Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Stroke ; 53(12): 3696-3705, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36205142

RESUMEN

BACKGROUND: Cerebral small vessel disease (SVD) is common in older people and causes lacunar stroke and vascular cognitive impairment. Risk factors include old age, hypertension and variants in the genes COL4A1/COL4A2 encoding collagen alpha-1(IV) and alpha-2(IV), here termed collagen-IV, which are core components of the basement membrane. We tested the hypothesis that increased vascular collagen-IV associates with clinical hypertension and with SVD in older persons and with chronic hypertension in young and aged primates and genetically hypertensive rats. METHODS: We quantified vascular collagen-IV immunolabeling in small arteries in a cohort of older persons with minimal Alzheimer pathology (N=52; 21F/31M, age 82.8±6.95 years). We also studied archive tissue from young (age range 6.2-8.3 years) and older (17.0-22.7 years) primates (M mulatta) and compared chronically hypertensive animals (18 months aortic stenosis) with normotensives. We also compared genetically hypertensive and normotensive rats (aged 10-12 months). RESULTS: Collagen-IV immunolabeling in cerebral small arteries of older persons was negatively associated with radiological SVD severity (ρ: -0.427, P=0.005) but was not related to history of hypertension. General linear models confirmed the negative association of lower collagen-IV with radiological SVD (P<0.017), including age as a covariate and either clinical hypertension (P<0.030) or neuropathological SVD diagnosis (P<0.022) as fixed factors. Reduced vascular collagen-IV was accompanied by accumulation of fibrillar collagens (types I and III) as indicated by immunogold electron microscopy. In young and aged primates, brain collagen-IV was elevated in older normotensive relative to young normotensive animals (P=0.029) but was not associated with hypertension. Genetically hypertensive rats did not differ from normotensive rats in terms of arterial collagen-IV. CONCLUSIONS: Our cross-species data provide novel insight into sporadic SVD pathogenesis, supporting insufficient (rather than excessive) arterial collagen-IV in SVD, accompanied by matrix remodeling with elevated fibrillar collagen deposition. They also indicate that hypertension, a major risk factor for SVD, does not act by causing accumulation of brain vascular collagen-IV.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Hipertensión , Accidente Vascular Cerebral Lacunar , Animales , Ratas , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Accidente Vascular Cerebral Lacunar/complicaciones , Hipertensión/complicaciones , Encéfalo/patología , Presión Sanguínea , Colágeno Tipo IV/genética
2.
Magn Reson Med ; 88(6): 2532-2547, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36054778

RESUMEN

PURPOSE: Quasi-diffusion MRI (QDI) is a novel quantitative technique based on the continuous time random walk model of diffusion dynamics. QDI provides estimates of the diffusion coefficient, D 1 , 2 $$ {D}_{1,2} $$ in mm2  s-1 and a fractional exponent, α $$ \upalpha $$ , defining the non-Gaussianity of the diffusion signal decay. Here, the b-value selection for rapid clinical acquisition of QDI tensor imaging (QDTI) data is optimized. METHODS: Clinically appropriate QDTI acquisitions were optimized in healthy volunteers with respect to a multi-b-value reference (MbR) dataset comprising 29 diffusion-sensitized images arrayed between b = 0 $$ b=0 $$ and 5000 s mm-2 . The effects of varying maximum b-value ( b max $$ {b}_{\mathrm{max}} $$ ), number of b-value shells, and the effects of Rician noise were investigated. RESULTS: QDTI measures showed b max $$ {b}_{\mathrm{max}} $$ dependence, most significantly for α $$ \upalpha $$ in white matter, which monotonically decreased with higher b max $$ {b}_{\mathrm{max}} $$ leading to improved tissue contrast. Optimized 2 b-value shell acquisitions showed small systematic differences in QDTI measures relative to MbR values, with overestimation of D 1 , 2 $$ \kern0.50em {D}_{1,2} $$ and underestimation of α $$ \upalpha $$ in white matter, and overestimation of D 1 , 2 $$ {D}_{1,2} $$ and α $$ \upalpha $$ anisotropies in gray and white matter. Additional shells improved the accuracy, precision, and reliability of QDTI estimates with 3 and 4 shells at b max = 5000 $$ {b}_{\mathrm{max}}=5000 $$  s mm-2 , and 4 b-value shells at b max = 3960 $$ {b}_{\mathrm{max}}=3960 $$  s mm-2 , providing minimal bias in D 1 , 2 $$ {D}_{1,2} $$ and α $$ \upalpha $$ compared to the MbR. CONCLUSION: A highly detailed optimization of non-Gaussian dMRI for in vivo brain imaging was performed. QDI provided robust parameterization of non-Gaussian diffusion signal decay in clinically feasible imaging times with high reliability, accuracy, and precision of QDTI measures.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Sustancia Blanca , Anisotropía , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen de Difusión por Resonancia Magnética/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados
3.
Alzheimers Dement ; 18(12): 2393-2402, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35135037

RESUMEN

INTRODUCTION: There are few randomized clinical trials in vascular cognitive impairment (VCI). This trial tested the hypothesis that the PDE5 inhibitor tadalafil, a widely used vasodilator, increases cerebral blood flow (CBF) in older people with symptomatic small vessel disease, the main cause of VCI. METHODS: In a double-blind, placebo-controlled, cross-over trial, participants received tadalafil (20 mg) and placebo on two visits ≥7 days apart (randomized to order of treatment). The primary endpoint, change in subcortical CBF, was measured by arterial spin labelling. RESULTS: Tadalafil increased CBF non-significantly in all subcortical areas (N = 55, age: 66.8 (8.6) years) with greatest treatment effect within white matter hyperintensities (+9.8%, P = .0960). There were incidental treatment effects on systolic and diastolic blood pressure (-7.8, -4.9 mmHg; P < .001). No serious adverse events were observed. DISCUSSION: This trial did not identify a significant treatment effect of single-administration tadalafil on subcortical CBF. To detect treatment effects may require different dosing regimens.


Asunto(s)
Disfunción Cognitiva , Humanos , Anciano , Tadalafilo/uso terapéutico , Disfunción Cognitiva/tratamiento farmacológico , Método Doble Ciego
5.
Neuroimage ; 211: 116606, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32032739

RESUMEN

To enable application of non-Gaussian diffusion magnetic resonance imaging (dMRI) techniques in large-scale clinical trials and facilitate translation to clinical practice there is a requirement for fast, high contrast, techniques that are sensitive to changes in tissue structure which provide diagnostic signatures at the early stages of disease. Here we describe a new way to compress the acquisition of multi-shell b-value diffusion data, Quasi-Diffusion MRI (QDI), which provides a probe of subvoxel tissue complexity using short acquisition times (1-4 â€‹min). We also describe a coherent framework for multi-directional diffusion gradient acquisition and data processing that allows computation of rotationally invariant quasi-diffusion tensor imaging (QDTI) maps. QDI is a quantitative technique that is based on a special case of the Continuous Time Random Walk model of diffusion dynamics and assumes the presence of non-Gaussian diffusion properties within tissue microstructure. QDI parameterises the diffusion signal attenuation according to the rate of decay (i.e. diffusion coefficient, D in mm2 s-1) and the shape of the power law tail (i.e. the fractional exponent, α). QDI provides analogous tissue contrast to Diffusional Kurtosis Imaging (DKI) by calculation of normalised entropy of the parameterised diffusion signal decay curve, Hn, but does so without the limitations of a maximum b-value. We show that QDI generates images with superior tissue contrast to conventional diffusion imaging within clinically acceptable acquisition times of between 84 and 228 â€‹s. We show that QDI provides clinically meaningful images in cerebral small vessel disease and brain tumour case studies. Our initial findings suggest that QDI may be added to routine conventional dMRI acquisitions allowing simple application in clinical trials and translation to the clinical arena.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Modelos Teóricos , Neuroimagen/métodos , Sustancia Blanca/diagnóstico por imagen , Adulto , Anciano , Imagen de Difusión por Resonancia Magnética/normas , Imagen de Difusión Tensora/métodos , Imagen de Difusión Tensora/normas , Femenino , Humanos , Masculino , Neuroimagen/normas , Adulto Joven
6.
Stroke ; 50(10): 2775-2782, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31510902

RESUMEN

Background and Purpose- Cerebral small vessel disease (SVD) is the most common cause of vascular cognitive impairment, with a significant proportion of cases going on to develop dementia. We explore the extent to which diffusion tensor image segmentation technique (DSEG; which characterizes microstructural damage across the cerebrum) predicts both degree of cognitive decline and conversion to dementia, and hence may provide a useful prognostic procedure. Methods- Ninety-nine SVD patients (aged 43-89 years) underwent annual magnetic resonance imaging scanning (for 3 years) and cognitive assessment (for 5 years). DSEG-θ was used as a whole-cerebrum measure of SVD severity. Dementia diagnosis was based Diagnostic and Statistical Manual of Mental Disorders V criteria. Cox regression identified which DSEG measures and vascular risk factors were related to increased risk of dementia. Linear discriminant analysis was used to classify groups of stable versus subsequent dementia diagnosis individuals. Results- DSEG-θ was significantly related to decline in executive function and global cognition (P<0.001). Eighteen (18.2%) patients converted to dementia. Baseline DSEG-θ predicted dementia with a balanced classification rate=75.95% and area under the receiver operating characteristic curve=0.839. The best classification model included baseline DSEG-θ, change in DSEG-θ, age, sex, and premorbid intelligence quotient (balanced classification rate of 79.65%; area under the receiver operating characteristic curve=0.903). Conclusions- DSEG is a fully automatic technique that provides an accurate method for assessing brain microstructural damage in SVD from a single imaging modality (diffusion tensor imaging). DSEG-θ is an important tool in identifying SVD patients at increased risk of developing dementia and has potential as a clinical marker of SVD severity.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Demencia/diagnóstico por imagen , Demencia/etiología , Interpretación de Imagen Asistida por Computador/métodos , Adulto , Anciano , Anciano de 80 o más Años , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Imagen de Difusión Tensora/métodos , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad
7.
Stroke ; 49(7): 1656-1661, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29866751

RESUMEN

BACKGROUND AND PURPOSE: Magnetic resonance imaging may be useful to assess disease severity in cerebral small vessel disease (SVD), identify those individuals who are most likely to progress to dementia, monitor disease progression, and act as surrogate markers to test new therapies. Texture analysis extracts information on the relationship between signal intensities of neighboring voxels. A potential advantage over techniques, such as diffusion tensor imaging, is that it can be used on clinically obtained magnetic resonance sequences. We determined whether texture parameters (TP) were abnormal in SVD, correlated with cognitive impairment, predicted cognitive decline, or conversion to dementia. METHODS: In the prospective SCANS study (St George's Cognition and Neuroimaging in Stroke), we assessed TP in 121 individuals with symptomatic SVD at baseline, 99 of whom attended annual cognitive testing for 5 years. Conversion to dementia was recorded for all subjects during the 5-year period. Texture analysis was performed on fluid-attenuated inversion recovery and T1-weighted images. The TP obtained from the SVD cohort were cross-sectionally compared with 54 age-matched controls scanned on the same magnetic resonance imaging system. RESULTS: There were highly significant differences in several TP between SVD cases and controls. Within the SVD population, TP were highly correlated to other magnetic resonance imaging parameters (brain volume, white matter lesion volume, lacune count). TP correlated with executive function and global function at baseline and predicted conversion to dementia, after controlling for age, sex, premorbid intelligence quotient, and magnetic resonance parameters. CONCLUSIONS: TP, which can be obtained from routine clinical images, are abnormal in SVD, and the degree of abnormality correlates with executive dysfunction and global cognition at baseline and decline during 5 years. TP may be useful to assess disease severity in clinically collected data. This needs testing in data clinically acquired across multiple sites.


Asunto(s)
Encéfalo/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Trastornos del Conocimiento/diagnóstico por imagen , Imagen de Difusión Tensora , Imagen por Resonancia Magnética , Anciano , Anciano de 80 o más Años , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Trastornos del Conocimiento/complicaciones , Progresión de la Enfermedad , Función Ejecutiva , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Neuroimagen
8.
Stroke ; 49(3): 586-593, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29438074

RESUMEN

BACKGROUND AND PURPOSE: Cerebral small-vessel disease is a major cause of cognitive impairment. Perivascular spaces (PvS) occur in small-vessel disease, but their relationship to cognitive impairment remains uncertain. One reason may be difficulty in distinguishing between lacunes and PvS. We determined the relationship between baseline PvS score and PvS volume with change in cognition over a 5-year follow-up. We compared this to the relationship between baseline lacune count and total lacune volume with cognition. In addition, we examined change in PvS volume over time. METHODS: Data from the prospective SCANS study (St Georges Cognition and Neuroimaging in Stroke) of patients with symptomatic lacunar stroke and confluent leukoaraiosis were used (n=121). Multimodal magnetic resonance imaging was performed annually for 3 years and neuropsychological testing annually for 5 years. Lacunes were manually identified and distinguished from PvS. PvS were rated using a validated visual rating scale, and PvS volumes calculated using T1-weighted images. Linear mixed-effect models were used to determine the impact of PvS and lacunes on cognition. RESULTS: Baseline PvS scores or volumes showed no association with cognitive indices. No change was detectable in PvS volumes over the 3 years. In contrast, baseline lacunes associated with all cognitive indices and predicted cognitive decline over the 5-year follow-up. CONCLUSIONS: Although a feature of small-vessel disease, PvS are not a predictor of cognitive decline, in contrast to lacunes. This study highlights the importance of carefully differentiating between lacunes and PvS in studies investigating vascular cognitive impairment.


Asunto(s)
Disfunción Cognitiva , Imagen por Resonancia Magnética , Imagen Multimodal , Accidente Vascular Cerebral Lacunar , Anciano , Anciano de 80 o más Años , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Disfunción Cognitiva/fisiopatología , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Accidente Vascular Cerebral Lacunar/complicaciones , Accidente Vascular Cerebral Lacunar/diagnóstico por imagen , Accidente Vascular Cerebral Lacunar/fisiopatología
9.
Rheumatol Int ; 38(8): 1429-1435, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29936571

RESUMEN

OBJECTIVE: Increasing evidence supports the role of central sensitisation in osteoarthritis (OA) pain. In this study, we used neuroimaging to compare pain-processing regions of the brain in participants with and without hand OA. We then assessed for volumetric changes in these brain regions following treatment with centrally acting analgesics. METHODS: Participants with hand OA (n = 28) underwent T1-weighted MRI of the brain before and after 12 weeks of treatment with pregabalin, duloxetine or placebo. Grey matter volume in the anterior cingulate cortex (ACC), insular cortex and thalamus was compared to non-OA control subjects (n = 11) using FreeSurfer regional volumetric analysis and voxel-based morphometry, and evaluated for differences pre- and post-treatment. RESULTS: Relative to non-OA controls, hand OA participants had areas of reduced grey matter volume in the ACC at baseline (p = 0.007). Regional volumetric differences in the ACC persisted after 13 weeks' treatment with pregabalin or duloxetine (p = 0.004) with no significant differences between treatment cohorts, despite improvements in NRS pain scores for pregabalin (p = 0.005) and duloxetine (p = 0.050). The ACC grey matter changes persisted despite a significant improvement in pain in the pregabalin and duloxetine groups vs. placebo. No structural differences were observed in the insular cortex or thalamus at baseline or following treatment. CONCLUSION: Our study found evidence of reduced ACC grey matter volume in participants with hand arthritis that persisted after treatment with centrally acting analgesics pregabalin and duloxetine, respectively. The sustained changes observed in the ACC in our study could reflect the relatively short duration of treatment, or that the differences observed are irreversible volume changes due to chronic pain that are established over time.


Asunto(s)
Sustancia Gris/patología , Giro del Cíngulo/patología , Osteoartritis/patología , Anciano , Analgésicos/administración & dosificación , Análisis de Varianza , Progresión de la Enfermedad , Método Doble Ciego , Clorhidrato de Duloxetina/administración & dosificación , Femenino , Sustancia Gris/diagnóstico por imagen , Giro del Cíngulo/diagnóstico por imagen , Articulaciones de la Mano , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Osteoartritis/tratamiento farmacológico , Dimensión del Dolor/métodos , Pregabalina/administración & dosificación
10.
Stroke ; 48(10): 2799-2804, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28855392

RESUMEN

BACKGROUND AND PURPOSE: We tested whether blood-brain barrier dysfunction in subcortical white matter is associated with white matter abnormalities or risk of clinical dementia in older people (n=126; mean age 86.4, SD: 7.7 years) in the MRC CFAS (Medical Research Council Cognitive Function and Ageing Study). METHODS: Using digital pathology, we quantified blood-brain barrier dysfunction (defined by immunohistochemical labeling for the plasma marker fibrinogen). This was assessed within subcortical white matter tissue samples harvested from postmortem T2 magnetic resonance imaging (MRI)-detected white matter hyperintensities, from normal-appearing white matter (distant from coexistent MRI-defined hyperintensities), and from equivalent areas in MRI normal brains. Histopathologic lesions were defined using a marker for phagocytic microglia (CD68, clone PGM1). RESULTS: Extent of fibrinogen labeling was not significantly associated with white matter abnormalities defined either by MRI (odds ratio, 0.90; 95% confidence interval, 0.79-1.03; P=0.130) or by histopathology (odds ratio, 0.93; 95% confidence interval, 0.77-1.12; P=0.452). Among participants with normal MRI (no detectable white matter hyperintensities), increased fibrinogen was significantly related to decreased risk of clinical dementia (odds ratio, 0.74; 95% confidence interval, 0.58-0.94; P=0.013). Among participants with histological lesions, increased fibrinogen was related to increased risk of dementia (odds ratio, 2.26; 95% confidence interval, 1.25-4.08; P=0.007). CONCLUSIONS: Our data suggest that some degree of blood-brain barrier dysfunction is common in older people and that this may be related to clinical dementia risk, additional to standard MRI biomarkers.


Asunto(s)
Barrera Hematoencefálica/patología , Demencia/patología , Sustancia Blanca/patología , Anciano , Anciano de 80 o más Años , Barrera Hematoencefálica/fisiopatología , Demencia/fisiopatología , Femenino , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética/métodos , Masculino , Estudios Prospectivos , Sustancia Blanca/fisiopatología
11.
Neuroimage ; 158: 466-479, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-27639355

RESUMEN

The thalamus consists of multiple nuclei that have been previously defined by their chemoarchitectual and cytoarchitectual properties ex vivo. These form discrete, functionally specialized, territories with topographically arranged graduated patterns of connectivity. However, previous in vivo thalamic parcellation with MRI has been hindered by substantial inter-individual variability or discrepancies between MRI derived segmentations and histological sections. Here, we use the Euclidean distance to characterize probabilistic tractography distributions derived from diffusion MRI. We generate 12 feature maps by performing voxel-wise parameterization of the distance histograms (6 feature maps) and the distribution of three-dimensional distance transition gradients generated by applying a Sobel kernel to the distance metrics. We use these 12 feature maps to delineate individual thalamic nuclei, then extract the tractography profiles for each and calculate the voxel-wise tractography gradients. Within each thalamic nucleus, the tractography gradients were topographically arranged as distinct non-overlapping cortical networks with transitory overlapping mid-zones. This work significantly advances quantitative segmentation of the thalamus in vivo using 3T MRI. At an individual subject level, the thalamic segmentations consistently achieve a close relationship with a priori histological atlas information, and resolve in vivo topographic gradients within each thalamic nucleus for the first time. Additionally, these techniques allow individual thalamic nuclei to be closely aligned across large populations and generate measures of inter-individual variability that can be used to study both basic function and pathological processes in vivo.


Asunto(s)
Mapeo Encefálico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Núcleos Talámicos/anatomía & histología , Núcleos Talámicos/fisiología , Adulto , Imagen de Difusión Tensora/métodos , Femenino , Humanos , Masculino , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología
12.
Hum Brain Mapp ; 38(4): 1751-1766, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27935154

RESUMEN

Cerebral small vessel disease (SVD) is an important cause of vascular cognitive impairment. Recent studies have demonstrated that structural connectivity of brain networks in SVD is disrupted. However, little is known about the extent and location of the reduced connectivity in SVD. Here they investigate the rich club organisation-a set of highly connected and interconnected regions-and investigate whether there is preferential rich club disruption in SVD. Diffusion tensor imaging (DTI) and cognitive assessment were performed in a discovery sample of SVD patients (n = 115) and healthy control subjects (n = 50). Results were replicated in an independent dataset (49 SVD with confluent WMH cases and 108 SVD controls) with SVD patients having a similar SVD phenotype to that of the discovery cases. Rich club organisation was examined in structural networks derived from DTI followed by deterministic tractography. Structural networks in SVD patients were less dense with lower network strength and efficiency. Reduced connectivity was found in SVD, which was preferentially located in the connectivity between the rich club nodes rather than in the feeder and peripheral connections, a finding confirmed in both datasets. In discovery dataset, lower rich club connectivity was associated with lower scores on psychomotor speed (ß = 0.29, P < 0.001) and executive functions (ß = 0.20, P = 0.009). These results suggest that SVD is characterized by abnormal connectivity between rich club hubs in SVD and provide evidence that abnormal rich club organisation might contribute to the development of cognitive impairment in SVD. Hum Brain Mapp 38:1751-1766, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Trastornos del Conocimiento/diagnóstico por imagen , Trastornos del Conocimiento/etiología , Imagen de Difusión Tensora , Vías Nerviosas/diagnóstico por imagen , Anciano , Anciano de 80 o más Años , Anisotropía , Conectoma , Bases de Datos Bibliográficas/estadística & datos numéricos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Fibras Nerviosas Mielínicas/patología , Desempeño Psicomotor/fisiología , Análisis de Regresión , Índice de Severidad de la Enfermedad
13.
Clin Sci (Lond) ; 131(12): 1361-1373, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28487471

RESUMEN

Diffusion tensor imaging (DTI) metrics such as fractional anisotropy (FA) and mean diffusivity (MD) have been proposed as clinical trial markers of cerebral small vessel disease (SVD) due to their associations with outcomes such as cognition. However, studies investigating this have been predominantly single-centre. As clinical trials are likely to be multisite, further studies are required to determine whether associations with cognition of similar strengths can be detected in a multicentre setting. One hundred and nine patients (mean age =68 years) with symptomatic lacunar infarction and confluent white matter hyperintensities (WMH) on MRI was recruited across six sites as part of the PRESERVE DTI substudy. After handling missing data, 3T-MRI scanning was available from five sites on five scanner models (Siemens and Philips), alongside neuropsychological and quality of life (QoL) assessments. FA median and MD peak height were extracted from DTI histogram analysis. Multiple linear regressions were performed, including normalized brain volume, WMH lesion load, and n° lacunes as covariates, to investigate the association of FA and MD with cognition and QoL. DTI metrics from all white matter were significantly associated with global cognition (standardized ß =0.268), mental flexibility (ß =0.306), verbal fluency (ß =0.376), and Montreal Cognitive Assessment (MoCA) (ß =0.273). The magnitudes of these associations were comparable with those previously reported from single-centre studies found in a systematic literature review. In this multicentre study, we confirmed associations between DTI parameters and cognition, which were similar in strength to those found in previous single-centre studies. The present study supports the use of DTI metrics as biomarkers of disease progression in multicentre studies.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Trastornos del Conocimiento/diagnóstico por imagen , Imagen de Difusión Tensora , Leucoencefalopatías/diagnóstico por imagen , Imagen por Resonancia Magnética , Microvasos/diagnóstico por imagen , Anciano , Enfermedades de los Pequeños Vasos Cerebrales/fisiopatología , Enfermedades de los Pequeños Vasos Cerebrales/psicología , Cognición , Trastornos del Conocimiento/fisiopatología , Trastornos del Conocimiento/psicología , Progresión de la Enfermedad , Inglaterra , Femenino , Humanos , Leucoencefalopatías/fisiopatología , Leucoencefalopatías/psicología , Modelos Lineales , Masculino , Microvasos/fisiopatología , Persona de Mediana Edad , Pruebas Neuropsicológicas , Valor Predictivo de las Pruebas , Calidad de Vida , Accidente Vascular Cerebral Lacunar/diagnóstico por imagen , Accidente Vascular Cerebral Lacunar/fisiopatología , Accidente Vascular Cerebral Lacunar/psicología , Encuestas y Cuestionarios
14.
Brain ; 139(Pt 4): 1136-51, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26936939

RESUMEN

Cerebral small vessel disease is a common condition associated with lacunar stroke, cognitive impairment and significant functional morbidity. White matter hyperintensities and brain atrophy, seen on magnetic resonance imaging, are correlated with increasing disease severity. However, how the two are related remains an open question. To better define the relationship between white matter hyperintensity growth and brain atrophy, we applied a semi-automated magnetic resonance imaging segmentation analysis pipeline to a 3-year longitudinal cohort of 99 subjects with symptomatic small vessel disease, who were followed-up for ≥1 years. Using a novel two-stage warping pipeline with tissue repair step, voxel-by-voxel rate of change maps were calculated for each tissue class (grey matter, white matter, white matter hyperintensities and lacunes) for each individual. These maps capture both the distribution of disease and spatial information showing local rates of growth and atrophy. These were analysed to answer three primary questions: first, is there a relationship between whole brain atrophy and magnetic resonance imaging markers of small vessel disease (white matter hyperintensities or lacune volume)? Second, is there regional variation within the cerebral white matter in the rate of white matter hyperintensity progression? Finally, are there regionally specific relationships between the rates of white matter hyperintensity progression and cortical grey matter atrophy? We demonstrate that the rates of white matter hyperintensity expansion and grey matter atrophy are strongly correlated (Pearson's R = -0.69, P < 1 × 10(-7)), and significant grey matter loss and whole brain atrophy occurs annually (P < 0.05). Additionally, the rate of white matter hyperintensity growth was heterogeneous, occurring more rapidly within long association fasciculi. Using voxel-based quantification (family-wise error corrected P < 0.05), we show the rate of white matter hyperintensity progression is associated with increases in cortical grey matter atrophy rates, in the medial-frontal, orbito-frontal, parietal and occipital regions. Conversely, increased rates of global grey matter atrophy are significantly associated with faster white matter hyperintensity growth in the frontal and parietal regions. Together, these results link the progression of white matter hyperintensities with increasing rates of regional grey matter atrophy, and demonstrate that grey matter atrophy is the major contributor to whole brain atrophy in symptomatic cerebral small vessel disease. These measures provide novel insights into the longitudinal pathogenesis of small vessel disease, and imply that therapies aimed at reducing progression of white matter hyperintensities via end-arteriole damage may protect against secondary brain atrophy and consequent functional morbidity.


Asunto(s)
Encéfalo/patología , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico , Enfermedades de los Pequeños Vasos Cerebrales/epidemiología , Progresión de la Enfermedad , Leucoaraiosis/diagnóstico , Leucoaraiosis/epidemiología , Anciano , Anciano de 80 o más Años , Atrofia/patología , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Estudios Prospectivos
15.
BMC Pulm Med ; 17(1): 92, 2017 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-28629404

RESUMEN

BACKGROUND: Brain pathology is relatively unexplored in chronic obstructive pulmonary disease (COPD). This study is a comprehensive investigation of grey matter (GM) and white matter (WM) changes and how these relate to disease severity and cognitive function. METHODS: T1-weighted and fluid-attenuated inversion recovery images were acquired for 31 stable COPD patients (FEV1 52.1% pred., PaO2 10.1 kPa) and 24 age, gender-matched controls. T1-weighted images were segmented into GM, WM and cerebrospinal fluid (CSF) tissue classes using a semi-automated procedure optimised for use with this cohort. This procedure allows, cohort-specific anatomical features to be captured, white matter lesions (WMLs) to be identified and includes a tissue repair step to correct for misclassification caused by WMLs. Tissue volumes and cortical thickness were calculated from the resulting segmentations. Additionally, a fully-automated pipeline was used to calculate localised cortical surface and gyrification. WM and GM tissue volumes, the tissue volume ratio (indicator of atrophy), average cortical thickness, and the number, size, and volume of white matter lesions (WMLs) were analysed across the whole-brain and regionally - for each anatomical lobe and the deep-GM. The hippocampus was investigated as a region-of-interest. Localised (voxel-wise and vertex-wise) variations in cortical gyrification, GM density and cortical thickness, were also investigated. Statistical models controlling for age and gender were used to test for between-group differences and within-group correlations. Robust statistical approaches ensured the family-wise error rate was controlled in regional and local analyses. RESULTS: There were no significant differences in global, regional, or local measures of GM between patients and controls, however, patients had an increased volume (p = 0.02) and size (p = 0.04) of WMLs. In patients, greater normalised hippocampal volume positively correlated with exacerbation frequency (p = 0.04), and greater WML volume was associated with worse episodic memory (p = 0.05). A negative relationship between WML and FEV1 % pred. approached significance (p = 0.06). CONCLUSIONS: There was no evidence of cerebral atrophy within this cohort of stable COPD patients, with moderate airflow obstruction. However, there were indications of WM damage consistent with an ischaemic pathology. It cannot be concluded whether this represents a specific COPD, or smoking-related, effect.


Asunto(s)
Cerebro/patología , Cognición , Sustancia Gris/patología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Sustancia Blanca/patología , Anciano , Atrofia/diagnóstico por imagen , Cerebro/diagnóstico por imagen , Femenino , Volumen Espiratorio Forzado , Sustancia Gris/diagnóstico por imagen , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Humanos , Imagen por Resonancia Magnética , Masculino , Memoria Episódica , Persona de Mediana Edad , Neuroimagen , Tamaño de los Órganos , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Índice de Severidad de la Enfermedad , Sustancia Blanca/diagnóstico por imagen
16.
Magn Reson Med ; 75(6): 2505-16, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26173745

RESUMEN

PURPOSE: Glioblastoma multiforme (GBM) and brain metastasis (MET) are the most common intra-axial brain neoplasms in adults and often pose a diagnostic dilemma using standard clinical MRI. These tumor types require different oncological and surgical management, which subsequently influence prognosis and clinical outcome. METHODS: Here, we hypothesize that GBM and MET possess different three-dimensional (3D) morphological attributes based on their physical characteristics. A 3D morphological analysis was applied on the tumor surface defined by our diffusion tensor imaging (DTI) segmentation technique. It segments the DTI data into clusters representing different isotropic and anisotropic water diffusion characteristics, from which a distinct surface boundary between healthy and pathological tissue was identified. Morphometric features of shape index and curvedness were then computed for each tumor surface and used to build a morphometric model of GBM and MET pathology with the goal of developing a tumor classification method based on shape characteristics. RESULTS: Our 3D morphometric method was applied on 48 untreated brain tumor patients. Cross-validation resulted in a 95.8% accuracy classification with only two shape features needed and that can be objectively derived from quantitative imaging methods. CONCLUSION: The proposed 3D morphometric analysis framework can be applied to distinguish GBMs from solitary METs. Magn Reson Med 75:2505-2516, 2016. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Glioblastoma/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Algoritmos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Neoplasias Encefálicas/patología , Glioblastoma/patología , Humanos , Reconocimiento de Normas Patrones Automatizadas
17.
Brain ; 138(Pt 12): 3803-15, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26490330

RESUMEN

Small vessel disease is a stroke subtype characterized by pathology of the small perforating arteries, which supply the sub-cortical structures of the brain. Small vessel disease is associated with high rates of apathy and depression, thought to be caused by a disruption of white matter cortical-subcortical pathways important for emotion regulation. It provides an important biological model to investigate mechanisms underlying these key neuropsychiatric disorders. This study investigated whether apathy and depression can be distinguished in small vessel disease both in terms of their relative relationship with white matter microstructure, and secondly whether they can independently predict functional outcomes. Participants with small vessel disease (n = 118; mean age = 68.9 years; 65% male) defined as a clinical and magnetic resonance imaging confirmed lacunar stroke with radiological leukoaraiosis were recruited and completed cognitive testing, measures of apathy, depression, quality of life and diffusion tensor imaging. Healthy controls (n = 398; mean age = 64.3 years; 52% male) were also studied in order to interpret the degree of apathy and depression found within the small vessel disease group. Firstly, a multilevel structural equation modelling approach was used to identify: (i) the relationships between median fractional anisotropy and apathy, depression and cognitive impairment; and (ii) if apathy and depression make independent contributions to quality of life in patients with small vessel disease. Secondly, we applied a whole-brain voxel-based analysis to investigate which regions of white matter were associated with apathy and depression, controlling for age, gender and cognitive functioning. Structural equation modelling results indicated both apathy (r = -0.23, P ≤ 0.001) and depression (r = -0.41, P ≤ 0.001) were independent predictors of quality of life. A reduced median fractional anisotropy was significantly associated with apathy (r = -0.38, P ≤ 0.001), but not depression (r = -0.16, P = 0.09). On voxel-based analysis, apathy was associated with widespread reduction in white matter integrity, with the strongest effects in limbic association tracts such as the anterior cingulum, fornix and uncinate fasciculus. In contrast, when controlling for apathy, we found no significant relationship between our white matter parameters and symptoms of depression. In conclusion, white matter microstructural changes in small vessel disease are associated with apathy but not directly with depressive symptoms. These results suggest that apathy, but not depression, in small vessel disease is related to damage to cortical-subcortical networks associated with emotion regulation, reward and goal-directed behaviour.


Asunto(s)
Apatía , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Enfermedades de los Pequeños Vasos Cerebrales/patología , Depresión/patología , Depresión/fisiopatología , Sustancia Blanca/patología , Sustancia Blanca/fisiopatología , Anciano , Anisotropía , Encéfalo/patología , Enfermedades de los Pequeños Vasos Cerebrales/fisiopatología , Enfermedades de los Pequeños Vasos Cerebrales/psicología , Trastornos del Conocimiento/complicaciones , Trastornos del Conocimiento/patología , Depresión/complicaciones , Depresión/psicología , Imagen de Difusión Tensora , Femenino , Humanos , Imagen por Resonancia Magnética , Neuroimagen , Calidad de Vida
18.
Magn Reson Med ; 74(3): 868-78, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25199640

RESUMEN

PURPOSE: To investigate whether nonlinear dimensionality reduction improves unsupervised classification of (1) H MRS brain tumor data compared with a linear method. METHODS: In vivo single-voxel (1) H magnetic resonance spectroscopy (55 patients) and (1) H magnetic resonance spectroscopy imaging (MRSI) (29 patients) data were acquired from histopathologically diagnosed gliomas. Data reduction using Laplacian eigenmaps (LE) or independent component analysis (ICA) was followed by k-means clustering or agglomerative hierarchical clustering (AHC) for unsupervised learning to assess tumor grade and for tissue type segmentation of MRSI data. RESULTS: An accuracy of 93% in classification of glioma grade II and grade IV, with 100% accuracy in distinguishing tumor and normal spectra, was obtained by LE with unsupervised clustering, but not with the combination of k-means and ICA. With (1) H MRSI data, LE provided a more linear distribution of data for cluster analysis and better cluster stability than ICA. LE combined with k-means or AHC provided 91% accuracy for classifying tumor grade and 100% accuracy for identifying normal tissue voxels. Color-coded visualization of normal brain, tumor core, and infiltration regions was achieved with LE combined with AHC. CONCLUSION: The LE method is promising for unsupervised clustering to separate brain and tumor tissue with automated color-coding for visualization of (1) H MRSI data after cluster analysis.


Asunto(s)
Análisis por Conglomerados , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Dinámicas no Lineales , Adulto , Algoritmos , Neoplasias Encefálicas/química , Neoplasias Encefálicas/patología , Humanos , Reconocimiento de Normas Patrones Automatizadas
19.
NMR Biomed ; 28(4): 468-85, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25802212

RESUMEN

The purpose of this work was to assess the reproducibility of diffusion imaging, and in particular the apparent diffusion coefficient (ADC), intra-voxel incoherent motion (IVIM) parameters and diffusion tensor imaging (DTI) parameters, across multiple centres using clinically available protocols with limited harmonization between sequences. An ice-water phantom and nine healthy volunteers were scanned across fives centres on eight scanners (four Siemens 1.5T, four Philips 3T). The mean ADC, IVIM parameters (diffusion coefficient D and perfusion fraction f) and DTI parameters (mean diffusivity MD and fractional anisotropy FA), were measured in grey matter, white matter and specific brain sub-regions. A mixed effect model was used to measure the intra- and inter-scanner coefficient of variation (CV) for each of the five parameters. ADC, D, MD and FA had a good intra- and inter-scanner reproducibility in both grey and white matter, with a CV ranging between 1% and 7.4%; mean 2.6%. Other brain regions also showed high levels of reproducibility except for small structures such as the choroid plexus. The IVIM parameter f had a higher intra-scanner CV of 8.4% and inter-scanner CV of 24.8%. No major difference in the inter-scanner CV for ADC, D, MD and FA was observed when analysing the 1.5T and 3T scanners separately. ADC, D, MD and FA all showed good intra-scanner reproducibility, with the inter-scanner reproducibility being comparable or faring slightly worse, suggesting that using data from multiple scanners does not have an adverse effect compared with using data from the same scanner. The IVIM parameter f had a poorer inter-scanner CV when scanners of different field strengths were combined, and the parameter was also affected by the scan acquisition resolution. This study shows that the majority of diffusion MRI derived parameters are robust across 1.5T and 3T scanners and suitable for use in multi-centre clinical studies and trials.


Asunto(s)
Encéfalo/anatomía & histología , Imagen de Difusión por Resonancia Magnética/métodos , Neuroimagen/métodos , Adulto , Anisotropía , Agua Corporal , Difusión , Imagen de Difusión Tensora/métodos , Humanos , Hielo , Modelos Teóricos , Movimiento (Física) , Fantasmas de Imagen , Reproducibilidad de los Resultados , Agua , Sustancia Blanca/anatomía & histología
20.
NMR Biomed ; 27(9): 1103-11, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25066520

RESUMEN

The management and treatment of high-grade glioblastoma multiforme (GBM) and solitary metastasis (MET) are very different and influence the prognosis and subsequent clinical outcomes. In the case of a solitary MET, diagnosis using conventional radiology can be equivocal. Currently, a definitive diagnosis is based on histopathological analysis on a biopsy sample. Here, we present a computerised decision support framework for discrimination between GBM and solitary MET using MRI, which includes: (i) a semi-automatic segmentation method based on diffusion tensor imaging; (ii) two-dimensional morphological feature extraction and selection; and (iii) a pattern recognition module for automated tumour classification. Ground truth was provided by histopathological analysis from pre-treatment stereotactic biopsy or at surgical resection. Our two-dimensional morphological analysis outperforms previous methods with high cross-validation accuracy of 97.9% and area under the receiver operating characteristic curve of 0.975 using a neural networks-based classifier.


Asunto(s)
Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Imagen de Difusión Tensora/métodos , Glioblastoma/patología , Interpretación de Imagen Asistida por Computador/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Algoritmos , Diagnóstico Diferencial , Femenino , Humanos , Aumento de la Imagen/métodos , Masculino , Redes Neurales de la Computación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA