ systems remains unknown. In this study, we sought to determine age-associated transcriptional alterations in cardiac endothelial cells. Highly enriched populations of endothelial cells (ECs) isolated from the heart, brain, and kidney of young (3 mo) and aged (24 mo) C57/BL6 mice were profiled for RNA expression via bulk RNA sequencing. Approximately 700 cardiac endothelial transcripts significantly differ by age. Gene set enrichment analysis indicated similar patterns for cellular pathway perturbations. Receptor-ligand comparisons indicated parallel alterations in age-affected circulating factors and cardiac endothelial-expressed receptors. Gene and pathway enrichment analyses show that age-related transcriptional response of cardiac endothelial cells is distinct from that of endothelial cells derived from the brain or kidney vascular bed. Furthermore, single-cell analysis identified nine distinct EC subtypes and shows that the Apelin Receptor-enriched subtype is reduced with age in mouse heart. Finally, we identify age-dysregulated genes in specific aged cardiac endothelial subtypes.


Asunto(s)
Envejecimiento/genética , Células Endoteliales/fisiología , Regulación de la Expresión Génica , Miocardio/citología , Molécula 1 de Adhesión Celular Vascular , Animales , Encéfalo/citología , Células Endoteliales/clasificación , Riñón/citología , Masculino , Ratones Endogámicos C57BL , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Molécula 1 de Adhesión Celular Vascular/genética
5.
J Chem Inf Model ; 61(7): 3442-3452, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34242503

RESUMEN

G-protein coupled receptors (GPCRs) sense a wide variety of stimuli, including lipids, and transduce signals to the intracellular environment to exert various physiological responses. However, the structural features of GPCRs responsible for detecting and triggering responses to distinct lipid ligands have only recently begun to be revealed. 14,15-epoxyeicosatrienoic acid (14,15-EET) is one such lipid mediator that plays an essential role in the vascular system, displaying both vasodilatory and anti-inflammatory properties. We recently reported multiple low-affinity 14,15-EET-binding GPCRs, but the mechanism by which these receptors sense 14,15-EET remains unclear. Here, we have taken a combined computational and experimental approach to identify and confirm critical residues and properties within the lipid-binding pocket. Furthermore, we generated mutants to engineer selected GPCR-predicted binding sites to either confer or abolish 14,15-EET-induced signaling. Our structure-function analyses indicate that hydrophobic and positively charged residues of the receptor-binding pocket are prerequisites for recognizing lipid ligands such as 14,15-EET and possibly other eicosanoids.


Asunto(s)
Lípidos , Receptores Acoplados a Proteínas G , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/metabolismo , Sitios de Unión , Humanos , Ligandos , Unión Proteica , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
6.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34360964

RESUMEN

GPR39, a member of the ghrelin family of G protein-coupled receptors, is zinc-responsive and contributes to the regulation of diverse neurovascular and neurologic functions. Accumulating evidence suggests a role as a homeostatic regulator of neuronal excitability, vascular tone, and the immune response. We review GPR39 structure, function, and signaling, including constitutive activity and biased signaling, and summarize its expression pattern in the central nervous system. We further discuss its recognized role in neurovascular, neurological, and neuropsychiatric disorders.


Asunto(s)
Enfermedades Cardiovasculares/genética , Enfermedades del Sistema Nervioso/genética , Acoplamiento Neurovascular , Receptores Acoplados a Proteínas G/metabolismo , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Homeostasis , Humanos , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/fisiopatología , Receptores Acoplados a Proteínas G/genética , Transducción de Señal
7.
Physiol Genomics ; 50(2): 104-116, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29212850

RESUMEN

Hypertension poses a significant challenge to vasculature homeostasis and stands as the most common cardiovascular disease in the world. Its effects are especially profound on endothelial cells that form the inner lining of the vasculature and are directly exposed to the effects of excess pressure. Here, we characterize the in vivo transcriptomic response of cardiac endothelial cells to hypertension by rapidly isolating these cells from the spontaneous hypertension mouse model BPH/2J and its normotensive BPN/3J control strain and performing and RNA sequencing on both. Comparison of transcriptional differences between these groups reveals statistically significant changes in cellular pathways consistent with cardiac fibrosis found in hypertensive animals. Importantly, many of the fibrosis-linked genes identified also differ significantly between juvenile prehypertensive and adult hypertensive BPH/2J mice, suggesting that these transcriptional differences are hypertension related. We examined the dynamic nature of these transcriptional changes by testing whether blood pressure normalization using either a calcium channel blocker (amlodipine) or a angiotensin II receptor blocker (losartan) is able to reverse these expression patterns associated with hypertension. We find that blood pressure reduction is capable of reversing some gene-expression patterns, while other transcripts are recalcitrant to therapeutic intervention. This illuminates the possibility that unmanaged hypertension may irreversibly alter some endothelial transcriptional patterns despite later intervention. This study quantifies how endothelial cells are remodeled at the molecular level in cardiovascular pathology and advances our understanding of the transcriptional events associated with endothelial response to hypertensive challenge.


Asunto(s)
Fibrosis/metabolismo , Frecuencia Cardíaca/efectos de los fármacos , Hipertensión/metabolismo , Amlodipino/uso terapéutico , Animales , Presión Sanguínea/efectos de los fármacos , Bloqueadores de los Canales de Calcio/uso terapéutico , Modelos Animales de Enfermedad , Fibrosis/genética , Frecuencia Cardíaca/genética , Hipertensión/tratamiento farmacológico , Hipertensión/genética , Losartán/uso terapéutico , Masculino , Ratones
8.
Bioinformatics ; 33(3): 447-449, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28171615

RESUMEN

Summary: Transcriptional profiling using RNA sequencing (RNAseq) has emerged as a powerful methodology to quantify global gene expression patterns in various contexts from single cells to whole tissues. The tremendous amount of data generated by this profiling technology presents a daunting challenge in terms of effectively visualizing and interpreting results. Convenient and intuitive data interfaces are critical for researchers to easily upload, analyze and visualize their RNAseq data. We designed the START (Shiny Transcriptome Analysis Resource Tool) App with these requirements in mind. This application has the power and flexibility to be resident on a local computer or serve as a web-based environment, enabling easy sharing of data between researchers and collaborators. Availability and Implementation: Source Code for the START App is written entirely in R and can be freely available to download at https://github.com/jminnier/STARTapp with the code licensed under GPLv3. It can be launched on any system that has R installed. The START App is also hosted on https://kcvi.shinyapps.io/START for researchers to temporarily upload their data. Contact: minnier@ohsu.edu


Asunto(s)
Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Biología Computacional/métodos , Internet
9.
Annu Rev Neurosci ; 32: 347-81, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19400726

RESUMEN

Neurons are among the most highly polarized cell types in the body, and the polarization of axon and dendrites underlies the ability of neurons to integrate and transmit information in the brain. Significant progress has been made in the identification of the cellular and molecular mechanisms underlying the establishment of neuronal polarity using primarily in vitro approaches such as dissociated culture of rodent hippocampal and cortical neurons. This model has led to the predominant view suggesting that neuronal polarization is specified largely by stochastic, asymmetric activation of intracellular signaling pathways. Recent evidence shows that extracellular cues can play an instructive role during neuronal polarization in vitro and in vivo. In this review, we synthesize the recent data supporting an integrative model whereby extracellular cues orchestrate the intracellular signaling underlying the initial break of neuronal symmetry leading to axon-dendrite polarization.


Asunto(s)
Axones/ultraestructura , Encéfalo/citología , Encéfalo/embriología , Polaridad Celular/fisiología , Dendritas/ultraestructura , Animales , Axones/fisiología , Encéfalo/fisiología , Comunicación Celular/fisiología , Diferenciación Celular/fisiología , Dendritas/fisiología , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Neurogénesis/fisiología , Transducción de Señal/fisiología
10.
Artículo en Inglés | MEDLINE | ID: mdl-27649858

RESUMEN

Epoxyeicosatrienoic acids (EETs) are potent vasodilators that play important roles in cardiovascular physiology and disease, yet the molecular mechanisms underlying the biological actions of EETs are not fully understood. Multiple lines of evidence suggest that the actions of EETs are in part mediated via G protein-coupled receptor (GPCR) signaling, but the identity of such a receptor has remained elusive. We sought to identify 14,15-EET-responsive GPCRs. A set of 105 clones were expressed in Xenopus oocyte and screened for their ability to activate cAMP-dependent chloride current. Several receptors responded to micromolar concentrations of 14,15-EET, with the top five being prostaglandin receptor subtypes (PTGER2, PTGER4, PTGFR, PTGDR, PTGER3IV). Overall, our results indicate that multiple low-affinity 14,15-EET GPCRs are capable of increasing cAMP levels following 14,15-EET stimulation, highlighting the potential for cross-talk between prostanoid and other ecosanoid GPCRs. Our data also indicate that none of the 105 GPCRs screened met our criteria for a high-affinity receptor for 14,15-EET.


Asunto(s)
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Receptores Acoplados a Proteínas G/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Ácido 8,11,14-Eicosatrienoico/farmacología , Animales , AMP Cíclico/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Evaluación Preclínica de Medicamentos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células HEK293 , Humanos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/fisiología , Ratones , Oocitos/metabolismo , Fosforilación/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Receptores de Prostaglandina/metabolismo , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Vasoconstricción/efectos de los fármacos , Xenopus , beta-Arrestinas/metabolismo
11.
PLoS Genet ; 10(4): e1004280, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24763339

RESUMEN

The establishment of correct neurotransmitter characteristics is an essential step of neuronal fate specification in CNS development. However, very little is known about how a battery of genes involved in the determination of a specific type of chemical-driven neurotransmission is coordinately regulated during vertebrate development. Here, we investigated the gene regulatory networks that specify the cholinergic neuronal fates in the spinal cord and forebrain, specifically, spinal motor neurons (MNs) and forebrain cholinergic neurons (FCNs). Conditional inactivation of Isl1, a LIM homeodomain factor expressed in both differentiating MNs and FCNs, led to a drastic loss of cholinergic neurons in the developing spinal cord and forebrain. We found that Isl1 forms two related, but distinct types of complexes, the Isl1-Lhx3-hexamer in MNs and the Isl1-Lhx8-hexamer in FCNs. Interestingly, our genome-wide ChIP-seq analysis revealed that the Isl1-Lhx3-hexamer binds to a suite of cholinergic pathway genes encoding the core constituents of the cholinergic neurotransmission system, such as acetylcholine synthesizing enzymes and transporters. Consistently, the Isl1-Lhx3-hexamer directly coordinated upregulation of cholinergic pathways genes in embryonic spinal cord. Similarly, in the developing forebrain, the Isl1-Lhx8-hexamer was recruited to the cholinergic gene battery and promoted cholinergic gene expression. Furthermore, the expression of the Isl1-Lhx8-complex enabled the acquisition of cholinergic fate in embryonic stem cell-derived neurons. Together, our studies show a shared molecular mechanism that determines the cholinergic neuronal fate in the spinal cord and forebrain, and uncover an important gene regulatory mechanism that directs a specific neurotransmitter identity in vertebrate CNS development.


Asunto(s)
Neuronas Colinérgicas/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Prosencéfalo/metabolismo , Médula Espinal/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/genética , Línea Celular , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/metabolismo , Expresión Génica/genética , Redes Reguladoras de Genes/genética , Células HEK293 , Humanos , Proteínas con Homeodominio LIM/genética , Ratones , Neuronas Motoras/metabolismo , Ratas , Factores de Transcripción/genética
12.
FASEB J ; 27(9): 3572-82, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23733748

RESUMEN

Cachexia is a wasting condition defined by skeletal muscle atrophy in the setting of systemic inflammation. To explore the site at which inflammatory mediators act to produce atrophy in vivo, we utilized mice with a conditional deletion of the inflammatory adaptor protein myeloid differentiation factor 88 (MyD88). Although whole-body MyD88-knockout (wbMyD88KO) mice resist skeletal muscle atrophy in response to LPS, muscle-specific deletion of MyD88 is not protective. Furthermore, selective reexpression of MyD88 in the muscle of wbMyD88KO mice via electroporation fails to restore atrophy gene induction by LPS. To evaluate the role of glucocorticoids as the inflammation-induced mediator of atrophy in vivo, we generated mice with targeted deletion of the glucocorticoid receptor in muscle (mGRKO mice). Muscle-specific deletion of the glucocorticoid receptor affords a 71% protection against LPS-induced atrophy compared to control animals. Furthermore, mGRKO mice exhibit 77% less skeletal muscle atrophy than control animals in response to tumor growth. These data demonstrate that glucocorticoids are a major determinant of inflammation-induced atrophy in vivo and play a critical role in the pathogenesis of endotoxemic and cancer cachexia.


Asunto(s)
Caquexia/etiología , Caquexia/metabolismo , Carcinoma Pulmonar de Lewis/fisiopatología , Glucocorticoides/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Animales , Western Blotting , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/metabolismo , Inmunohistoquímica , Hibridación in Situ , Mediadores de Inflamación/farmacología , Lipopolisacáridos/farmacología , Ratones , Ratones Noqueados , Músculo Esquelético/efectos de los fármacos , Atrofia Muscular/inducido químicamente , Atrofia Muscular/genética , Factor 88 de Diferenciación Mieloide/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
13.
Front Physiol ; 14: 1266444, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37942229

RESUMEN

Developmental programming of chronic adverse cardiovascular health outcomes has been studied both using numerous human populations and an array of animal models. However, the mechanisms that produce transgenerational effects have been difficult to study due to a lack of developmentally relevant models. As such, how increased disease risk is carried to the second generation has been poorly studied. We hypothesized that the endothelium which mediates many acute and chronic vascular inflammatory responses is a key player in these effects, and epidemiological studies implicate transgenerational nutritional effects on endothelial health. To study the mutigenerational effects of maternal undernutrition on offspring endothelial health, we developed a model of transgenerational nutritional stress in guinea pigs, a translationally relevant precocial species with a relatively short lifespan. First- and second-generation offspring were subjected to a high fat diet in adolescence to exacerbate negative cardiovascular health. To assess transcriptional changes, we performed bulk RNA-sequencing in carotid artery endothelial cells, with groups stratified as prenatal control or food restricted, and postnatal control or high fat diet. We detected statistically significant gene alterations for each dietary permutation, some of which were unique to treatments and other transcriptional signatures shared by multiple or all conditions. These findings highlight a core group of genes altered by high fat diet that is shared by all cohorts and a divergence of transgenerational effects between the prenatal ad libitum and dietary restriction groups. This study establishes the groundwork for this model to be used to better understand the interplay of prenatal stress and genetic reprogramming.

14.
Transl Stroke Res ; 14(5): 766-775, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36181628

RESUMEN

No current treatments target microvascular reperfusion after stroke, which can contribute to poor outcomes even after successful clot retrieval. The G protein-coupled receptor GPR39 is expressed in brain peri-capillary pericytes, and has been implicated in microvascular regulation, but its role in stroke is unknown. We tested the hypothesis that GPR39 plays a protective role after stroke, in part due to preservation of microvascular perfusion. We generated GPR39 knockout (KO) mice and tested whether GPR39 gene deletion worsens capillary blood flow and exacerbates brain injury and functional deficit after focal cerebral ischemia. Stroke was induced in male and female GPR39 KO and WT littermates by 60-min middle cerebral artery occlusion (MCAO). Microvascular perfusion was assessed via capillary red blood cell (RBC) flux in deep cortical layers in vivo using optical microangiography (OMAG). Brain injury was assessed by measuring infarct size by 2,3,5-triphenyltetrazolium chloride staining at 24 h or brain atrophy at 3 weeks after ischemia. Pole and cylinder behavior tests were conducted to assess neurological function deficit at 1 and 3 weeks post-stroke. Male but not female GPR39 KO mice exhibited larger infarcts and lower capillary RBC flux than WT controls after stroke. Male GPR39 KO mice also exhibited worse neurologic deficit at 1 week post-stroke, though functional deficit disappeared in both groups by 3 weeks. GPR39 deletion worsens brain injury, microvascular perfusion, and neurological function after experimental stroke. Results indicate that GPR39 plays a sex-dependent role in re-establishing microvascular flow and limiting ischemic brain damage after stroke.


Asunto(s)
Isquemia Encefálica , Receptores Acoplados a Proteínas G , Accidente Cerebrovascular , Animales , Masculino , Ratones , Isquemia Encefálica/genética , Infarto de la Arteria Cerebral Media , Ratones Noqueados , Microcirculación , Receptores Acoplados a Proteínas G/genética , Factores Sexuales , Accidente Cerebrovascular/genética
15.
J Neuroinflammation ; 9: 229, 2012 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-23031643

RESUMEN

BACKGROUND: Animals respond to inflammation by suppressing normal high-energy activities, including feeding and locomotion, in favor of diverting resources to the immune response. The cytokine interleukin-1 beta (IL-1ß) inhibits normal feeding and locomotor activity (LMA) via its actions in the central nervous system (CNS). Behavioral changes in response to IL-1ß are mediated by myeloid differentiation factor 88 (MyD88) in non-hematopoietic cells. It is unknown whether IL-1ß acts directly on neurons or requires transduction by non-neuronal cells. METHODS: The Nestin-cre mouse was crossed with MyD88lox mice to delete MyD88 from neurons and glia in the CNS (MyD88ΔCNS). These mice were compared to total body MyD88KO and wild type (WT) mice. Mice had cannulae stereotactically placed in the lateral ventricle and telemetry transponders implanted into the peritoneum. Mice were treated with either intracerebroventricular (i.c.v.) IL-1ß (10 ng) or vehicle. Food intake, body weight and LMA were continuously monitored for 24 h after treatment. I.c.v. tumor necrosis factor (TNF), a MyD88-independent cytokine, was used to control for normal immune development. Peripheral inflammation was modeled using intraperitoneal lipopolysaccharide (LPS). Groups were compared using two-way ANOVA with Bonferroni post-test. Efficacy of recombination was evaluated using tdTomato reporter mice crossed with the Nestin-cre mouse. MyD88 deletion was confirmed by Western blot. RESULTS: I.c.v. IL-1ß treatment caused a significant reduction in feeding, body weight and LMA in WT mice. MyD88KO mice were protected from these changes in response to i.c.v. IL-1ß despite having intact behavioral responses to TNF. Cre-mediated recombination was observed in neurons and astrocytes, but not microglia or endothelial cells. In contrast to MyD88KO mice, the behavioral responses of MyD88ΔCNS mice to i.c.v. IL-1ß or intraperitoneal (i.p.) LPS were indistinguishable from those of WT mice. CONCLUSION: Sickness behavior is mediated by MyD88 and is dependent on the activity of cytokines within the brain. Our results demonstrate that MyD88 is not required in neurons or astrocytes to induce this behavioral response to IL-1ß or LPS. This suggests that a non-Nestin expressing cell population responds to IL-1ß in the CNS and transduces the signal to neurons controlling feeding and activity.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Conducta de Enfermedad/efectos de los fármacos , Interleucina-1beta/administración & dosificación , Factor 88 de Diferenciación Mieloide/metabolismo , Neuronas/efectos de los fármacos , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Encéfalo/citología , Células Cultivadas , Embrión de Mamíferos , Regulación de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Inyecciones Intraventriculares , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/metabolismo , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Factor 88 de Diferenciación Mieloide/deficiencia , Factor 88 de Diferenciación Mieloide/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nestina , Neuronas/metabolismo , Factores de Tiempo , Factor de Necrosis Tumoral alfa/farmacología
16.
Nat Cell Biol ; 7(4): 405-11, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15793568

RESUMEN

Signalling by G proteins is controlled by the regulator of G-protein signalling (RGS) proteins that accelerate the GTPase activity of Galpha subunits and act in a G-protein-coupled receptor (GPCR)-specific manner. The conserved RGS domain accelerates the G subunit GTPase activity, whereas the variable amino-terminal domain participates in GPCR recognition. How receptor recognition is achieved is not known. Here, we show that the scaffold protein spinophilin (SPL), which binds the third intracellular loop (3iL) of several GPCRs, binds the N-terminal domain of RGS2. SPL also binds RGS1, RGS4, RGS16 and GAIP. When expressed in Xenopus laevis oocytes, SPL markedly increased inhibition of alpha-adrenergic receptor (alphaAR) Ca2+ signalling by RGS2. Notably, the constitutively active mutant alphaAR(A293E) (the mutation being in the 3iL) did not bind SPL and was relatively resistant to inhibition by RGS2. Use of betaAR-alphaAR chimaeras identified the 288REKKAA293 sequence as essential for the binding of SPL and inhibition of Ca2+ signalling by RGS2. Furthermore, alphaAR-evoked Ca2+ signalling is less sensitive to inhibition by SPL in rgs2-/- cells and less sensitive to inhibition by RGS2 in spl-/- cells. These findings provide a general mechanism by which RGS proteins recognize GPCRs to confer signalling specificity.


Asunto(s)
Calcio/metabolismo , Proteínas de Microfilamentos/fisiología , Proteínas del Tejido Nervioso/fisiología , Proteínas RGS/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Animales , Línea Celular , Humanos , Ratones , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Oocitos/química , Unión Proteica/fisiología , Proteínas RGS/metabolismo , Receptores Acoplados a Proteínas G/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Xenopus laevis
17.
Sci Rep ; 12(1): 8835, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614104

RESUMEN

The microcirculation serves crucial functions in adult heart, distinct from those carried out by epicardial vessels. Microvessels are governed by unique regulatory mechanisms, impairment of which leads to microvessel-specific pathology. There are few treatment options for patients with microvascular heart disease, primarily due to limited understanding of underlying pathology. High throughput mRNA sequencing and protein expression profiling in specific cells can improve our understanding of microvessel biology and disease at the molecular level. Understanding responses of individual microvascular cells to the same physiological or pathophysiological stimuli requires the ability to isolate the specific cell types that comprise the functional units of the microcirculation in the heart, preferably from the same heart, to ensure that different cells have been exposed to the same in-vivo conditions. We developed an integrated process for simultaneous isolation and culture of the main cell types comprising the microcirculation in adult mouse heart: endothelial cells, pericytes, and vascular smooth muscle cells. These cell types were characterized with isobaric labeling quantitative proteomics and mRNA sequencing. We defined microvascular cell proteomes, identified novel protein markers, and confirmed established cell-specific markers. Our results allow identification of unique markers and regulatory proteins that govern microvascular physiology and pathology.


Asunto(s)
Células Endoteliales , Pericitos , Animales , Células Endoteliales/metabolismo , Ratones , Microcirculación , Músculo Liso Vascular/metabolismo , Pericitos/metabolismo , Proteómica , ARN Mensajero/genética , ARN Mensajero/metabolismo
18.
Biochim Biophys Acta Proteins Proteom ; 1869(9): 140683, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34119693

RESUMEN

Myocardial infarction and subsequent therapeutic interventions activate numerous intracellular cascades in every constituent cell type of the heart. Endothelial cells produce several protective compounds in response to therapeutic ultrasound, under both normoxic and ischemic conditions. How endothelial cells sense ultrasound and convert it to a beneficial biological response is not known. We adopted a global, unbiased phosphoproteomics approach aimed at understanding how endothelial cells respond to ultrasound. Here, we use primary cardiac endothelial cells to explore the cellular signaling events underlying the response to ischemia-like cellular injury and ultrasound exposure in vitro. Enriched phosphopeptides were analyzed with a high mass accuracy liquid chromatrography (LC) - tandem mass spectrometry (MS/MS) proteomic platform, yielding multiple alterations in both total protein levels and phosphorylation events in response to ischemic injury and ultrasound. Application of pathway algorithms reveals numerous protein networks recruited in response to ultrasound including those regulating RNA splicing, cell-cell interactions and cytoskeletal organization. Our dataset also permits the informatic prediction of potential kinases responsible for the modifications detected. Taken together, our findings begin to reveal the endothelial proteomic response to ultrasound and suggest potential targets for future studies of the protective effects of ultrasound in the ischemic heart.


Asunto(s)
Endocardio/metabolismo , Isquemia Miocárdica/fisiopatología , Fosfoproteínas/metabolismo , Secuencia de Aminoácidos , Animales , Cromatografía Liquida/métodos , Endocardio/fisiología , Células Endoteliales/metabolismo , Corazón/diagnóstico por imagen , Isquemia/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación , Cultivo Primario de Células , Proteoma/metabolismo , Proteómica/métodos , Transducción de Señal , Espectrometría de Masas en Tándem/métodos , Terapia por Ultrasonido/métodos
19.
Data Brief ; 38: 107343, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34527795

RESUMEN

Cardiac endothelial cells respond to both ischemia and therapeutic ultrasound; the proteomic changes underlying these responses are unknown. This data article provides raw and processed data resulting from our global, unbiased phosphoproteomics investigation conducted on primary mouse cardiac endothelial cells exposed to ischemia (2-hour oxygen glucose deprivation) and ultrasound (250 kHz, 1.2 MPa) in vitro [1]. Proteins were extracted from cell lysates and enriched phosphopeptides were analyzed with a high mass accuracy liquid chromatrography (LC) - tandem mass spectrometry (MS/MS) proteomic platform, yielding multiple alterations in both total protein levels and phosphorylation events in response to ischemic injury and ultrasound. This dataset can be used as a reference for future studies on the cardiac endothelial response to ischemia and the mechanistic underpinnings of the cellular response to ultrasound, with the potential to yield clinically relevant therapeutic targets.

20.
Curr Opin Neurobiol ; 18(1): 44-52, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18514505

RESUMEN

The polarization of axon and dendrites underlies the ability of neurons to integrate and transmit information in the brain. Important progress has been made toward the identification of the molecular mechanisms regulating neuronal polarization using primarily in vitro approaches such as dissociated culture of rodent hippocampal neurons. The predominant view emerging from this paradigm is that neuronal polarization is initiated by intrinsic activation of signaling pathways underlying the initial break in neuronal symmetry that precedes the future asymmetric growth of the axon. Recent evidence shows that (i) axon-dendrite polarization is specified when neurons engage migration in vivo, (ii) that a kinase pathway defined by LKB1and SAD-kinases (Par4/Par1 dyad) is required for proper neuronal polarization in vivo and that (iii) extracellular cues can play an instructive role during neuronal polarization. Here, we review some of these recent results and highlight future challenges in the field including the determination of how extracellular cues control intracellular responses underlying neuronal polarization in vivo.


Asunto(s)
Encéfalo/embriología , Encéfalo/metabolismo , Diferenciación Celular/genética , Polaridad Celular/genética , Neuronas/metabolismo , Células Madre/metabolismo , Animales , Encéfalo/citología , Linaje de la Célula/genética , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Neuritas/metabolismo , Neuritas/ultraestructura , Neuronas/citología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Transducción de Señal/genética , Células Madre/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA