Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 33(13): 1152-1163, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38558123

RESUMEN

Neanderthal and Denisovan hybridisation with modern humans has generated a non-random genomic distribution of introgressed regions, the result of drift and selection dynamics. Cross-species genomic incompatibility and more efficient removal of slightly deleterious archaic variants have been proposed as selection-based processes involved in the post-hybridisation purge of archaic introgressed regions. Both scenarios require the presence of functionally different alleles across Homo species onto which selection operated differently according to which populations hosted them, but only a few of these variants have been pinpointed so far. In order to identify functionally divergent archaic variants removed in humans, we focused on mitonuclear genes, which are underrepresented in the genomic landscape of archaic humans. We searched for non-synonymous, fixed, archaic-derived variants present in mitonuclear genes, rare or absent in human populations. We then compared the functional impact of archaic and human variants in the model organism Saccharomyces cerevisiae. Notably, a variant within the mitochondrial tyrosyl-tRNA synthetase 2 (YARS2) gene exhibited a significant decrease in respiratory activity and a substantial reduction of Cox2 levels, a proxy for mitochondrial protein biosynthesis, coupled with the accumulation of the YARS2 protein precursor and a lower amount of mature enzyme. Our work suggests that this variant is associated with mitochondrial functionality impairment, thus contributing to the purging of archaic introgression in YARS2. While different molecular mechanisms may have impacted other mitonuclear genes, our approach can be extended to the functional screening of mitonuclear genetic variants present across species and populations.


Asunto(s)
Hombre de Neandertal , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Hombre de Neandertal/genética , Animales , Variación Genética , Mitocondrias/genética , Mitocondrias/metabolismo , Alelos , Introgresión Genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
J Med Genet ; 61(1): 93-101, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37734847

RESUMEN

BACKGROUND: Leber's hereditary optic neuropathy (LHON) is a mitochondrial disorder characterised by complex I defect leading to sudden degeneration of retinal ganglion cells. Although typically associated with pathogenic variants in mitochondrial DNA, LHON was recently described in patients carrying biallelic variants in nuclear genes DNAJC30, NDUFS2 and MCAT. MCAT is part of mitochondrial fatty acid synthesis (mtFAS), as also MECR, the mitochondrial trans-2-enoyl-CoA reductase. MECR mutations lead to a recessive childhood-onset syndromic disorder with dystonia, optic atrophy and basal ganglia abnormalities. METHODS: We studied through whole exome sequencing two sisters affected by sudden and painless visual loss at young age, with partial recovery and persistent central scotoma. We modelled the candidate variant in yeast and studied mitochondrial dysfunction in yeast and fibroblasts. We tested protein lipoylation and cell response to oxidative stress in yeast. RESULTS: Both sisters carried a homozygous pathogenic variant in MECR (p.Arg258Trp). In yeast, the MECR-R258W mutant showed an impaired oxidative growth, 30% reduction in oxygen consumption rate and 80% decrease in protein levels, pointing to structure destabilisation. Fibroblasts confirmed the reduced amount of MECR protein, but failed to reproduce the OXPHOS defect. Respiratory complexes assembly was normal. Finally, the yeast mutant lacked lipoylation of key metabolic enzymes and was more sensitive to H2O2 treatment. Lipoic Acid supplementation partially rescued the growth defect. CONCLUSION: We report the first family with homozygous MECR variant causing an LHON-like optic neuropathy, which pairs the recent MCAT findings, reinforcing the impairment of mtFAS as novel pathogenic mechanism in LHON.


Asunto(s)
Enfermedades Mitocondriales , Atrofia Óptica Hereditaria de Leber , Niño , Humanos , ADN Mitocondrial/genética , Peróxido de Hidrógeno/metabolismo , Mutación , Atrofia Óptica Hereditaria de Leber/genética , Atrofia Óptica Hereditaria de Leber/terapia , Saccharomyces cerevisiae/genética
3.
Hum Mol Genet ; 29(22): 3631-3645, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33231680

RESUMEN

OPA1 mutations are the major cause of dominant optic atrophy (DOA) and the syndromic form DOA plus, pathologies for which there is no established cure. We used a 'drug repurposing' approach to identify FDA-approved molecules able to rescue the mitochondrial dysfunctions induced by OPA1 mutations. We screened two different chemical libraries by using two yeast strains carrying the mgm1I322M and the chim3P646L mutations, identifying 26 drugs able to rescue their oxidative growth phenotype. Six of them, able to reduce the mitochondrial DNA instability in yeast, have been then tested in Opa1 deleted mouse embryonic fibroblasts expressing the human OPA1 isoform 1 bearing the R445H and D603H mutations. Some of these molecules were able to ameliorate the energetic functions and/or the mitochondrial network morphology, depending on the type of OPA1 mutation. The final validation has been performed in patients' fibroblasts, allowing to select the most effective molecules. Our current results are instrumental to rapidly translating the findings of this drug repurposing approach into clinical trial for DOA and other neurodegenerations caused by OPA1 mutations.


Asunto(s)
Reposicionamiento de Medicamentos , GTP Fosfohidrolasas/genética , Enfermedades Neurodegenerativas/tratamiento farmacológico , Atrofia Óptica Autosómica Dominante/tratamiento farmacológico , Animales , ADN Mitocondrial/efectos de los fármacos , Fibroblastos/efectos de los fármacos , GTP Fosfohidrolasas/antagonistas & inhibidores , Humanos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mutación/efectos de los fármacos , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Atrofia Óptica Autosómica Dominante/genética , Atrofia Óptica Autosómica Dominante/patología , Linaje , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética
4.
IUBMB Life ; 75(12): 983-1002, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37470284

RESUMEN

Most eukaryotes possess a mitochondrial genome, called mtDNA. In animals and fungi, the replication of mtDNA is entrusted by the DNA polymerase γ, or Pol γ. The yeast Pol γ is composed only of a catalytic subunit encoded by MIP1. In humans, Pol γ is a heterotrimer composed of a catalytic subunit homolog to Mip1, encoded by POLG, and two accessory subunits. In the last 25 years, more than 300 pathological mutations in POLG have been identified as the cause of several mitochondrial diseases, called POLG-related disorders, which are characterized by multiple mtDNA deletions and/or depletion in affected tissues. In this review, at first, we summarize the biochemical properties of yeast Mip1, and how mutations, especially those introduced recently in the N-terminal and C-terminal regions of the enzyme, affect the in vitro activity of the enzyme and the in vivo phenotype connected to the mtDNA stability and to the mtDNA extended and point mutability. Then, we focus on the use of yeast harboring Mip1 mutations equivalent to the human ones to confirm their pathogenicity, identify the phenotypic defects caused by these mutations, and find both mechanisms and molecular compounds able to rescue the detrimental phenotype. A closing chapter will be dedicated to other polymerases found in yeast mitochondria, namely Pol ζ, Rev1 and Pol η, and to their genetic interactions with Mip1 necessary to maintain mtDNA stability and to avoid the accumulation of spontaneous or induced point mutations.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animales , Humanos , ADN Polimerasa gamma/genética , ADN Polimerasa I/genética , ADN Polimerasa I/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ADN Mitocondrial/genética , Mutación , Replicación del ADN/genética
5.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36768505

RESUMEN

In eukaryotes, mitochondrial RNAs (mt-tRNAs and mt-rRNAs) are subject to specific nucleotide modifications, which are critical for distinct functions linked to the synthesis of mitochondrial proteins encoded by mitochondrial genes, and thus for oxidative phosphorylation. In recent years, mutations in genes encoding for mt-RNAs modifying enzymes have been identified as being causative of primary mitochondrial diseases, which have been called modopathies. These latter pathologies can be caused by mutations in genes involved in the modification either of tRNAs or of rRNAs, resulting in the absence of/decrease in a specific nucleotide modification and thus on the impairment of the efficiency or the accuracy of the mitochondrial protein synthesis. Most of these mutations are sporadic or private, thus it is fundamental that their pathogenicity is confirmed through the use of a model system. This review will focus on the activity of genes that, when mutated, are associated with modopathies, on the molecular mechanisms through which the enzymes introduce the nucleotide modifications, on the pathological phenotypes associated with mutations in these genes and on the contribution of the yeast Saccharomyces cerevisiae to confirming the pathogenicity of novel mutations and, in some cases, for defining the molecular defects.


Asunto(s)
ARN , Saccharomyces cerevisiae , ARN Mitocondrial/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ARN/genética , ARN/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN Ribosómico , Mutación , Nucleótidos
6.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37445873

RESUMEN

Mitochondrial diseases (MDs) refer to a group of clinically and genetically heterogeneous pathologies characterized by defective mitochondrial function and energy production. Unfortunately, there is no effective treatment for most MDs, and current therapeutic management is limited to relieving symptoms. The yeast Saccharomyces cerevisiae has been efficiently used as a model organism to study mitochondria-related disorders thanks to its easy manipulation and well-known mitochondrial biogenesis and metabolism. It has been successfully exploited both to validate alleged pathogenic variants identified in patients and to discover potential beneficial molecules for their treatment. The so-called "drug drop test", a phenotype-based high-throughput screening, especially if coupled with a drug repurposing approach, allows the identification of molecules with high translational potential in a cost-effective and time-saving manner. In addition to drug identification, S. cerevisiae can be used to point out the drug's target or pathway. To date, drug drop tests have been successfully carried out for a variety of disease models, leading to very promising results. The most relevant aspect is that studies on more complex model organisms confirmed the effectiveness of the drugs, strengthening the results obtained in yeast and demonstrating the usefulness of this screening as a novel approach to revealing new therapeutic molecules for MDs.


Asunto(s)
Enfermedades Mitocondriales , Proteínas de Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/metabolismo , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/metabolismo , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
J Med Genet ; 58(3): 155-167, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32439808

RESUMEN

BACKGROUND: Mitochondria provide ATP through the process of oxidative phosphorylation, physically located in the inner mitochondrial membrane (IMM). The mitochondrial contact site and organising system (MICOS) complex is known as the 'mitoskeleton' due to its role in maintaining IMM architecture. APOO encodes MIC26, a component of MICOS, whose exact function in its maintenance or assembly has still not been completely elucidated. METHODS: We have studied a family in which the most affected subject presented progressive developmental delay, lactic acidosis, muscle weakness, hypotonia, weight loss, gastrointestinal and body temperature dysautonomia, repetitive infections, cognitive impairment and autistic behaviour. Other family members showed variable phenotype presentation. Whole exome sequencing was used to screen for pathological variants. Patient-derived skin fibroblasts were used to confirm the pathogenicity of the variant found in APOO. Knockout models in Drosophila melanogaster and Saccharomyces cerevisiae were employed to validate MIC26 involvement in MICOS assembly and mitochondrial function. RESULTS: A likely pathogenic c.350T>C transition was found in APOO predicting an I117T substitution in MIC26. The mutation caused impaired processing of the protein during import and faulty insertion into the IMM. This was associated with altered MICOS assembly and cristae junction disruption. The corresponding mutation in MIC26 or complete loss was associated with mitochondrial structural and functional deficiencies in yeast and D. melanogaster models. CONCLUSION: This is the first case of pathogenic mutation in APOO, causing altered MICOS assembly and neuromuscular impairment. MIC26 is involved in the assembly or stability of MICOS in humans, yeast and flies.


Asunto(s)
Apolipoproteínas/genética , Trastorno Autístico/genética , Disfunción Cognitiva/genética , Proteínas de la Membrana/genética , Miopatías Mitocondriales/genética , Proteínas Mitocondriales/genética , Proteínas de Saccharomyces cerevisiae/genética , Acidosis Láctica/genética , Acidosis Láctica/patología , Animales , Trastorno Autístico/patología , Disfunción Cognitiva/patología , Drosophila melanogaster/genética , Fibroblastos/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Humanos , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/patología , Miopatías Mitocondriales/epidemiología , Miopatías Mitocondriales/patología , Unión Proteica , Saccharomyces cerevisiae/genética
8.
Hum Mutat ; 42(6): 745-761, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33942428

RESUMEN

KARS1 encodes a lysyl-transfer RNA synthetase (LysRS) that links lysine to its cognate transfer RNA. Two different KARS1 isoforms exert functional effects in cytosol and mitochondria. Bi-allelic pathogenic variants in KARS1 have been associated to sensorineural hearing and visual loss, neuropathy, seizures, and leukodystrophy. We report the clinical, biochemical, and neuroradiological features of nine individuals with KARS1-related disorder carrying 12 different variants with nine of them being novel. The consequences of these variants on the cytosol and/or mitochondrial LysRS were functionally validated in yeast mutants. Most cases presented with severe neurological features including congenital and progressive microcephaly, seizures, developmental delay/intellectual disability, and cerebral atrophy. Oculo-motor dysfunction and immuno-hematological problems were present in six and three cases, respectively. A yeast growth defect of variable severity was detected for most variants on both cytosolic and mitochondrial isoforms. The detrimental effects of two variants on yeast growth were partially rescued by lysine supplementation. Congenital progressive microcephaly, oculo-motor dysfunction, and immuno-hematological problems are emerging phenotypes in KARS1-related disorder. The data in yeast emphasize the role of both mitochondrial and cytosolic isoforms in the pathogenesis of KARS1-related disorder and supports the therapeutic potential of lysine supplementation at least in a subset of patients.


Asunto(s)
Anomalías Múltiples/genética , Lisina-ARNt Ligasa/genética , Anomalías Múltiples/metabolismo , Anomalías Múltiples/patología , Adolescente , Alelos , Encefalopatías Metabólicas Innatas/complicaciones , Encefalopatías Metabólicas Innatas/genética , Encefalopatías Metabólicas Innatas/patología , Niño , Preescolar , Estudios de Cohortes , Citosol/metabolismo , Progresión de la Enfermedad , Femenino , Homocigoto , Humanos , Lactante , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Microcefalia/complicaciones , Microcefalia/genética , Microcefalia/patología , Mitocondrias/genética , Mitocondrias/metabolismo , Organismos Modificados Genéticamente , Linaje , Fenotipo , Saccharomyces cerevisiae
9.
Hum Genet ; 140(11): 1593-1609, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33835239

RESUMEN

We investigated the clinical, genetic, and pathological characteristics of a previously unknown severe juvenile brain disorder in several litters of Parson Russel Terriers. The disease started with epileptic seizures at 6-12 weeks of age and progressed rapidly to status epilepticus and death or euthanasia. Histopathological changes at autopsy were restricted to the brain. There was severe acute neuronal degeneration and necrosis diffusely affecting the grey matter throughout the brain with extensive intraneuronal mitochondrial crowding and accumulation of amyloid-ß (Aß). Combined homozygosity mapping and genome sequencing revealed an in-frame 6-bp deletion in the nuclear-encoded pitrilysin metallopeptidase 1 (PITRM1) encoding for a mitochondrial protease involved in mitochondrial targeting sequence processing and degradation. The 6-bp deletion results in the loss of two amino acid residues in the N-terminal part of PITRM1, potentially affecting protein folding and function. Assessment of the mitochondrial function in the affected brain tissue showed a significant deficiency in respiratory chain function. The functional consequences of the mutation were modeled in yeast and showed impaired growth in permissive conditions and an impaired respiration capacity. Loss-of-function variants in human PITRM1 result in a childhood-onset progressive amyloidotic neurological syndrome characterized by spinocerebellar ataxia with behavioral, psychiatric and cognitive abnormalities. Homozygous Pitrm1-knockout mice are embryonic lethal, while heterozygotes show a progressive, neurodegenerative phenotype characterized by impairment in motor coordination and Aß deposits. Our study describes a novel early-onset PITRM1-related neurodegenerative canine brain disorder with mitochondrial dysfunction, Aß accumulation, and lethal epilepsy. The findings highlight the essential role of PITRM1 in neuronal survival and strengthen the connection between mitochondrial dysfunction and neurodegeneration.


Asunto(s)
Enfermedades de los Perros/genética , Epilepsia/veterinaria , Metaloendopeptidasas/genética , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/veterinaria , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/enzimología , Encéfalo/metabolismo , Encéfalo/patología , Enfermedades de los Perros/patología , Perros , Epilepsia/genética , Femenino , Masculino , Metaloendopeptidasas/química , Metaloendopeptidasas/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Consumo de Oxígeno , Linaje , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo
10.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34830106

RESUMEN

Mitochondrial DNA depletion syndromes (MDS) are clinically heterogenous and often severe diseases, characterized by a reduction of the number of copies of mitochondrial DNA (mtDNA) in affected tissues. In the context of MDS, yeast has proved to be both an excellent model for the study of the mechanisms underlying mitochondrial pathologies and for the discovery of new therapies via high-throughput assays. Among the several genes involved in MDS, it has been shown that recessive mutations in MPV17 cause a hepatocerebral form of MDS and Navajo neurohepatopathy. MPV17 encodes a non selective channel in the inner mitochondrial membrane, but its physiological role and the nature of its cargo remains elusive. In this study we identify ten drugs active against MPV17 disorder, modelled in yeast using the homologous gene SYM1. All ten of the identified molecules cause a concomitant increase of both the mitochondrial deoxyribonucleoside triphosphate (mtdNTP) pool and mtDNA stability, which suggests that the reduced availability of DNA synthesis precursors is the cause for the mtDNA deletion and depletion associated with Sym1 deficiency. We finally evaluated the effect of these molecules on mtDNA stability in two other MDS yeast models, extending the potential use of these drugs to a wider range of MDS patients.


Asunto(s)
ADN de Hongos , ADN Mitocondrial , Trastornos Heredodegenerativos del Sistema Nervioso , Hepatopatías , Proteínas de la Membrana , Mitocondrias , Enfermedades Mitocondriales , Proteínas Mitocondriales , Enfermedades del Sistema Nervioso Periférico , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Trastornos Heredodegenerativos del Sistema Nervioso/genética , Trastornos Heredodegenerativos del Sistema Nervioso/metabolismo , Trastornos Heredodegenerativos del Sistema Nervioso/terapia , Humanos , Hepatopatías/genética , Hepatopatías/metabolismo , Hepatopatías/terapia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/terapia , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Nucleótidos/genética , Nucleótidos/metabolismo , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/metabolismo , Enfermedades del Sistema Nervioso Periférico/terapia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Síndrome
11.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33926074

RESUMEN

In most eukaryotes, mitochondrial protein synthesis is essential for oxidative phosphorylation (OXPHOS) as some subunits of the respiratory chain complexes are encoded by the mitochondrial DNA (mtDNA). Mutations affecting the mitochondrial translation apparatus have been identified as a major cause of mitochondrial diseases. These mutations include either heteroplasmic mtDNA mutations in genes encoding for the mitochondrial rRNA (mtrRNA) and tRNAs (mttRNAs) or mutations in nuclear genes encoding ribosomal proteins, initiation, elongation and termination factors, tRNA-modifying enzymes, and aminoacyl-tRNA synthetases (mtARSs). Aminoacyl-tRNA synthetases (ARSs) catalyze the attachment of specific amino acids to their cognate tRNAs. Differently from most mttRNAs, which are encoded by mitochondrial genome, mtARSs are encoded by nuclear genes and then imported into the mitochondria after translation in the cytosol. Due to the extensive use of next-generation sequencing (NGS), an increasing number of mtARSs variants associated with large clinical heterogeneity have been identified in recent years. Being most of these variants private or sporadic, it is crucial to assess their causative role in the disease by functional analysis in model systems. This review will focus on the contributions of the yeast Saccharomyces cerevisiae in the functional validation of mutations found in mtARSs genes associated with human disorders.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Aminoacil-ARNt Sintetasas/fisiología , Mitocondrias/metabolismo , Citosol/metabolismo , ADN Mitocondrial/genética , Humanos , Mitocondrias/fisiología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/fisiopatología , Mutación , Fosforilación Oxidativa , Biosíntesis de Proteínas , Procesamiento Postranscripcional del ARN , ARN de Transferencia/genética , Saccharomyces cerevisiae/metabolismo
12.
Hum Mutat ; 40(5): 601-618, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30801875

RESUMEN

Mitochondria are highly dynamic organelles, undergoing continuous fission and fusion. The DNM1L (dynamin-1 like) gene encodes for the DRP1 protein, an evolutionary conserved member of the dynamin family, responsible for fission of mitochondria, and having a role in the division of peroxisomes, as well. DRP1 impairment is implicated in several neurological disorders and associated with either de novo dominant or compound heterozygous mutations. In five patients presenting with severe epileptic encephalopathy, we identified five de novo dominant DNM1L variants, the pathogenicity of which was validated in a yeast model. Fluorescence microscopy revealed abnormally elongated mitochondria and aberrant peroxisomes in mutant fibroblasts, indicating impaired fission of these organelles. Moreover, a very peculiar finding in our cohort of patients was the presence, in muscle biopsy, of core like areas with oxidative enzyme alterations, suggesting an abnormal distribution of mitochondria in the muscle tissue.


Asunto(s)
Dinaminas/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Encefalomiopatías Mitocondriales/diagnóstico , Encefalomiopatías Mitocondriales/genética , Músculos/metabolismo , Músculos/patología , Biomarcadores , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Análisis Mutacional de ADN , Dinaminas/química , Fibroblastos/metabolismo , Estudios de Asociación Genética/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Modelos Biológicos , Músculos/ultraestructura , Mutación , Conformación Proteica , Relación Estructura-Actividad
13.
J Med Genet ; 55(9): 599-606, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29764912

RESUMEN

OBJECTIVE: To identify the genetic basis of a childhood-onset syndrome of variable severity characterised by progressive spinocerebellar ataxia, mental retardation, psychotic episodes and cerebellar atrophy. METHODS: Identification of the underlying mutations by whole exome and whole genome sequencing. Consequences were examined in patients' cells and in yeast. RESULTS: Two brothers from a consanguineous Palestinian family presented with progressive spinocerebellar ataxia, mental retardation and psychotic episodes. Serial brain imaging showed severe progressive cerebellar atrophy. Whole exome sequencing revealed a novel mutation: pitrilysin metallopeptidase 1 (PITRM1) c.2795C>T, p.T931M, homozygous in the affected children and resulting in 95% reduction in PITRM1 protein. Whole genome sequencing revealed a chromosome X structural rearrangement that also segregated with the disease. Independently, two siblings from a second Palestinian family presented with similar, somewhat milder symptoms and the same PITRM1 mutation on a shared haplotype. PITRM1T931M carrier frequency was 0.027 (3/110) in the village of the first family evaluated, and 0/300 among Palestinians from other locales. PITRM1 is a mitochondrial matrix enzyme that degrades 10-65 amino acid oligopeptides, including the mitochondrial fraction of amyloid-beta peptide. Analysis of peptide cleavage activity by the PITRM1T931M protein revealed a significant decrease in the degradation capacity specifically of peptides ≥40 amino acids. CONCLUSION: PITRM1T931M results in childhood-onset recessive cerebellar pathology. Severity of PITRM1-related disease may be affected by the degree of impairment in cleavage of mitochondrial long peptides. Disruption and deletion of X linked regulatory segments may also contribute to severity.


Asunto(s)
Enfermedades Cerebelosas/genética , Cerebelo/patología , Mutación con Pérdida de Función , Metaloendopeptidasas/genética , Adolescente , Edad de Inicio , Árabes/genética , Atrofia , Enfermedades Cerebelosas/enzimología , Cerebelo/enzimología , Niño , Humanos , Masculino , Mitocondrias/enzimología , Proteínas Mitocondriales/genética , Linaje , Secuenciación del Exoma , Secuenciación Completa del Genoma , Adulto Joven
14.
Hum Mol Genet ; 25(4): 715-27, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26692522

RESUMEN

Mitochondria are organelles that have their own DNA (mitochondrial DNA, mtDNA) whose maintenance is necessary for the majority of ATP production in eukaryotic cells. Defects in mtDNA maintenance or integrity are responsible for numerous diseases. The DNA polymerase γ (POLG) ensures proper mtDNA replication and repair. Mutations in POLG are a major cause of mitochondrial disorders including hepatic insufficiency, Alpers syndrome, progressive external ophthalmoplegia, sensory neuropathy and ataxia. Mutations in POLG are also associated with parkinsonism. To date, no effective therapy is available. Based on the conservation of mitochondrial function from yeast to human, we used Saccharomyces cerevisiae and Caenorhabditis elegans as first pass filters to identify a chemical that suppresses mtDNA instability in cultured fibroblasts of a POLG-deficient patient. We showed that this unsuspected compound, clofilium tosylate (CLO), belonging to a class of anti-arrhythmic agents, prevents mtDNA loss of all yeast mitochondrial polymerase mutants tested, improves behavior and mtDNA content of polg-1-deficient worms and increases mtDNA content of quiescent POLG-deficient fibroblasts. Furthermore, the mode of action of the drug seems conserved as CLO increases POLG steady-state level in yeast and human cells. Two other anti-arrhythmic agents (FDA-approved) sharing common pharmacological properties and chemical structure also show potential benefit for POLG deficiency in C. elegans. Our findings provide evidence of the first mtDNA-stabilizing compound that may be an effective pharmacological alternative for the treatment of POLG-related diseases.


Asunto(s)
ADN Mitocondrial/genética , ADN Polimerasa Dirigida por ADN/genética , Enfermedades Mitocondriales/tratamiento farmacológico , Compuestos de Amonio Cuaternario/farmacología , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , ADN Polimerasa I/genética , ADN Polimerasa gamma , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Humanos , Enfermedades Mitocondriales/enzimología , Enfermedades Mitocondriales/genética , Mutación , Fenotipo , Cultivo Primario de Células , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
Am J Hum Genet ; 96(5): 826-31, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25913036

RESUMEN

Methionyl-tRNA synthetase (MARS) catalyzes the ligation of methionine to tRNA and is critical for protein biosynthesis. We identified biallelic missense mutations in MARS in a specific form of pediatric pulmonary alveolar proteinosis (PAP), a severe lung disorder that is prevalent on the island of Réunion and the molecular basis of which is unresolved. Mutations were found in 26 individuals from Réunion and nearby islands and in two families from other countries. Functional consequences of the mutated alleles were assessed by growth of wild-type and mutant strains and methionine-incorporation assays in yeast. Enzyme activity was attenuated in a liquid medium without methionine but could be restored by methionine supplementation. In summary, identification of a founder mutation in MARS led to the molecular definition of a specific type of PAP and will enable carrier screening in the affected community and possibly open new treatment opportunities.


Asunto(s)
Metionina-ARNt Ligasa/genética , Proteinosis Alveolar Pulmonar/genética , Adolescente , Alelos , Niño , Preescolar , Retículo Endoplásmico/genética , Retículo Endoplásmico/patología , Femenino , Aparato de Golgi/genética , Aparato de Golgi/patología , Humanos , Masculino , Mutación Missense , Biosíntesis de Proteínas , Proteinosis Alveolar Pulmonar/patología , Adulto Joven
16.
Biochem Biophys Res Commun ; 493(2): 909-913, 2017 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-28947214

RESUMEN

The mitochondrial ADP/ATP carrier is a nuclear encoded protein, which catalyzes the exchange of ATP generated in mitochondria with ADP produced in the cytosol. In humans, mutations in the major ADP/ATP carrier gene, ANT1, are involved in several degenerative mitochondrial pathologies, leading to instability of mitochondrial DNA. Recessive mutations have been associated with mitochondrial myopathy and cardiomyopathy whereas dominant mutations have been associated with autosomal dominant Progressive External Ophtalmoplegia (adPEO). Recently, two de novo dominant mutations, R80H and R235G, leading to extremely severe symptoms, have been identified. In order to evaluate if the dominance is due to haploinsufficiency or to a gain of function, the two mutations have been introduced in the equivalent positions of the AAC2 gene, the yeast orthologue of human ANT1, and their dominant effect has been studied in heteroallelic strains, containing both one copy of wild type AAC2 and one copy of mutant aac2 allele. Through phenotypic characterization of these yeast models we showed that the OXPHOS phenotypes in the heteroallelic strains were more affected than in the hemiallelic strain indicating that the dominant trait of the two mutations is due to gain of function.


Asunto(s)
Translocador 1 del Nucleótido Adenina/genética , ADN Mitocondrial/genética , Translocasas Mitocondriales de ADP y ATP/genética , Miopatías Mitocondriales/genética , Mutación Puntual , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Alelos , Humanos
17.
PLoS Genet ; 10(6): e1004424, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24901367

RESUMEN

Identifying the genetic basis for mitochondrial diseases is technically challenging given the size of the mitochondrial proteome and the heterogeneity of disease presentations. Using next-generation exome sequencing, we identified in a patient with severe combined mitochondrial respiratory chain defects and corresponding perturbation in mitochondrial protein synthesis, a homozygous p.Arg323Gln mutation in TRIT1. This gene encodes human tRNA isopentenyltransferase, which is responsible for i6A37 modification of the anticodon loops of a small subset of cytosolic and mitochondrial tRNAs. Deficiency of i6A37 was previously shown in yeast to decrease translational efficiency and fidelity in a codon-specific manner. Modelling of the p.Arg323Gln mutation on the co-crystal structure of the homologous yeast isopentenyltransferase bound to a substrate tRNA, indicates that it is one of a series of adjacent basic side chains that interact with the tRNA backbone of the anticodon stem, somewhat removed from the catalytic center. We show that patient cells bearing the p.Arg323Gln TRIT1 mutation are severely deficient in i6A37 in both cytosolic and mitochondrial tRNAs. Complete complementation of the i6A37 deficiency of both cytosolic and mitochondrial tRNAs was achieved by transduction of patient fibroblasts with wild-type TRIT1. Moreover, we show that a previously-reported pathogenic m.7480A>G mt-tRNASer(UCN) mutation in the anticodon loop sequence A36A37A38 recognised by TRIT1 causes a loss of i6A37 modification. These data demonstrate that deficiencies of i6A37 tRNA modification should be considered a potential mechanism of human disease caused by both nuclear gene and mitochondrial DNA mutations while providing insight into the structure and function of TRIT1 in the modification of cytosolic and mitochondrial tRNAs.


Asunto(s)
Transferasas Alquil y Aril/genética , Enfermedades Mitocondriales/genética , Sulfurtransferasas/genética , Células Cultivadas , Deficiencia de Citocromo-c Oxidasa/genética , Citosol , ADN Mitocondrial/genética , Transporte de Electrón/genética , Complejo IV de Transporte de Electrones/genética , Femenino , Humanos , Masculino , Mitocondrias/genética , Biosíntesis de Proteínas/genética , ARN/genética , ARN Mitocondrial , ARN de Transferencia/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Schizosaccharomyces/enzimología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
18.
Hum Mutat ; 37(9): 898-903, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27328748

RESUMEN

Mitochondria are highly dynamic organelles, undergoing continuous fission and fusion, and mitochondrial dynamics is important for several cellular functions. DNM1L is the most important mediator of mitochondrial fission, with a role also in peroxisome division. Few reports of patients with genetic defects in DNM1L have been published, most of them describing de novo dominant mutations. We identified compound heterozygous DNM1L variants in two brothers presenting with an infantile slowly progressive neurological impairment. One variant was a frame-shift mutation, the other was a missense change, the pathogenicity of which was validated in a yeast model. Fluorescence microscopy revealed abnormally elongated mitochondria and aberrant peroxisomes in mutant fibroblasts, indicating impaired fission of these organelles. In conclusion, we described a recessive disease caused by DNM1L mutations, with a clinical phenotype resembling mitochondrial disorders but without any biochemical features typical of these syndromes (lactic acidosis, respiratory chain complex deficiency) or indicating a peroxisomal disorder.


Asunto(s)
Encefalopatías/genética , GTP Fosfohidrolasas/genética , Proteínas Asociadas a Microtúbulos/genética , Mitocondrias/patología , Proteínas Mitocondriales/genética , Mutación , Adolescente , Alelos , Encefalopatías/patología , Preescolar , Codón sin Sentido , Dinaminas , Mutación del Sistema de Lectura , Humanos , Masculino , Dinámicas Mitocondriales , Linaje , Peroxisomas/patología
19.
Am J Hum Genet ; 93(2): 211-23, 2013 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-23849775

RESUMEN

The human mitochondrial genome encodes RNA components of its own translational machinery to produce the 13 mitochondrial-encoded subunits of the respiratory chain. Nuclear-encoded gene products are essential for all processes within the organelle, including RNA processing. Transcription of the mitochondrial genome generates large polycistronic transcripts punctuated by the 22 mitochondrial (mt) tRNAs that are conventionally cleaved by the RNase P-complex and the RNase Z activity of ELAC2 at 5' and 3' ends, respectively. We report the identification of mutations in ELAC2 in five individuals with infantile hypertrophic cardiomyopathy and complex I deficiency. We observed accumulated mtRNA precursors in affected individuals muscle and fibroblasts. Although mature mt-tRNA, mt-mRNA, and mt-rRNA levels were not decreased in fibroblasts, the processing defect was associated with impaired mitochondrial translation. Complementation experiments in mutant cell lines restored RNA processing and a yeast model provided additional evidence for the disease-causal role of defective ELAC2, thereby linking mtRNA processing to human disease.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Mitocondrias/genética , Mutación , Proteínas de Neoplasias/genética , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , Secuencia de Aminoácidos , Cardiomiopatía Hipertrófica/metabolismo , Cardiomiopatía Hipertrófica/patología , Núcleo Celular/genética , Núcleo Celular/metabolismo , Transporte de Electrón/genética , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Prueba de Complementación Genética , Humanos , Lactante , Masculino , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Músculos/metabolismo , Músculos/patología , Proteínas de Neoplasias/metabolismo , Linaje , ARN Mensajero/metabolismo , ARN Mitocondrial , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
20.
Am J Hum Genet ; 90(6): 1079-87, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22608499

RESUMEN

Dysfunction of mitochondrial respiration is an increasingly recognized cause of isolated hypertrophic cardiomyopathy. To gain insight into the genetic origin of this condition, we used next-generation exome sequencing to identify mutations in MTO1, which encodes mitochondrial translation optimization 1. Two affected siblings carried a maternal c.1858dup (p.Arg620Lysfs(∗)8) frameshift and a paternal c.1282G>A (p.Ala428Thr) missense mutation. A third unrelated individual was homozygous for the latter change. In both humans and yeast, MTO1 increases the accuracy and efficiency of mtDNA translation by catalyzing the 5-carboxymethylaminomethylation of the wobble uridine base in three mitochondrial tRNAs (mt-tRNAs). Accordingly, mutant muscle and fibroblasts showed variably combined reduction in mtDNA-dependent respiratory chain activities. Reduced respiration in mutant cells was corrected by expressing a wild-type MTO1 cDNA. Conversely, defective respiration of a yeast mto1Δ strain failed to be corrected by an Mto1(Pro622∗) variant, equivalent to human MTO1(Arg620Lysfs∗8), whereas incomplete correction was achieved by an Mto1(Ala431Thr) variant, corresponding to human MTO1(Ala428Thr). The respiratory yeast phenotype was dramatically worsened in stress conditions and in the presence of a paromomycin-resistant (P(R)) mitochondrial rRNA mutation. Lastly, in vivo mtDNA translation was impaired in the mutant yeast strains.


Asunto(s)
Acidosis Láctica/genética , Cardiomiopatía Hipertrófica/genética , Proteínas Portadoras/genética , Análisis Mutacional de ADN , Mitocondrias/metabolismo , ARN de Transferencia/genética , Secuencia de Bases , ADN Mitocondrial/genética , Fibroblastos/metabolismo , Homocigoto , Humanos , Datos de Secuencia Molecular , Madres , Mutación , Mutación Missense , Conformación de Ácido Nucleico , Fosforilación Oxidativa , Paromomicina/farmacología , Fenotipo , Fosforilación , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN , Respiración , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA