Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biochem Mol Toxicol ; 38(1): e23605, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38069809

RESUMEN

COVID-19 is caused by a novel SARS-CoV-2 leading to pulmonary and extra-pulmonary manifestations due to oxidative stress (OS) development and hyperinflammation. COVID-19 is primarily asymptomatic though it may cause acute lung injury (ALI), acute respiratory distress syndrome (ARDS), systemic inflammation, and thrombotic events in severe cases. SARS-CoV-2-induced OS triggers the activation of different signaling pathways, which counterbalances this complication. One of these pathways is nuclear factor erythroid 2-related factor 2 (Nrf2), which induces a series of cellular interactions to mitigate SARS-CoV-2-mediated viral toxicity and OS-induced cellular injury. Nrf2 pathway inhibits the expression of pro-inflammatory cytokines and the development of cytokine storm in COVID-19. Therefore, Nrf2 activators may play an essential role in reducing SARS-CoV-2 infection-induced inflammation by suppressing NLRP3 inflammasome in COVID-19. Furthermore, Nrf2 activators can attenuate endothelial dysfunction (ED), renin-angiotensin system (RAS) dysregulation, immune thrombosis, and coagulopathy. Thus this mini-review tries to clarify the possible role of the Nrf2 activators in the management of COVID-19. Nrf2 activators could be an effective therapeutic strategy in the management of Covid-19. Preclinical and clinical studies are recommended in this regard.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Factor 2 Relacionado con NF-E2 , Inflamación , Pulmón
2.
Toxicol Ind Health ; 37(10): 619-634, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34569379

RESUMEN

Nickel nanoparticles (Ni NPs) are utilized extensively in various industrial applications. However, there are increasing concerns about potential exposure to Ni NPs and consequent health effects. The aim of this study was to assess Ni NPs-induced liver toxicity in Sprague Dawley rats. Twenty-five rats were exposed to Ni NPs via intraperitoneal injection at doses of 15, 30, and 45 mg/kg per body weight for 28 days. Results from ICP-MS analysis showed an increase in the concentration of Ni NPs in a dose-dependent manner. The liver dysfunction was indicated by considerable production of ALT, AST, ALP, LDH, and TB in Ni NPs-treated rats. Histological examination demonstrated liver injuries (inflammatory cells, congestion, necrosis, and pyknosis) in exposed rats with dose-dependent severity of pathologies by semi-quantitative histograding system. To explore the toxicological pathways, we examined oxidative stress biomarkers and detected Ni NPs significantly elevated the levels of MDA and LPO while decreasing the levels of CAT and GSH. All the changes in biomarkers were recorded in a dose-dependent relationship. In addition, we found upregulated NF-kß indicating activation of inflammatory cytokines. ELISA results of serum revealed a remarkable increase of nitrative stress markers (iNOS and NO), ATPase activity, inflammatory cytokine (IL-6, IL-1ß, and TNF-α), and apoptotic mediators (caspase-3 and caspase-9) in Ni NPs-treated groups than the control. In summary, the result of this study provided evidence of hepatotoxicity of Ni NPs and insightful information about the involved toxic pathways, which will help in health risk assessment and management, related preventive measures for the use of Ni-NPs materials.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/fisiopatología , Hígado/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Níquel/toxicidad , Animales , Apoptosis/efectos de los fármacos , Biomarcadores , Relación Dosis-Respuesta a Droga , Inflamación/fisiopatología , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA