Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 36(7): e22412, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35713587

RESUMEN

The cellular adaptive response to hypoxia relies on the expression of hypoxia-inducible factors (HIFs), HIF-1 and HIF-2. HIFs regulate global gene expression changes during hypoxia that are necessary for restoring oxygen homeostasis and promoting cell survival. In the early stages of hypoxia, HIF-1 is elevated, whereas at the later stages, HIF-2 becomes the predominant form. What governs the transition between the two HIFs (the HIF switch) and the role of miRNAs in this regulation are not completely clear. Genome-wide expression studies on the miRNA content of RNA-induced silencing complexes (RISC) in HUVECs exposed to hypoxia compared to the global miRNA-Seq analysis revealed very specific differences between these two populations. We analyzed the miRNA and mRNA composition of RISC at 2 h (mainly HIF-1 driven), 8 h (HIF-1 and HIF-2 elevated), and 16 h (mainly HIF-2 driven) in a gene ontology context. This allowed for determining the direct impact of the miRNAs in modulating the cellular signaling pathways involved in the hypoxic adaptive response. Our results indicate that the miRNA-mRNA RISC components control the adaptive responses, and this does not always rely on the miRNA transcriptional elevations during hypoxia. Furthermore, we demonstrate that the hypoxic levels of the vast majority of HIF-1-dependent miRNAs (including miR-210-3p) are also HIF-2 dependent and that HIF-2 governs the expression of 11 specific miRNAs. In summary, the switch from HIF-1 to HIF-2 during hypoxia provides an important level of miRNA-driven control in the adaptive pathways in endothelial cells.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , MicroARNs , Complejo Silenciador Inducido por ARN , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Hipoxia de la Célula/genética , Células Endoteliales/metabolismo , Humanos , Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo
2.
Cell Commun Signal ; 21(1): 322, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946177

RESUMEN

The unfolded protein response is a survival signaling pathway that is induced during various types of ER stress. Here, we determine IRE1's role in miRNA regulation during ER stress. During induction of ER stress in human bronchial epithelial cells, we utilized next generation sequencing to demonstrate that pre-miR-301a and pre-miR-106b were significantly increased in the presence of an IRE1 inhibitor. Conversely, using nuclear-cytosolic fractionation on ER stressed cells, we found that these pre-miRNAs were decreased in the nuclear fractions without the IRE1 inhibitor. We also found that miR-301a-3p targets the proapoptotic UPR factor growth arrest and DNA-damage-inducible alpha (GADD45A). Inhibiting miR-301a-3p levels or blocking its predicted miRNA binding site in GADD45A's 3' UTR with a target protector increased GADD45A mRNA expression. Furthermore, an elevation of XBP1s expression had no effect on GADD45A mRNA expression. We also demonstrate that the introduction of a target protector for the miR-301a-3p binding site in GADD45A mRNA during ER stress promoted cell death in the airway epithelial cells. In summary, these results indicate that IRE1's endonuclease activity is a two-edged sword that can splice XBP1 mRNA to stabilize survival or degrade pre-miR-301a to elevate GADD45A mRNA expression to lead to apoptosis. Video Abstract.


Asunto(s)
MicroARNs , Humanos , Apoptosis/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/genética , Regulación hacia Arriba
3.
Molecules ; 28(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37764516

RESUMEN

Ubiquitin, a small protein, is well known for tagging target proteins through a cascade of enzymatic reactions that lead to protein degradation. The ubiquitin tag, apart from its signaling role, is paramount in destabilizing the modified protein. Here, we explore the complex role of ubiquitin-mediated protein destabilization in the intricate proteolysis process by the 26S proteasome. In addition, the significance of the so-called ubiquitin-independent pathway and the role of the 20S proteasome are considered. Next, we discuss the ubiquitin-proteasome system's interplay with pathogenic microorganisms and how the microorganisms manipulate this system to establish infection by a range of elaborate pathways to evade or counteract host responses. Finally, we focus on the mechanisms that rely either on (i) hijacking the host and on delivering pathogenic E3 ligases and deubiquitinases that promote the degradation of host proteins, or (ii) counteracting host responses through the stabilization of pathogenic effector proteins.

4.
Hum Mutat ; 43(1): 74-84, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34747535

RESUMEN

Constitutional LZTR1 or SMARCB1 pathogenic variants (PVs) have been found in ∼86% of familial and ∼40% of sporadic schwannomatosis cases. Hence, we performed massively parallel sequencing of the entire LZTR1, SMARCB1, and NF2 genomic loci in 35 individuals with schwannomas negative for constitutional first-hit PVs in the LZTR1/SMARCB1/NF2 coding sequences; however, with 22q deletion and/or a different NF2 PV in each tumor, including six cases with only one tumor available. Furthermore, we verified whether any other LZTR1/SMARCB1/NF2 (likely) PVs could be found in 16 cases carrying a SMARCB1 constitutional variant in the 3'-untranslated region (3'-UTR) c.*17C>T, c.*70C>T, or c.*82C>T. As no additional variants were found, functional studies were performed to clarify the effect of these 3'-UTR variants on the transcript. The 3'-UTR variants c.*17C>T and c.*82C>T showed pathogenicity by negatively affecting the SMARCB1 transcript level. Two novel deep intronic SMARCB1 variants, c.500+883T>G and c.500+887G>A, resulting in out-of-frame missplicing of intron 4, were identified in two unrelated individuals. Further resequencing of the entire repeat-masked genomics sequences of chromosome 22q in individuals negative for PVs in the SMARCB1/LZTR1/NF2 coding- and noncoding regions revealed five potential schwannomatosis-predisposing candidate genes, that is, MYO18B, NEFH, SGSM1, SGSM3, and SBF1, pending further verification.


Asunto(s)
Neurilemoma , Neurofibromatosis , Cromosomas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Neurilemoma/genética , Neurilemoma/patología , Neurofibromatosis/genética , Proteína SMARCB1/genética , Factores de Transcripción/genética
5.
J Cell Mol Med ; 26(14): 3950-3964, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35701366

RESUMEN

The acridanone derivative 5-dimethylaminopropylamino-8-hydroxytriazoloacridinone (C-1305) has been described as a potent inhibitor of cancer cell growth. Its mechanism of action in in vitro conditions was attributed, among others, to its ability to bind and stabilize the microtubule network and subsequently exhibit its tumour-suppressive effects in synergy with paclitaxel (PTX). Therefore, the objective of the present study was to analyse the effects of the combined treatment of C-1305 and PTX in vivo. In addition, considering the results of previous genomic analyses, particular attention was given to the effects of this treatment on tumour angiogenesis. Treatment with C-1305 revealed antitumor effect in A549 lung cancer cells, and combined treatment with PTX showed tendency to anticancer activity in HCT116 colon cancer xenografts. It also improved tumour blood perfusion in both tumour models. The plasma level of CCL2 was increased and that of PDGF was decreased after combined treatment with C-1305 and PTX. The experimental results showed that the levels of FGF1, TGF-ß and Ang-4 decreased, whereas the levels of ERK1/2 and Akt phosphorylation increased in HCT116 tumour tissue following combined treatment with both drugs. The results of in vitro capillary-like structure formation assay demonstrated the inhibiting effect of C-1305 on this process. Although previous in vitro and in vivo studies suggested a positive effect of C-1305 on cancer cells, combined treatment of HCT116 human colon and A549 lung cancer cells with both PTX and C-1305 in vivo showed that the antitumor activity was restricted and associated with the modulation of tumour angiogenesis.


Asunto(s)
Neoplasias del Colon , Neoplasias Pulmonares , Acridinas , Apoptosis , Neoplasias del Colon/tratamiento farmacológico , Xenoinjertos , Humanos , Pulmón/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Triazoles
6.
Cell Mol Biol Lett ; 27(1): 104, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36434495

RESUMEN

Pyrimidine 5'-nucleotidase deficiency is a rare erythrocyte enzymopathy. Here we report two cases of hemolytic anemia in brothers of Polish origin that are associated with a very rare mutation. Heterozygous deletion in the NT5C3A gene (c.444_446delGTT), inherited most likely from their asymptomatic mother, resulted in a single amino acid residue deletion (p.F149del) in cytosolic pyrimidine 5'-nucleotidase. However, only the mutated transcript was present in the reticulocyte transcriptome of both patients. Only residual activity of pyrimidine 5'-nucleotidase in the brothers' erythrocytes could be observed when compared with the controls, including their asymptomatic father and sister. Western blot showed no sign of the presence of 5'-nucleotidase protein in the erythrocytes of both studied patients. The 2.5-fold reduction of the purine/pyrimidine ratio observed only in the brothers' erythrocytes confirms the correlation of the results of molecular analysis, including whole-exome sequencing, with the phenotype of the pyrimidine 5'-nucleotidase deficiency. Altogether, our results may substantiate the hypothesis of the heterogeneity of the molecular basis of the defect involving both the mutation presented here and negative regulation of expression of the "normal" allele.


Asunto(s)
5'-Nucleotidasa , Anemia Hemolítica , Masculino , Humanos , 5'-Nucleotidasa/genética , Anemia Hemolítica/genética , Mutación/genética , Hermanos , Fenotipo
7.
Cell Mol Biol Lett ; 27(1): 109, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36482296

RESUMEN

The hypoxia-inducible factors (HIF) are transcription factors that activate the adaptive hypoxic response when oxygen levels are low. The HIF transcriptional program increases oxygen delivery by inducing angiogenesis and by promoting metabolic reprograming that favors glycolysis. The two major HIFs, HIF-1 and HIF-2, mediate this response during prolonged hypoxia in an overlapping and sequential fashion that is referred to as the HIF switch. Both HIF proteins consist of an unstable alpha chain and a stable beta chain. The instability of the alpha chains is mediated by prolyl hydroxylase (PHD) activity during normoxic conditions, which leads to ubiquitination and proteasomal degradation of the alpha chains. During normoxic conditions, very little HIF-1 or HIF-2 alpha-beta dimers are present because of PHD activity. During hypoxia, however, PHD activity is suppressed, and HIF dimers are stable. Here we demonstrate that HIF-1 expression is maximal after 4 h of hypoxia in primary endothelial cells and then is dramatically reduced by 8 h. In contrast, HIF-2 is maximal at 8 h and remains elevated up to 24 h. There are differences in the HIF-1 and HIF-2 transcriptional profiles, and therefore understanding how the transition between them occurs is important and not clearly understood. Here we demonstrate that the HIF-1 to HIF-2 transition during prolonged hypoxia is mediated by two mechanisms: (1) the HIF-1 driven increase in the glycolytic pathways that reactivates PHD activity and (2) the much less stable mRNA levels of HIF-1α (HIF1A) compared to HIF-2α (EPAS1) mRNA. We also demonstrate that the alpha mRNA levels directly correlate to the relative alpha protein levels, and therefore to the more stable HIF-2 expression during prolonged hypoxia.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Hipoxia de la Célula , Células Endoteliales , Subunidad alfa del Factor 1 Inducible por Hipoxia , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Oxígeno , Estabilidad del ARN , ARN Mensajero/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética
8.
Cell Mol Life Sci ; 78(21-22): 7061-7080, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34636989

RESUMEN

Accumulation of misfolded proteins in ER activates the unfolded protein response (UPR), a multifunctional signaling pathway that is important for cell survival. The UPR is regulated by three ER transmembrane sensors, one of which is inositol-requiring protein 1 (IRE1). IRE1 activates a transcription factor, X-box-binding protein 1 (XBP1), by removing a 26-base intron from XBP1 mRNA that generates spliced XBP1 mRNA (XBP1s). To search for XBP1 transcriptional targets, we utilized an XBP1s-inducible human cell line to limit XBP1 expression in a controlled manner. We also verified the identified XBP1-dependent genes with specific silencing of this transcription factor during pharmacological ER stress induction with both an N-linked glycosylation inhibitor (tunicamycin) and a non-competitive inhibitor of the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) (thapsigargin). We then compared those results to the XBP1s-induced cell line without pharmacological ER stress induction. Using next-generation sequencing followed by bioinformatic analysis of XBP1-binding motifs, we defined an XBP1 regulatory network and identified XBP1 as a repressor of PUMA (a proapoptotic gene) and IRE1 mRNA expression during the UPR. Our results indicate impairing IRE1 activity during ER stress conditions accelerates cell death in ER-stressed cells, whereas elevating XBP1 expression during ER stress using an inducible cell line correlated with a clear prosurvival effect and reduced PUMA protein expression. Although further studies will be required to test the underlying molecular mechanisms involved in the relationship between these genes with XBP1, these studies identify a novel repressive role of XBP1 during the UPR.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Endorribonucleasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , ARN Mensajero/genética , Proteína 1 de Unión a la X-Box/genética , Línea Celular , Línea Celular Tumoral , Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/genética , Células HaCaT , Células HeLa , Células Endoteliales de la Vena Umbilical Humana , Humanos , Transducción de Señal/genética , Respuesta de Proteína Desplegada/genética
9.
Cell Mol Biol Lett ; 26(1): 11, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33730996

RESUMEN

Inositol requiring enzyme 1 alpha (IRE1α) is one of three signaling sensors in the unfolding protein response (UPR) that alleviates endoplasmic reticulum (ER) stress in cells and functions to promote cell survival. During conditions of irrevocable stress, proapoptotic gene expression is induced to promote cell death. One of the three signaling stressors, IRE1α is an serine/threonine-protein kinase/endoribonuclease (RNase) that promotes nonconventional splicing of XBP1 mRNA that is translated to spliced XBP1 (XBP1s), an active prosurvival transcription factor. Interestingly, elevated IRE1α and XBP1s are both associated with poor cancer survival and drug resistance. In this study, we used next-generation sequencing analyses to demonstrate that triazoloacridone C-1305, a microtubule stabilizing agent that also has topoisomerase II inhibitory activity, dramatically decreases XBP1s mRNA levels and protein production during ER stress conditions, suggesting that C-1305 does this by decreasing IRE1α's endonuclease activity.


Asunto(s)
Acridinas/farmacología , Endorribonucleasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Empalme del ARN/genética , Triazoles/farmacología , Proteína 1 de Unión a la X-Box/genética , Acridinas/química , Línea Celular , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Himecromona/análogos & derivados , Himecromona/química , Himecromona/farmacología , Empalme del ARN/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Triazoles/química
10.
Cell Mol Biol Lett ; 26(1): 10, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33726678

RESUMEN

BACKGROUND: Molecular imaging with molecularly targeted probes is a powerful tool for studying the spatio-temporal interactions between complex biological processes. The pivotal role of the receptor for advanced glycation end products (RAGE), and its involvement in numerous pathological processes, aroused the demand for RAGE-targeted imaging in various diseases. In the present study, we evaluated the use of a diagnostic imaging agent for RAGE quantification in an animal model of peripheral artery disease, a multimodal dual-labeled probe targeted at RAGE (MMIA-CML). METHODS: PAMAM dendrimer was conjugated with Nε-carboxymethyl-lysine (CML) modified albumin to synthesize the RAGE-targeted probe. A control untargeted agent carried native non-modified human albumin (HSA). Bifunctional p-SCN-Bn-NOTA was used to conjugate the 64Cu radioisotope. Surgical right femoral artery ligation was performed on C57BL/6 male mice. One week after femoral artery ligation, mice were injected with MMIA-CML or MMIA-HSA labeled with 64Cu radioisotope and 60 min later in vivo microPET-CT imaging was performed. Immediately after PET imaging studies, the murine hindlimb muscle tissues were excised and prepared for gene and protein expression analysis. RAGE gene and protein expression was assessed using real-time qPCR and Western blot technique respectively. To visualize RAGE expression in excised tissues, microscopic fluorescence imaging was performed using RAGE-specific antibodies and RAGE-targeted and -control MMIA. RESULTS: Animals subjected to PET imaging exhibited greater MMIA-CML uptake in ischemic hindlimbs than non-ischemic hindlimbs. We observed a high correlation between fluorescent signal detection and radioactivity measurement. Significant RAGE gene and protein overexpression were observed in ischemic hindlimbs compared to non-ischemic hindlimbs at one week after surgical ligation. Fluorescence microscopic staining revealed significantly increased uptake of RAGE-targeted nanoparticles in both ischemic and non-ischemic muscle tissues compared to the control probe but at a higher level in ischemic hindlimbs. Ischemic tissue exhibited explicit RAGE dyeing following anti-RAGE antibody and high colocalization with the MMIA-CML targeted at RAGE. CONCLUSIONS: The present results indicate increased expression of RAGE in the ischemic hindlimb and enable the use of multimodal nanoparticles in both in vitro and in vivo experimental models, creating the possibility for imaging structural and functional changes with a RAGE-targeted tracer.


Asunto(s)
Nanopartículas/química , Enfermedad Arterial Periférica/metabolismo , Enfermedad Arterial Periférica/patología , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Animales , Modelos Animales de Enfermedad , Fluorescencia , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Masculino , Ratones
11.
Am J Physiol Lung Cell Mol Physiol ; 319(3): L444-L455, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32755307

RESUMEN

Cold viruses have generally been considered fairly innocuous until the appearance of the severe acute respiratory coronavirus 2 (SARS-CoV-2) in 2019, which caused the coronavirus disease 2019 (COVID-19) global pandemic. Two previous viruses foreshadowed that a coronavirus could potentially have devastating consequences in 2002 [severe acute respiratory coronavirus (SARS-CoV)] and in 2012 [Middle East respiratory syndrome coronavirus (MERS-CoV)]. The question that arises is why these viruses are so different from the relatively harmless cold viruses. On the basis of an analysis of the current literature and using bioinformatic approaches, we examined the potential human miRNA interactions with the SARS-CoV-2's genome and compared the miRNA target sites in seven coronavirus genomes that include SARS-CoV-2, MERS-CoV, SARS-CoV, and four nonpathogenic coronaviruses. Here, we discuss the possibility that pathogenic human coronaviruses, including SARS-CoV-2, could modulate host miRNA levels by acting as miRNA sponges to facilitate viral replication and/or to avoid immune responses.


Asunto(s)
Betacoronavirus/inmunología , Betacoronavirus/aislamiento & purificación , Infecciones por Coronavirus/virología , MicroARNs/genética , MicroARNs/inmunología , Neumonía Viral/virología , Replicación Viral , COVID-19 , Infecciones por Coronavirus/inmunología , Humanos , Pandemias , Neumonía Viral/inmunología , SARS-CoV-2
12.
FASEB J ; 33(10): 11541-11554, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31314593

RESUMEN

During endoplasmic reticulum (ER) stress conditions, an adaptive signaling network termed the unfolded protein response (UPR) is activated. The UPR's function is to increase ER protein-folding capacity in order to attenuate ER stress, restore ER homeostasis, and, most importantly, promote cell survival. X-box-binding protein 1 (XBP1) is one component of the UPR and is a proadaptive transcription factor that is subject to transcriptional, post-transcriptional, and post-translational control. In the present study, we identified a post-transcriptional mechanism mediated by miR-34c-5p that governs the expression of both the spliced (active) and unspliced (latent) forms of XBP1 mRNAs. We showed that miR-34c-5p directly attenuates spliced XBP1 (XBP1s) mRNA levels during ER stress and thus regulates the proadaptive component of the UPR that is mediated by XBP1s without interfering with the induction of apoptotic responses.-Bartoszewska, S., Cabaj, A., Dabrowski, M., Collawn, J. F., Bartoszewski, R. miR-34c-5p modulates X-box-binding protein 1 (XBP1) expression during the adaptive phase of the unfolded protein response.


Asunto(s)
MicroARNs/genética , Respuesta de Proteína Desplegada/genética , Proteína 1 de Unión a la X-Box/genética , Apoptosis/genética , Línea Celular Tumoral , Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/genética , Regulación de la Expresión Génica/genética , Células HeLa , Humanos , Pliegue de Proteína , Procesamiento Postranscripcional del ARN/genética , Empalme del ARN/genética , ARN Mensajero/genética , Transducción de Señal/genética , Transcripción Genética/genética
13.
FASEB J ; 33(7): 7929-7941, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30917010

RESUMEN

During hypoxia, a cellular adaptive response activates hypoxia-inducible factors (HIFs; HIF-1 and HIF-2) that respond to low tissue-oxygen levels and induce the expression of a number of genes that promote angiogenesis, energy metabolism, and cell survival. HIF-1 and HIF-2 regulate endothelial cell (EC) adaptation by activating gene-signaling cascades that promote endothelial migration, growth, and differentiation. An HIF-1 to HIF-2 transition or switch governs this process from acute to prolonged hypoxia. In the present study, we evaluated the mechanisms governing the HIF switch in 10 different primary human ECs from different vascular beds during the early stages of hypoxia. The studies demonstrate that the switch from HIF-1 to HIF-2 constitutes a universal mechanism of cellular adaptation to hypoxic stress and that HIF1A and HIF2A mRNA stability differences contribute to HIF switch. Furthermore, using 4 genome-wide mRNA expression arrays of HUVECs during normoxia and after 2, 8, and 16 h of hypoxia, we show using bioinformatics analyses that, although a number of genes appeared to be regulated exclusively by HIF-1 or HIF-2, the largest number of genes appeared to be regulated by both.-Bartoszewski, R., Moszynska, A., Serocki, M., Cabaj, A., Polten, A., Ochocka, R., Dell'Italia, L., Bartoszewska, S., Króliczewski, J., Dabrowski, M., Collawn, J. F. Primary endothelial cell-specific regulation of hypoxia-inducible factor (HIF)-1 and HIF-2 and their target gene expression profiles during hypoxia.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Hipoxia de la Célula/genética , Células Endoteliales/metabolismo , Regulación de la Expresión Génica/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Adaptación Fisiológica/genética , Aorta/citología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Células Cultivadas , Femenino , Perfilación de la Expresión Génica , Semivida , Células Endoteliales de la Vena Umbilical Humana , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Arteria Ilíaca/citología , Especificidad de Órganos , Cultivo Primario de Células , Arteria Pulmonar/citología , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Piel/irrigación sanguínea , Útero/irrigación sanguínea
14.
J Mol Cell Cardiol ; 128: 62-76, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30641086

RESUMEN

Vascular inflammation is an important factor in the pathophysiology of cardiovascular diseases, such as atherosclerosis. Changes in the extracellular nucleotide and in particular adenosine catabolism may alter a chronic inflammation and endothelial activation. This study aimed to evaluate the relation between vascular ecto-adenosine deaminase (eADA) activity and endothelial activation in humans and to analyze the effects of LPS-mediated inflammation on this activity as well as mechanisms of its increase. Moreover, we investigated a therapeutic potential of ADA inhibition by deoxycofromycin (dCF) for endothelial activation. We demonstrated a positive correlation of vascular eADA activity and ADA1 mRNA expression with endothelial activation parameters in humans with atherosclerosis. The activation of vascular eADA was also observed under LPS stimulation in vivo along with endothelial activation, an increase in markers of inflammation and alterations in the lipid profile of a rat model. Ex vivo and in vitro studies on human specimen demonstrated that at an early stage of vascular pathology, eADA activity originated from activated endothelial cells, while at later stages also from an inflammatory infiltrate. We proposed that LPS-stimulated increase in endothelial adenosine deaminase activity could be a result of IL-6/JAK/STAT pathway activation, since the lack of IL-6 in mice was associated with lower vascular and plasma eADA activities. Furthermore, the inhibitors of JAK/STAT pathway decreased LPS-stimulated adenosine deaminase activity in endothelial cells. We demonstrated that cell surface eADA activity could be additionally regulated by transcytosis pathways, as exocytosis inhibitors including lipid raft inhibitor, methyl-ß-cyclodextrin decreased LPS-induced eADA activity. This suggests that cholesterol-dependent protein externalization mediated by lipid rafts could be an important factor in the eADA increase. Moreover, endocytosis inhibitors and exocytosis activators increased this activity on the cell surface. Furthermore, the inhibition of adenosine deaminase in endothelial cells in vitro attenuated LPS-mediated IL-6 release and soluble ICAM-1 and VCAM-1 concentration in the incubation medium through the restoration of the extracellular adenosine pool and adenosine receptor-dependent pathways. This study demonstrated that the vascular endothelial eADA activity remains under control of inflammatory mediators acting through JAK/STAT pathway that could be further modified by dyslipidemic-dependent exocytosis and transcytosis pathways. Inhibition of eADA blocked endothelial activation suggesting a crucial role of this enzyme in the control of vascular inflammation. This supports the concept of eADA targeted vascular protection therapy.


Asunto(s)
Adenosina Desaminasa/genética , Aorta/metabolismo , Aterosclerosis/genética , Inflamación/genética , Adenosina/genética , Animales , Aorta/efectos de los fármacos , Aorta/patología , Aterosclerosis/enzimología , Aterosclerosis/patología , Membrana Celular/efectos de los fármacos , Colesterol/genética , Colesterol/metabolismo , Células Endoteliales/enzimología , Exocitosis/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Inflamación/enzimología , Inflamación/patología , Molécula 1 de Adhesión Intercelular/genética , Interleucina-6/genética , Quinasas Janus/genética , Lipopolisacáridos/farmacología , Metabolismo/genética , Ratones , Pentostatina/farmacología , Ratas , Factores de Transcripción STAT/genética , Molécula 1 de Adhesión Celular Vascular/genética
15.
J Cell Mol Med ; 23(1): 487-496, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30450750

RESUMEN

Despite enormous progress and development of high-throughput methods in genome-wide mRNA analyses, data on the erythroid transcriptome are still limited, even though they could be useful in medical diagnostics and personalized therapy as well as in research on normal and pathological erythroid maturation. Although obtaining normal and pathological reticulocyte transcriptome profiles should contribute greatly to our understanding of the molecular bases of terminal erythroid differentiation as well as the mechanisms of the hematological diseases, a basic limitation of these studies is the difficulty of efficient reticulocyte RNA isolation from human peripheral blood. The restricted number of possible parallel experiments primarily concern healthy individuals with the lowest number of reticulocytes in the peripheral blood and a low RNA content. In the present study, an efficient method for reticulocyte RNA isolation from healthy individuals and hemolytic anaemia patients is presented. The procedure includes leukofiltration, Ficoll-Paque gradient centrifugation, Percoll gradient centrifugation, and negative (CD45 and CD61) immunomagnetic separation. This relatively fast and simple four-stage method was successfully applied to obtain a reticulocyte-rich population from healthy subjects, which was used to efficiently isolate the high-quality RNA essential for successful NGS-based transcriptome analysis.


Asunto(s)
Anemia/genética , ARN/genética , Reticulocitos/metabolismo , Adulto , Anemia/metabolismo , Femenino , Humanos , Integrina beta3/genética , Antígenos Comunes de Leucocito/genética , Masculino , ARN Mensajero/genética , Transcriptoma/genética
16.
Cell Mol Biol Lett ; 24: 69, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31867046

RESUMEN

With the first RNA interference (RNAi) drug (ONPATTRO (patisiran)) on the market, we witness the RNAi therapy field reaching a critical turning point, when further improvements in drug candidate design and delivery pipelines should enable fast delivery of novel life changing treatments to patients. Nevertheless, ignoring parallel development of RNAi dedicated in vitro pharmacological profiling aiming to identify undesirable off-target activity may slow down or halt progress in the RNAi field. Since academic research is currently fueling the RNAi development pipeline with new therapeutic options, the objective of this article is to briefly summarize the basics of RNAi therapy, as well as to discuss how to translate basic research into better understanding of related drug candidate safety profiles early in the process.


Asunto(s)
Neuropatías Amiloides/terapia , Interferencia de ARN , ARN Mensajero/genética , ARN Interferente Pequeño/uso terapéutico , Tratamiento con ARN de Interferencia/métodos , Neuropatías Amiloides/genética , Neuropatías Amiloides/metabolismo , Neuropatías Amiloides/patología , Animales , Técnicas de Transferencia de Gen , Humanos , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , MicroARNs/metabolismo , Terapia Molecular Dirigida/métodos , Estabilidad del ARN , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN no Traducido/antagonistas & inhibidores , ARN no Traducido/genética , ARN no Traducido/metabolismo , Complejo Silenciador Inducido por ARN/genética , Complejo Silenciador Inducido por ARN/metabolismo
17.
Angiogenesis ; 21(2): 183-202, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29383635

RESUMEN

The decline of oxygen tension in the tissues below the physiological demand leads to the hypoxic adaptive response. This physiological consequence enables cells to recover from this cellular insult. Understanding the cellular pathways that mediate recovery from hypoxia is therefore critical for developing novel therapeutic approaches for cardiovascular diseases and cancer. The master regulators of oxygen homeostasis that control angiogenesis during hypoxia are hypoxia-inducible factors (HIFs). HIF-1 and HIF-2 function as transcriptional regulators and have both unique and overlapping target genes, whereas the role of HIF-3 is less clear. HIF-1 governs the acute adaptation to hypoxia, whereas HIF-2 and HIF-3 expressions begin during chronic hypoxia in human endothelium. When HIF-1 levels decline, HIF-2 and HIF-3 increase. This switch from HIF-1 to HIF-2 and HIF-3 signaling is required in order to adapt the endothelium to prolonged hypoxia. During prolonged hypoxia, the HIF-1 levels and activity are reduced, despite the lack of oxygen-dependent protein degradation. Although numerous protein factors have been proposed to modulate the HIF pathways, their application for HIF-targeted therapy is rather limited. Recently, the miRNAs that endogenously regulate gene expression via the RNA interference (RNAi) pathway have been shown to play critical roles in the hypoxia response pathways. Furthermore, these classes of RNAs provide therapeutic possibilities to selectively target HIFs and thus modulate the HIF switch. Here, we review the significance of the microRNAs on the relationship between the HIFs under both physiological and pathophysiological conditions.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica , Hipoxia/metabolismo , MicroARNs/metabolismo , Transducción de Señal , Transcripción Genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Humanos , Hipoxia/genética , Hipoxia/patología , Hipoxia/terapia , MicroARNs/genética
18.
Angiogenesis ; 21(4): 711-724, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29737439

RESUMEN

The nitric oxide (NO) secreted by vascular endothelium is required for the maintenance of cardiovascular homeostasis. Diminished release of NO generated by endothelial NO synthase contributes to endothelial dysfunction. Hypoxia and ischemia reduce endothelial eNOS expression via posttranscriptional mechanisms that result in NOS3 transcript destabilization. Here, we examine whether microRNAs contribute to this mechanism. We followed the kinetics of hypoxia-induced changes in NOS3 mRNA and eNOS protein levels in primary human umbilical vein endothelial cells (HUVECs). Utilizing in silico predictive protocols to identify potential miRNAs that regulate eNOS expression, we identified miR-200b as a candidate. We established the functional miR-200b target sequence within the NOS3 3'UTR, and demonstrated that manipulation of the miRNA levels during hypoxia using miR-200b mimics and antagomirs regulates eNOS levels, and established that miR-200b physiologically limits eNOS expression during hypoxia. Furthermore, we demonstrated that the specific ablation of the hypoxic induction of miR-200b in HUVECs restored eNOS-driven hypoxic NO release to the normoxic levels. To determine whether miR-200b might be the only miRNA that had this effect, we utilized Next Generation Sequencing (NGS) to follow hypoxia-induced changes in the miRNA levels in HUVECS and found 83 novel hypoxamiRs, with two candidate miRNAs besides miR-200b that could potentially influence eNOS levels. Taken together, the data establish miR-200b-eNOS regulation as a first hypoxamiR-based mechanism that limits NO bioavailability during hypoxia in endothelial cells, and show that hypoxamiRs could become useful therapeutic targets for cardiovascular diseases and other hypoxic-related diseases including various types of cancer.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/metabolismo , MicroARNs/metabolismo , Óxido Nítrico Sintasa de Tipo III/biosíntesis , Óxido Nítrico/metabolismo , Hipoxia de la Célula , Células HEK293 , Humanos
19.
Cell Mol Biol Lett ; 23: 45, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30250489

RESUMEN

Recent developments in high-throughput genotyping technologies have revealed the existence of several new classes of RNA that do not encode proteins but serve other cellular roles. To date, these non-coding RNAs (ncRNAs) have been shown to modulate both gene expression and genome remodeling, thus contributing to the control of both normal and disease-related cellular processes. The attraction of this research topic can be seen in the increasing number of submissions on ncRNAs to molecular biology journals, including Cellular Molecular Biology Letters (CMBL). As researchers attempt to deepen the understanding of the role of ncRNAs in cell biology, it is worth discussing the broader importance of this research.


Asunto(s)
ARN no Traducido/genética , Animales , Caenorhabditis elegans/genética , Perfilación de la Expresión Génica , Humanos , Mamíferos/genética , MicroARNs/genética , MicroARNs/metabolismo , Anotación de Secuencia Molecular , ARN no Traducido/metabolismo
20.
Am J Physiol Lung Cell Mol Physiol ; 313(5): L859-L872, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29025712

RESUMEN

Maintenance of normal epithelial ion and water transport in the lungs includes providing a thin layer of surface liquid that coats the conducting airways. This airway surface liquid is critical for normal lung function in a number of ways but, perhaps most importantly, is required for normal mucociliary clearance and bacterial removal. Preservation of the appropriate level of hydration, pH, and viscosity for the airway surface liquid requires the proper regulation and function of a battery of different types of ion channels and transporters. Here we discuss how alterations in ion channel/transporter function often lead to lung pathologies.


Asunto(s)
Canales Iónicos/metabolismo , Transporte Iónico/fisiología , Pulmón/metabolismo , Mucosa Respiratoria/metabolismo , Animales , Transporte Biológico/fisiología , Humanos , Depuración Mucociliar/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA