Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 42(18): 3689-3703, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35351830

RESUMEN

Recent branching (100 MYA) of the mammalian evolutionary tree has enhanced brain complexity and functions at the putative cost of increased emotional circuitry vulnerability. Thus, to better understand psychopathology, a burden for the modern society, novel approaches should exploit evolutionary aspects of psychiatric-relevant molecular pathways. A handful of genes is nowadays tightly associated to psychiatric disorders. Among them, neuronal-enriched RbFOX1 modifies the activity of synaptic regulators in response to neuronal activity, keeping excitability within healthy domains. We here dissect a higher primates-restricted interaction between RbFOX1 and the transcriptional corepressor Lysine Specific Demethylase 1 (LSD1/KDM1A). A single nucleotide variation (AA to AG) in LSD1 gene appeared in higher primates and humans, endowing RbFOX1 with the ability to promote the alternative usage of a novel 3' AG splice site, which extends LSD1 exon E9 in the upstream intron (E9-long). Exon E9-long regulates LSD1 levels by Nonsense-Mediated mRNA Decay. As reintroduction of the archaic LSD1 variant (AA) abolishes E9-long splicing, the novel 3' AG splice site is necessary for RbFOX1 to control LSD1 levels. LSD1 is a homeostatic immediate early genes (IEGs) regulator playing a relevant part in environmental stress-response. In primates and humans, inclusion of LSD1 as RbFOX1 target provides RbFOX1 with the additional ability to regulate the IEGs. These data, together with extensive RbFOX1 involvement in psychiatric disorders and its stress-dependent regulation in male mice, suggest the RbFOX1-LSD1-IEGs axis as an evolutionary recent psychiatric-relevant pathway. Notably, outside the nervous system, RbFOX2-dependent LSD1 modulation could be a candidate deregulated mechanism in cancer.SIGNIFICANCE STATEMENT To be better understood, anxiety and depression need large human genetics studies aimed at further resolving the often ambiguous, aberrant neuronal pathomechanisms that impact corticolimbic circuitry physiology. Several genetic associations of the alternative splicing regulator RbFOX1 with psychiatric conditions suggest homeostatic unbalance as a neuronal signature of psychopathology. Here we move a step forward, characterizing a disease-relevant higher primates-specific pathway by which RbFOX1 acquires the ability to regulate neuronal levels of Lysine Specific Demethylase 1, an epigenetic modulator of environmental stress response. Thus, two brain-enriched enzymes, independently shown to homeostatically protect neurons with a clear readout in terms of emotional behavior in lower mammals, establish in higher primates and humans a new functional cooperation enhancing the complexity of environmental adaptation and stress vulnerability.


Asunto(s)
Empalme Alternativo , Lisina , Empalme Alternativo/genética , Animales , Encéfalo/metabolismo , Histona Demetilasas/genética , Humanos , Lisina/metabolismo , Masculino , Mamíferos , Ratones , Primates , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Proteínas Represoras/genética
2.
J Neurochem ; 155(1): 98-110, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32141088

RESUMEN

Acute environmental stress rarely implies long-lasting neurophysiological and behavioral alterations. On the contrary, chronic stress exerts a potent toxic effect at the glutamatergic synapse whose altered physiology has been recognized as a core trait of neuropsychiatric disorders. The endocannabinoid system (ECS) plays an important role in the homeostatic response to acute stress. In particular, stress induces synthesis of endocannabinoid (eCB) 2-arachidonyl glycerol (2-AG). 2-AG stimulates presynaptic cannabinoid 1 (CB1) receptor contributing to stress response termination through inhibition of glutamate release, restraining thereafter anxiety arousal. We employ mouse models of stress response coupled to gene expression analyses, unravelling that in response to acute psychosocial stress in the mouse hippocampus, ECS-mediated synaptic modulation is enhanced via transcriptional repression of two enzymes involved in 2-AG degradation: α/ß-hydrolase domain containing 6 (ABHD6) and monoacylglycerol lipase (MAGL). Such a process is orchestrated by the epigenetic corepressor LSD1 who directly interacts with promoter regulatory regions of Abhd6 and Magl. Remarkably, negative transcriptional control of Abhd6 and Magl is lost in the hippocampus upon chronic psychosocial stress, possibly contributing to trauma-induced drift of synapse physiology toward uncontrolled glutamate transmission. We previously showed that in mice lysine-specific demethylase 1 (LSD1) increases its hippocampal expression in response to psychosocial stress preventing excessive consolidation of anxiety-related plasticity. In this work, we unravel a nodal epigenetic modulation of eCB turn over, shedding new light on the molecular substrate of converging stress-terminating effects displayed by ECS and LSD1.


Asunto(s)
Endocannabinoides/fisiología , Histona Demetilasas/metabolismo , Trastornos de Estrés Traumático Agudo/fisiopatología , Animales , Ácidos Araquidónicos/farmacología , Endocannabinoides/farmacología , Represión Epigenética , Regulación de la Expresión Génica , Glicéridos/farmacología , Hipocampo/metabolismo , Histona Demetilasas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monoacilglicerol Lipasas/biosíntesis , Monoacilglicerol Lipasas/genética , Receptor Cannabinoide CB1/agonistas , Medio Social , Estrés Psicológico
3.
Int J Mol Sci ; 21(17)2020 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-32872402

RESUMEN

There is no argument with regard to the physical and psychological stress-related nature of neuropsychiatric disorders. Yet, the mechanisms that facilitate disease onset starting from molecular stress responses are elusive. Environmental stress challenges individuals' equilibrium, enhancing homeostatic request in the attempt to steer down arousal-instrumental molecular pathways that underlie hypervigilance and anxiety. A relevant homeostatic pathway is the endocannabinoid system (ECS). In this review, we summarize recent discoveries unambiguously listing ECS as a stress coping mechanism. As stress evokes huge excitatory responses in emotional-relevant limbic areas, the ECS limits glutamate release via 2-arachydonilglycerol (2-AG) stress-induced synthesis and retrograde cannabinoid 1 (CB1)-receptor activation at the synapse. However, ECS shows intrinsic vulnerability as 2-AG overstimulation by chronic stress rapidly leads to CB1-receptor desensitization. In this review, we emphasize the protective role of 2-AG in stress-response termination and stress resiliency. Interestingly, we discuss ECS regulation with a further nuclear homeostatic system whose nature is exquisitely epigenetic, orchestrated by Lysine Specific Demethylase 1. We here emphasize a remarkable example of stress-coping network where transcriptional homeostasis subserves synaptic and behavioral adaptation, aiming at reducing psychiatric effects of traumatic experiences.


Asunto(s)
Adaptación Psicológica , Endocannabinoides/metabolismo , Histona Demetilasas/metabolismo , Animales , Ácidos Araquidónicos/metabolismo , Epigénesis Genética , Ácido Glutámico/metabolismo , Glicéridos/metabolismo , Homeostasis , Humanos , Receptor Cannabinoide CB1/metabolismo
4.
Int J Mol Sci ; 21(9)2020 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-32344798

RESUMEN

Psychiatric disorders represent a heterogeneous class of multifactorial mental diseases whose origin entails a pathogenic integration of genetic and environmental influences. Incidence of these pathologies is dangerously high, as more than 20% of the Western population is affected. Despite the diverse origins of specific molecular dysfunctions, these pathologies entail disruption of fine synaptic regulation, which is fundamental to behavioral adaptation to the environment. The synapses, as functional units of cognition, represent major evolutionary targets. Consistently, fine synaptic tuning occurs at several levels, involving a novel class of molecular regulators known as long non-coding RNAs (lncRNAs). Non-coding RNAs operate mainly in mammals as epigenetic modifiers and enhancers of proteome diversity. The prominent evolutionary expansion of the gene number of lncRNAs in mammals, particularly in primates and humans, and their preferential neuronal expression does represent a driving force that enhanced the layering of synaptic control mechanisms. In the last few years, remarkable alterations of the expression of lncRNAs have been reported in psychiatric conditions such as schizophrenia, autism, and depression, suggesting unprecedented mechanistic insights into disruption of fine synaptic tuning underlying severe behavioral manifestations of psychosis. In this review, we integrate literature data from rodent pathological models and human evidence that proposes the biology of lncRNAs as a promising field of neuropsychiatric investigation.


Asunto(s)
Epigénesis Genética , Trastornos Mentales/genética , ARN Largo no Codificante/genética , Transmisión Sináptica/genética , Animales , Sistema Nervioso Central/metabolismo , Modelos Animales de Enfermedad , Endocannabinoides/fisiología , Evolución Molecular , Regulación de la Expresión Génica/genética , Humanos , Sistema Hipotálamo-Hipofisario/fisiopatología , Mamíferos/genética , Trastornos Mentales/epidemiología , Trastornos Mentales/metabolismo , Trastornos Mentales/fisiopatología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/genética , Plasticidad Neuronal/genética , Sistema Hipófiso-Suprarrenal/fisiopatología , ARN Largo no Codificante/biosíntesis , ARN Largo no Codificante/clasificación , Transmisión Sináptica/fisiología
5.
Int J Mol Sci ; 21(20)2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33050350

RESUMEN

Emotional and cognitive information processing represent higher-order brain functions. They require coordinated interaction of specialized brain areas via a complex spatial and temporal equilibrium among neuronal cell-autonomous, circuitry, and network mechanisms. The delicate balance can be corrupted by stressful experiences, increasing the risk of developing psychopathologies in vulnerable individuals. Neuropsychiatric disorders affect twenty percent of the western world population, but therapies are still not effective for some patients. Elusive knowledge of molecular pathomechanisms and scarcity of objective biomarkers in humans present complex challenges, while the adoption of rodent models helps to improve our understanding of disease correlate and aids the search for novel pharmacological targets. Stress administration represents a strategy to induce, trace, and modify molecular and behavioral endophenotypes of mood disorders in animals. However, a mouse or rat model will only display one or a few endophenotypes of a specific human psychopathology, which cannot be in any case recapitulated as a whole. To override this issue, shared criteria have been adopted to deconstruct neuropsychiatric disorders, i.e., depression, into specific behavioral aspects, and inherent neurobiological substrates, also recognizable in lower mammals. In this work, we provide a rationale for rodent models of stress administration. In particular, comparing each rodent model with a real-life human traumatic experience, we intend to suggest an introductive guide to better comprehend and interpret these paradigms.


Asunto(s)
Trastornos Mentales/etiología , Estrés Fisiológico , Estrés Psicológico/complicaciones , Animales , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Ambiente , Humanos , Trastornos Mentales/diagnóstico , Trastornos Mentales/terapia , Pronóstico , Investigación
6.
Proc Natl Acad Sci U S A ; 113(13): 3651-6, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26976584

RESUMEN

Behavioral changes in response to stressful stimuli can be controlled via adaptive epigenetic changes in neuronal gene expression. Here we indicate a role for the transcriptional corepressor Lysine-Specific Demethylase 1 (LSD1) and its dominant-negative splicing isoform neuroLSD1, in the modulation of emotional behavior. In mouse hippocampus, we show that LSD1 and neuroLSD1 can interact with transcription factor serum response factor (SRF) and set the chromatin state of SRF-targeted genes early growth response 1 (egr1) and c-fos Deletion or reduction of neuro LSD1 in mutant mice translates into decreased levels of activating histone marks at egr1 and c-fos promoters, dampening their psychosocial stress-induced transcription and resulting in low anxiety-like behavior. Administration of suberoylanilide hydroxamine to neuroLSD1(KO)mice reactivates egr1 and c-fos transcription and restores the behavioral phenotype. These findings indicate that LSD1 is a molecular transducer of stressful stimuli as well as a stress-response modifier. Indeed, LSD1 expression itself is increased acutely at both the transcriptional and splicing levels by psychosocial stress, suggesting that LSD1 is involved in the adaptive response to stress.


Asunto(s)
Emociones/fisiología , Genes Inmediatos-Precoces , Histona Demetilasas/fisiología , Empalme Alternativo , Animales , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Epigénesis Genética , Genes fos , Histona Demetilasas/deficiencia , Histona Demetilasas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Plasticidad Neuronal , Fenotipo , Factor de Respuesta Sérica/fisiología , Estrés Psicológico , Transcripción Genética
7.
J Neurosci ; 37(45): 10773-10782, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29118205

RESUMEN

Intellectual disability (ID) is a prevailing neurodevelopmental condition associated with impaired cognitive and adaptive behaviors. Many chromatin-modifying enzymes and other epigenetic regulators have been genetically associated with ID disorders (IDDs). Here we review how alterations in the function of histone modifiers, chromatin remodelers, and methyl-DNA binding proteins contribute to neurodevelopmental defects and altered brain plasticity. We also discuss how progress in human genetics has led to the generation of mouse models that unveil the molecular etiology of ID, and outline the direction in which this field is moving to identify therapeutic strategies for IDDs. Importantly, because the chromatin regulators linked to IDDs often target common downstream genes and cellular processes, the impact of research in individual syndromes goes well beyond each syndrome and can also contribute to the understanding and therapy of other IDDs. Furthermore, the investigation of these disorders helps us to understand the role of chromatin regulators in brain development, plasticity, and gene expression, thereby answering fundamental questions in neurobiology.


Asunto(s)
Epigénesis Genética/genética , Discapacidad Intelectual/etiología , Discapacidad Intelectual/genética , Epigenómica , Humanos
8.
Hum Mol Genet ; 25(12): 2578-2587, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27094131

RESUMEN

Genetic diseases often lead to rare and severe syndromes and the identification of the genetic and protein alterations responsible for the pathogenesis is essential to understand both the physiological and pathological role of the gene product. Recently, de novo variants have been mapped on the gene encoding for the lysine-specific histone demethylase 1 (LSD1)/lysine(K)-specific histone demethylase 1A in three patients characterized by a new genetic disorder. We have analyzed the effects of these pathological mutations on the structure, stability and activity of LSD1 using both in vitro and cellular approaches. The three mutations (Glu403Lys, Asp580Gly and Tyr785His) affect active-site residues and lead to a partial impairment of catalytic activity. They also differentially perturb the ability of LSD1 to engage transcription factors that orchestrate key developmental programs. Moreover, cellular data indicate a decrease in the protein cellular half-life. Taken together, these results demonstrate the relevance of LSD1 in gene regulation and how even moderate alterations in its stability, catalytic activity and binding properties can strongly affect organism development. This depicts a perturbed interplay of catalytic and non-catalytic processes at the origin of the pathology.


Asunto(s)
Histona Demetilasas/química , Histona Demetilasas/genética , Discapacidad Intelectual/genética , Transcripción Genética , Catálisis , Dominio Catalítico/genética , Regulación de la Expresión Génica , Histona Demetilasas/metabolismo , Humanos , Discapacidad Intelectual/patología , Mutación , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Factores de Transcripción/química , Factores de Transcripción/genética
9.
J Psychiatry Neurosci ; 43(2): 87-101, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29481316

RESUMEN

BACKGROUND: Increasing cannabis consumption among adolescents, studies that link its early use with mental illnesses, and the political debate on cannabis legalization together call for an urgent need to study molecular underpinnings of adolescent brain vulnerability. The emerging role of epigenetic mechanisms in psychiatric diseases led us to hypothesize that epigenetic alterations could play a role in causes and subsequent development of the depressive/psychotic-like phenotype induced by adolescent, but not adult, Δ9-tetrahydrocannabinol (THC) exposure in female rats. METHODS: We performed a time-course analysis of histone modifications, chromatin remodelling enzymes and gene expression in the prefrontal cortex of female rats after adolescent and adult THC exposure. We also administered a specific epigenetic drug (chaetocin) with THC to investigate its impact on THC-induced behavioural alterations. RESULTS: Adolescent THC exposure induced alterations of selective histone modifications (mainly H3K9me3), impacting the expression of genes closely associated with synaptic plasticity. Changes in both histone modifications and gene expression were more widespread and intense after adolescent treatment, suggesting specific adolescent susceptibility. Adolescent THC exposure significantly increased Suv39H1 levels, which could account for the enhanced H3K9me3. Pharmacological blockade of H3K9me3 during adolescent THC treatment prevented THC-induced cognitive deficits, suggesting the relevant role played by H3K9me3 in THC-induced effects. LIMITATIONS: Only female rats were investigated, and the expression studies were limited to a specific subset of genes. CONCLUSION: Through a mechanism involving SUV39H1, THC modifies histone modifications and, thereby, expression of plasticity genes. This pathway appears to be relevant for the development of cognitive deficits.


Asunto(s)
Conducta Animal/efectos de los fármacos , Cromatina/metabolismo , Disfunción Cognitiva/metabolismo , Dronabinol/farmacología , Expresión Génica/efectos de los fármacos , Metiltransferasas/biosíntesis , Corteza Prefrontal/metabolismo , Proteínas Represoras/biosíntesis , Factores de Edad , Animales , Disfunción Cognitiva/inducido químicamente , Dronabinol/antagonistas & inhibidores , Femenino , Histonas/biosíntesis , Piperazinas/farmacología , Ratas
10.
Int J Mol Sci ; 19(7)2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29997370

RESUMEN

Cyclin-dependent kinase 5 regulatory subunit 1 (CDK5R1) gene encodes for p35, the main activator of Cyclin-dependent kinase 5 (CDK5). The active p35/CDK5 complex is involved in numerous aspects of brain development and function, and its deregulation is closely associated to Alzheimer's disease (AD) onset and progression. We recently showed that miR-15/107 family can negatively regulate CDK5R1 expression modifying mRNA stability. Interestingly, miRNAs belonging to miR-15/107 family are downregulated in AD brain while CDK5R1 is upregulated. Long non-coding RNAs (lncRNAs) are emerging as master regulators of gene expression, including miRNAs, and their dysregulation has been implicated in the pathogenesis of AD. Here, we evaluated the existence of an additional layer of CDK5R1 expression regulation provided by lncRNAs. In particular, we focused on three lncRNAs potentially regulating CDK5R1 expression levels, based on existing data: NEAT1, HOTAIR, and MALAT1. We demonstrated that NEAT1 and HOTAIR negatively regulate CDK5R1 mRNA levels, while MALAT1 has a positive effect. We also showed that all three lncRNAs positively control miR-15/107 family of miRNAs. Moreover, we evaluated the expression of NEAT1, HOTAIR, and MALAT1 in AD and control brain tissues. Interestingly, NEAT1 displayed increased expression levels in temporal cortex and hippocampus of AD patients. Interestingly, we observed a strong positive correlation between CDK5R1 and NEAT1 expression levels in brain tissues, suggesting a possible neuroprotective role of NEAT1 in AD to compensate for increased CDK5R1 levels. Overall, our work provides evidence of another level of CDK5R1 expression regulation mediated by lncRNAs and points to NEAT1 as a biomarker, as well as a potential pharmacological target for AD therapy.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Proteínas del Tejido Nervioso/genética , ARN Largo no Codificante/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Progresión de la Enfermedad , Regulación de la Expresión Génica , Marcadores Genéticos , Células HeLa , Hipocampo/metabolismo , Humanos , Lóbulo Temporal/metabolismo
11.
Hum Genet ; 136(10): 1329-1339, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28776093

RESUMEN

Neurofibromatosis type I (NF1) microdeletion syndrome, which is present in 4-11% of NF1 patients, is associated with a severe phenotype as it is caused by the deletion of NF1 and other genes in the 17q11.2 region. The variable expressivity of the disease makes it challenging to establish genotype-phenotype correlations, which also affects prognosis and counselling. We here describe a 3-year-old NF1 patient with an atypical deletion and a complex phenotype. The patient showed overgrowth, café au lait spots, inguinal freckling, and neurological abnormalities. The extent of the deletion was determined by means of array comparative genomic hybridisation, and its breakpoints were isolated by means of long-range polymerase chain reaction. Sequence analysis of the deletion junction fragment revealed the occurrence of an Alu-mediated recombination that led to the generation of a chimeric gene consisting of three exons of RNF135 and eleven exons of SUZ12. Interestingly, the deletion shares a common RNF135-centred region with another deletion described in a non-NF1 patient with overgrowth. In comparison with the normal RNF135 allele, the chimeric transcript was 350-fold over-expressed in peripheral blood, and the ADAP2 gene located upstream of RNF135 was also up-regulated. In line with this, the deletion causes the loss of a chromatin TD boundary, which entails the aberrant adoption of distal cis-acting regulatory elements. These findings suggest that RNF135 haploinsufficiency is related to overgrowth in patients with NF1 microdeletion syndrome and, for the first time, strongly indicate a position effect that warrants further genotype-phenotype correlation studies to investigate the possible existence of previously unknown pathogenic mechanisms.


Asunto(s)
Efectos de la Posición Cromosómica , Deleción Cromosómica , Proteínas Activadoras de GTPasa , Regulación Neoplásica de la Expresión Génica , Neurofibromatosis 1 , Complejo Represivo Polycomb 2 , Recombinación Genética , Ubiquitina-Proteína Ligasas , Alelos , Preescolar , Proteínas Activadoras de GTPasa/biosíntesis , Proteínas Activadoras de GTPasa/genética , Humanos , Masculino , Proteínas de Neoplasias , Neurofibromatosis 1/genética , Neurofibromatosis 1/metabolismo , Proteínas de Fusión Oncogénica , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Factores de Transcripción , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
12.
Cereb Cortex ; 25(9): 2729-40, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24735673

RESUMEN

Alternative splicing in the brain is dynamic and instrumental to adaptive changes in response to stimuli. Lysine-specific demethylase 1 (LSD1/KDM1A) is a ubiquitously expressed histone H3Lys4 demethylase that acts as a transcriptional co-repressor in complex with its molecular partners CoREST and HDAC1/2. In mammalian brain, alternative splicing of LSD1 mini-exon E8a gives rise to neuroLSD1, a neurospecific isoform that, upon phosphorylation, acts as a dominant-negative causing disassembly of the co-repressor complex and de-repression of target genes. Here we show that the LSD1/neuroLSD1 ratio changes in response to neuronal activation and such effect is mediated by neurospecific splicing factors NOVA1 and nSR100/SRRM4 together with a novel cis-silencer. Indeed, we found that, in response to epileptogenic stimuli, downregulation of NOVA1 reduces exon E8a splicing and expression of neuroLSD1. Using behavioral and EEG analyses we observed that neuroLSD1-specific null mice are hypoexcitable and display decreased seizure susceptibility. Conversely, in a mouse model of Rett syndrome characterized by hyperexcitability, we measured higher levels of NOVA1 protein and upregulation of neuroLSD1. In conclusion, we propose that, in the brain, correct ratio between LSD1 and neuroLSD1 contributes to excitability and, when altered, could represent a pathogenic event associated with neurological disorders involving altered E/I.


Asunto(s)
Empalme Alternativo/genética , Encéfalo/patología , Regulación hacia Abajo/genética , Epilepsia/genética , Histona Demetilasas/metabolismo , Neuronas/fisiología , Análisis de Varianza , Animales , Antígenos de Neoplasias/metabolismo , Encéfalo/fisiopatología , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Modelos Animales de Enfermedad , Electroencefalografía , Histona Demetilasas/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Antígeno Ventral Neuro-Oncológico , Neuroblastoma/patología , Proteínas de Unión al ARN/metabolismo , Transfección
13.
Mol Cell ; 31(2): 222-31, 2008 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-18657505

RESUMEN

The stress response in cells involves a rapid and transient transcriptional activation of stress genes. It has been shown that Hsp70 limits its own transcriptional activation functioning as a corepressor of heat shock factor 1 (HSF1) during the attenuation of the stress response. Here we show that the transcriptional corepressor CoREST interacts with Hsp70. Through this interaction, CoREST represses both HSF1-dependent and heat shock-dependent transcriptional activation of the hsp70 promoter. In cells expressing short hairpin RNAs directed against CoREST, Hsp70 cannot repress HSF1-dependent transcription. A reduction of CoREST levels also provoked a significant increase of Hsp70 protein levels and an increase of HSF1-dependent transactivation of hsp70 promoter. Via chromatin immunoprecipitation assays we show that CoREST is bound to the hsp70 gene promoter under basal conditions and that its binding increases during heat shock response. In conclusion, we demonstrated that CoREST is a key regulator of the heat shock stress response.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Respuesta al Choque Térmico , Proteínas del Tejido Nervioso/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Línea Celular , Proteínas Co-Represoras , Proteínas de Unión al ADN/química , Silenciador del Gen , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico , Humanos , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Regiones Promotoras Genéticas/genética , Unión Proteica , Estructura Terciaria de Proteína , ARN Interferente Pequeño/metabolismo , Proteínas Represoras/química , Activación Transcripcional/genética
14.
J Neurochem ; 128(5): 603-16, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24111946

RESUMEN

Epigenetic mechanisms play important roles in brain development, orchestrating proliferation, differentiation, and morphogenesis. Lysine-Specific Demethylase 1 (LSD1 also known as KDM1A and AOF2) is a histone modifier involved in transcriptional repression, forming a stable core complex with the corepressors corepressor of REST (CoREST) and histone deacetylases (HDAC1/2). Importantly, in the mammalian CNS, neuronal LSD1-8a, an alternative splicing isoform of LSD1 including the mini-exon E8a, sets alongside LSD1 and is capable of enhancing neurite growth and morphogenesis. Here, we describe that the morphogenic properties of neuronal LSD1-8a require switching off repressive activity and this negative modulation is mediated in vivo by phosphorylation of the Thr369b residue coded by exon E8a. Three-dimensional crystal structure analysis using a phospho-mimetic mutant (Thr369bAsp), indicate that phosphorylation affects the residues surrounding the exon E8a-coded amino acids, causing a local conformational change. We suggest that phosphorylation, without affecting demethylase activity, causes in neurons CoREST and HDAC1/2 corepressors detachment from LSD1-8a and impairs neuronal LSD1-8a repressive activity. In neurons, Thr369b phosphorylation is required for morphogenic activity, converting neuronal LSD1-8a in a dominant-negative isoform, challenging LSD1-mediated transcriptional repression on target genes.


Asunto(s)
Proteínas Co-Represoras/biosíntesis , Proteínas Co-Represoras/genética , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Histona Demetilasas/biosíntesis , Histona Demetilasas/genética , Transcripción Genética/genética , Animales , Química Encefálica/fisiología , Células Cultivadas , Cromatina/metabolismo , Represión Enzimática , Exones/genética , Regulación Enzimológica de la Expresión Génica/genética , Genes Reporteros , Inmunoprecipitación , Isoenzimas/metabolismo , Espectrometría de Masas , Mutagénesis Sitio-Dirigida , Neuritas/metabolismo , Fosforilación , Conformación Proteica , Ratas
15.
J Neurosci Methods ; 410: 110225, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39053772

RESUMEN

BACKGROUND: The study of neurons is fundamental to unraveling the complexities of the nervous system. Primary neuronal cultures from rodents have long been a cornerstone of experimental studies, yet limitations related to their non-human nature and ethical concerns have prompted the development of alternatives. In recent years, the derivation of neurons from human-induced pluripotent stem cells (hiPSCs) has emerged as a powerful option, offering a scalable source of cells for diverse applications. Neural progenitor cells (NPCs) derived from hiPSCs can be efficiently differentiated into functional neurons, providing a platform to study human neural physiology and pathology in vitro. However, challenges persist in achieving consistent and reproducible outcomes across experimental settings. COMPARISON WITH EXISTING METHODS: Our aim is to provide a step-by-step methodological protocol, augmenting existing procedures with additional instructions and parameters, to guide researchers in achieving reproducible results. METHODS AND RESULTS: We outline procedures for the differentiation of hiPSC-derived NPCs into electrically competent neurons, encompassing initial cell density, morphology, maintenance, and differentiation. We also describe the analysis of specific markers for assessing neuronal phenotype, along with electrophysiological analysis to evaluate biophysical properties of neuronal excitability. Additionally, we conduct a comparative analysis of three different chemical methods-KCl, N-methyl-D-aspartate (NMDA), and bicuculline-to induce neuronal depolarization and assess their effects on the induction of both fast and slow post-translational, transcriptional, and post-transcriptional responses. CONCLUSION: Our protocol provides clear instructions for generating reliable human neuronal cultures with defined electrophysiological properties to investigate neuronal differentiation and model diseases in vitro.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas , Células-Madre Neurales , Neuronas , Humanos , Neuronas/fisiología , Neuronas/citología , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Diferenciación Celular/fisiología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/fisiología , Células Cultivadas , Técnicas de Cultivo de Célula/métodos , Fenómenos Electrofisiológicos/fisiología
16.
Trends Biochem Sci ; 33(4): 181-9, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18343668

RESUMEN

Three years after its discovery, lysine-specific demethylase 1 remains at the forefront of chromatin research. Its demethylase activity on Lys4 of histone H3 supports its role in gene repression. By contrast, the biochemical mechanisms underlying lysine-specific demethylase 1 involvement in transcriptional activation are not firmly established. Structural studies highlight a specific binding site for the histone H3 N-terminal tail and a catalytic machinery that is closely related to that of other flavin-dependent amine oxidases. These insights are crucial for the development of demethylation inhibitors. Furthermore, the exploration of putative non-histone substrates and potential signaling roles of hydrogen peroxide produced by the demethylation reaction could lead to new paradigms in chromatin biology.


Asunto(s)
Cromatina/metabolismo , Histonas/química , Oxidorreductasas N-Desmetilantes/fisiología , Oxígeno/metabolismo , Animales , Catálisis , Diseño de Fármacos , Flavinas/metabolismo , Regulación de la Expresión Génica , Histona Demetilasas , Histonas/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Modelos Biológicos , Oxidorreductasas N-Desmetilantes/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína , Transducción de Señal
17.
Healthcare (Basel) ; 11(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36673541

RESUMEN

BACKGROUND: Violence against women is a relevant health and social problem with negative consequences on women's health. The interaction between genome and environmental factors, such as violence, represents one of the major challenges in molecular medicine. The Epigenetics for WomEn (EpiWE) project is a multidisciplinary pilot study that intends to investigate the epigenetic signatures associated with intimate partner and sexual violence-induced stress-related disorders. MATERIALS AND METHODS: In 2020, 62 women exposed to violence (13 women suffering from sexual violence and 49 from Intimate Partner Violence, IPV) and 50 women with no history of violence were recruited at the Service for Sexual and Domestic Violence. All women aged 18-65 were monitored for their physical and psychological conditions. Blood samples were collected, and DNAs were extracted and underwent the epigenetic analysis of 10 stress-related genes. RESULTS: PTSD prevalence in victims was assessed at 8.1%. Quantitative methylation evaluation of the ten selected trauma/stress-related genes revealed the differential iper-methylation of brain-derived neurotrophic factor, dopamine receptor D2 and insulin-like growth factor 2 genes. These genes are among those related to brain plasticity, learning, and memory pathways. CONCLUSIONS: The association of early detection of posttraumatic distress and epigenetic marker identification could represent a new avenue for addressing women survivors toward resilience. This innovative approach in gender-based violence studies could identify new molecular pathways associated with the long-term effects of violence and implement innovative protocols of precision medicine.

18.
Nat Commun ; 14(1): 603, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36746939

RESUMEN

Spinobulbar muscular atrophy (SBMA) is caused by CAG expansions in the androgen receptor gene. Androgen binding to polyQ-expanded androgen receptor triggers SBMA through a combination of toxic gain-of-function and loss-of-function mechanisms. Leveraging cell lines, mice, and patient-derived specimens, we show that androgen receptor co-regulators lysine-specific demethylase 1 (LSD1) and protein arginine methyltransferase 6 (PRMT6) are overexpressed in an androgen-dependent manner specifically in the skeletal muscle of SBMA patients and mice. LSD1 and PRMT6 cooperatively and synergistically transactivate androgen receptor, and their effect is enhanced by expanded polyQ. Pharmacological and genetic silencing of LSD1 and PRMT6 attenuates polyQ-expanded androgen receptor transactivation in SBMA cells and suppresses toxicity in SBMA flies, and a preclinical approach based on miRNA-mediated silencing of LSD1 and PRMT6 attenuates disease manifestations in SBMA mice. These observations suggest that targeting overexpressed co-regulators can attenuate androgen receptor toxic gain-of-function without exacerbating loss-of-function, highlighting a potential therapeutic strategy for patients with SBMA.


Asunto(s)
Atrofia Bulboespinal Ligada al X , Dípteros , Trastornos Musculares Atróficos , Ratones , Animales , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Atrofia Bulboespinal Ligada al X/genética , Andrógenos , Mutación con Ganancia de Función , Fenotipo , Histona Demetilasas/genética , Trastornos Musculares Atróficos/genética , Trastornos Musculares Atróficos/metabolismo
19.
Cell Rep ; 39(8): 110857, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35613587

RESUMEN

Protocadherin-19 (PCDH19) is a synaptic cell-adhesion molecule encoded by X-linked PCDH19, a gene linked with epilepsy. Here, we report a synapse-to-nucleus signaling pathway through which PCDH19 bridges neuronal activity with gene expression. In particular, we describe the NMDA receptor (NMDAR)-dependent proteolytic cleavage of PCDH19, which leads to the generation of a PCDH19 C-terminal fragment (CTF) able to enter the nucleus. We demonstrate that PCDH19 CTF associates with chromatin and with the chromatin remodeler lysine-specific demethylase 1 (LSD1) and regulates expression of immediate-early genes (IEGs). Our results are consistent with a model whereby PCDH19 favors maintenance of neuronal homeostasis via negative feedback regulation of IEG expression and provide a key to interpreting PCDH19-related hyperexcitability.


Asunto(s)
Cadherinas , Epilepsia , Genes Inmediatos-Precoces , Protocadherinas , Cadherinas/genética , Cadherinas/metabolismo , Cromatina/genética , Cromatina/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Regulación de la Expresión Génica , Humanos , Protocadherinas/genética , Protocadherinas/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal
20.
iScience ; 25(7): 104665, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35856020

RESUMEN

The histone demethylase KDM1A is a multi-faceted regulator of vital developmental processes, including mesodermal and cardiac tube formation during gastrulation. However, it is unknown whether the fine-tuning of KDM1A splicing isoforms, already shown to regulate neuronal maturation, is crucial for the specification and maintenance of cell identity during cardiogenesis. Here, we discovered a temporal modulation of ubKDM1A and KDM1A+2a during human and mice fetal cardiac development and evaluated their impact on the regulation of cardiac differentiation. We revealed a severely impaired cardiac differentiation in KDM1A-/- hESCs that can be rescued by re-expressing ubKDM1A or catalytically impaired ubKDM1A-K661A, but not by KDM1A+2a or KDM1A+2a-K661A. Conversely, KDM1A+2a-/- hESCs give rise to functional cardiac cells, displaying increased beating amplitude and frequency and enhanced expression of critical cardiogenic markers. Our findings prove the existence of a divergent scaffolding role of KDM1A splice variants, independent of their enzymatic activity, during hESC differentiation into cardiac cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA