RESUMEN
The Mediterranean Diet (MedDiet) is a widely recognized dietary pattern, with its effects largely attributed to "functional foods" which are able to positively influence one or more target functions, improving health and maintaining a state of well-being.In this review, three "case-study" typical of the MedDiet, such as artichokes, capers and table olives are considered as traditional functional vegetables rich in bioactive compounds, mainly polyphenols. The review extensively discusses the antioxidant effects of these molecules, as well as their role in aging prevention and reduction, maintaining human health, and influencing the abundance and composition of intestinal microbiota. Additionally, this review focuses on the fate of the dietary polyphenols along the digestive tract.Among biotechnological strategies, the review explores the role of fermentation process in modifying the biochemical profile, recovery, bioaccessibility and bioavailability of bioactive compounds present in some vegetable foods of MedDiet. Finally, the main challenges in the selection, addition, and maintenance of probiotic strains in traditional food products are also summarized, with a view to develop new probiotic carriers for "functional diets".
Asunto(s)
Dieta Mediterránea , Alimentos Funcionales , Verduras , Humanos , Polifenoles , Microbioma Gastrointestinal/fisiología , Probióticos , Biotecnología/métodos , AntioxidantesRESUMEN
Onion skins, actually recycled as organic fertilizers, could be used as a substrate in environmental-friendly bioprocesses to recover high-value bioactive compounds and food ingredients.In this work, a bioprospecting method was carried out including 94 bacterial and 45 yeast strains from several agri-food and environmental niches to verify their ability to grow on onion skins as unique nutrients source.Red and yellow onion skins were assessed by newly selected starter-driven liquid submerged fermentation assays mainly aimed at the release and modification of polyphenols through microbial activities. Fermented onion skins were also investigated as a inexpensive favourable source of microbial enzymes (amylases, proteases, lipases, esterases, cellulases, xylanases).In red onion skins, the treatment with Lactiplantibacillus plantarum TB 11-32 produced a slight increase of bioactive compounds in terms of total phenolics, whereas with the yeast strain Zygosaccharomyces mrakii CL 30 - 29 the quercetin aglycone content increased of about 25% of the initial raw material.In yellow onion skins inoculated, the highest content of phenolic compounds was detected with the yeast strain Saccharomyces cerevisiae En SC, while quercetin aglycone increased of about 60% of the initial raw material in presence of the bacterial strain L. plantarum C 180 - 34.In conclusion, the proposed microbial pre-treatment method can be a potential strategy to re-use onion skins as a fermentation substrate, and as a first step in the development of a biorefinery process to produce value-added products from onion by-products.
Asunto(s)
Polifenoles , Saccharomyces cerevisiae , Fermentación , Quercetina , Cebollas/química , FenolesRESUMEN
The study aimed at improving the nutritional profile of yeast leavened salt reduced sliced bread and puccia type bread fortified with a wheat-based Lactobacillus plantarum ITM21B fermentation product (Bio21B). The protein content of bread made under laboratory conditions was increased by using: (i) chickpea flour (CF) (15% wt/wt flour) and Bio21B or (ii) the Bio21B containing a fungal protease to favour the gluten hydrolysis. Products showed increased protein and total amino acid content and improved protein digestibility. Moreover, the formula significantly affected the protein pattern of breads which, according to the results of the microfluidic two-dimensional electrophoresis (µ2DE) protein pattern, were discriminated as observed by the PCA plot. The use of CF was validated at industrial pilot plant producing salt reduced sliced bread and puccia type bread. The resulting products showed improved nutritional profile and a sensory quality comparable to the company's products containing salt.
Asunto(s)
Pan/análisis , Cicer , Fermentación , Harina/análisis , Lactobacillus plantarum/metabolismo , Cloruro de Sodio/metabolismo , Aminoácidos/análisis , Digestión , Microbiología de Alimentos , Glútenes/análisis , Glútenes/metabolismo , Concentración de Iones de Hidrógeno , Proteínas/análisis , Saccharomyces cerevisiae/metabolismo , Gusto , TriticumRESUMEN
The use of inulin in food is highly appreciated by consumers because of its prebiotic effect. In this study, the effects of increasing additions (5, 10 and 20%) of inulin as a substitute for wheat flour in bread production were investigated with regard to the physical, technological and rheological properties of the flour blends. Inulin reduced the water-binding capacity from 1.4 g/100 g with 0 flour to 0.80 g/100 g with the 20% inulin addition, while there were no statistical differences in the oil-binding capacity. The addition of inulin also influenced the yeast rates, especially in the samples with 5 and 10% addition. On the farinograph, inulin caused a reduction in water absorption (40.75 g/100 g with 20% inulin), an increase in dough development time (18.35 min with 10% inulin) and dough stability (13.10 min with 10% inulin). The mixograph showed a longer kneading time for the sample with 20% inulin (8.70 min) than for the control (4.61 min). In addition, there was an increase in dough firmness and tightness due to the addition of inulin (W: 203 × 10-4 J; P/L: 4.55 for the 20% inulin sample) compared with the control. The physical and technological properties of the loaves were evaluated at time 0 and after 4 days (T4). The addition of inulin reduced the volume of the bread while increasing the weight, albeit with a weight loss at T4 (compared to T0) of 4.8% for the 20% inulin and 14.7% for the control. The addition of inulin caused a darkening of the crust of the enriched bread, proportional to the increase in inulin content. In addition, the inulin content ranged from 0.82 g/100 g in the control to 14.42 g/100 g in the 20% inulin bread, while the predicted glycemic index ranged from 94.52 in the control to 89.39 in the 20% inulin bread. The available data suggest that the formulation with 5% inulin provides the highest performance.
RESUMEN
In the current study, the prebiotic potential of an innovative functional pasta enriched with 12% (w/w) inulin was investigated. To this aim, pasta was subjected to in vitro gastrointestinal digestion followed by simulated gut fermentation compared to the control pasta (CTRL) not containing inulin. The incorporation of inulin positively (p < 0.05) affected some organoleptic traits and the cooking quality of the final product, giving an overall score significantly higher than CTRL. The resultant essential amino acid content was similar in both pasta samples while the total protein content was lower in inulin-enriched pasta for the polymer substitution to durum wheat flour. The prebiotic potential of chicory inulin was preliminarily tested in in vitro experiments using seven probiotic strains and among them Lacticaseibacillus paracasei IMPC2.1 was selected for the simulated gut fermentation studies. The positive prebiotic activity score registered with the probiotic strain suggested the suitability of the inulin-enriched pasta with respect to acting as a prebiotic source favoring the growth of the probiotic strain and short chain fatty acid (SCFA) production. The present study contributes to broadening knowledge on the prebiotic efficacy of inulin when incorporated into a complex food matrix.
RESUMEN
Although numerous strains belonging to the Weissella genus have been described in the last decades for their probiotic and biotechnological potential, others are known to be opportunistic pathogens of humans and animals. Here, we investigated the probiotic potential of two Weissella and four Periweissella type strains belonging to the species Weissella diestrammenae, Weissella uvarum, Periweissella beninensis, Periweissella fabalis, Periweissella fabaria, and Periweissella ghanensis by genomic and phenotypic analyses, and performed a safety assessment of these strains. Based on the results of the survival to simulated gastrointestinal transit, autoaggregation and hydrophobicity characteristics, as well as adhesion to Caco-2 cells, we showed that the P. beninensis, P. fabalis, P. fabaria, P. ghanensis, and W. uvarum type strains exhibited a high probiotic potential. The safety assessment, based on the genomic analysis, performed by searching for virulence and antibiotic resistance genes, as well as on the phenotypic evaluation, by testing hemolytic activity and antibiotic susceptibility, allowed us to identify the P. beninensis type strain as a safe potential probiotic microorganism. IMPORTANCE A comprehensive analysis of safety and functional features of six Weissella and Periweissella type strains was performed. Our data demonstrated the probiotic potential of these species, indicating the P. beninensis type strain as the best candidate based on its potential probiotic features and the safety assessment. The presence of different antimicrobial resistance profiles in the analyzed strains highlighted the need to establish cutoff values to perform a standardized safety evaluation of these species, which, in our opinion, should be mandatory on a strain-specific basis.
RESUMEN
A metabolic feature of lactic acid bacteria (LAB) is the production of exopolysaccharides (EPSs), which have technological and functional properties of interest to the food sector. The present study focused on the characterization of the Weissella cibaria strain C43-11, a high EPS producer in the presence of sucrose, in comparison with a low-producing strain (C2-32), and on possible genetic regulatory elements responsible for the modulation of dextransucrase (dsr) genes expression. NMR analysis of the polymeric material produced by the C43-11 strain indicated the presence of dextran consisting mainly of a linear scaffold formed by α-(1-6) glycosidic linkages and a smaller amounts of branches derived from α-(1-2), α-(1-3), and α-(1-4) linkages. Molecular analysis of the dsr genes and the putative transcriptional promoters of the two strains showed differences in their regulatory regions. Such variations may have a role in the modulation of dsr expression levels in the presence of sucrose. The strong upregulation of the dsr gene in the C43-11 strain resulted in a high accumulation of EPS. This is the first report showing differences in the regulatory elements of the dsr gene in W. cibaria and indicates a new perspective of investigation to identify the regulatory mechanism of EPS production.
RESUMEN
The application of mathematical modeling to study and characterize lactic acid bacterial strains with pro-technological and functional features has gained attention in recent years to solve the problems relevant to the variabilities of the fermentation processes of sourdough. Since the key factors contributing to the sourdough quality are relevant to the starter strain growth and its metabolic activity, in this study, the cardinal growth parameters for pH, temperature (T), water activity (aw), and undissociated lactic acid of the sourdough strain Lactiplantibacillus plantarum ITM21B, were determined. The strain growth, pH, organic acids (lactic, acetic, phenyllactic, and hydroxy-phenyllactic), total free amino acids, and proteins were monitored during fermentation of a liquid sourdough based on wheat flour and gluten (Bio21B) after changing the starting T, pH, and inoculum load. Results demonstrated that the different fermentation conditions affected the strain growth and metabolite pattern. The organic acid production and growth performance were modeled in Bio21B, and the resulting predictive model allowed us to simulate in silico the strain performances in liquid sourdough under different scenarios. This mathematical predictive approach can be useful to optimize the fermentation conditions needed to obtain the suitable nutritional and technological characteristics of the L. plantarum ITM21B liquid sourdough.
RESUMEN
Bacterial strains belonging to Lacticaseibacillus paracasei species are generally used as starters in food fermentations and/or as probiotics. In the current study, the growth cardinal parameters of four L. paracasei strains (IMPC2.1, IMPC4.1, P40 and P101), isolated from table olives or human source, were determined. Strains were grown in liquid medium and incubated at several temperatures (10 values from 5.5°C-40°C) and pH (15 values from 3.2 to 9.1) along the growth range. The cardinal temperature model was used to describe temperature effects on the maximum specific growth rate of L. paracasei whereas new equations were developed for the effect of pH. The estimated Tmin values ranged between -0.97°C and 1.95°C and were lower than 0°C for strains IMPC4.1 and P101. Strain P40 was able to grow in the most restricted range of temperature (from 1.95°C to 37.46°C), while strain IMPC4.1 was estimated to survive at extreme conditions showing the lowest pHmin . Maximum specific growth rates of L. paracasei IMPC2.1 in white cabbage (Brassica oleracea var. capitata) were used to calculate the correction factor (Cf ) defined as the bias between the bacterial maximum specific growth rate in broth and in the food matrix. A simple bi-linear model was also developed for the effect of temperature on the maximum population density reached in white cabbage. This information was further used to simulate the growth of L. paracasei strains in cabbage and predict the time to reach the targeted probiotic level (7 log10 CFU/g) using in silico simulations. This study demonstrates the potential of the predictive microbiology to predict the growth of beneficial and pro-technological strains in foods in order to optimize the fermentative process.
RESUMEN
The aim of the current study was to identify quality indicators of fat (14.50 ± 0.75%) and low-fat (4.79 ± 0.63%) raw ground beef by monitoring changes in physicochemical and microbiological parameters during aerobic refrigerated storage, such as water-holding capacity, pH, thiols, carbonyl compounds, thiobarbituric acid reactive substances (TBARS), metmyoglobin, deoxymyoglobin, oxymyoglobin color indices, pseudomonads, Brochothrix thermosphacta, and total viable counts. Meat packaged in air-permeable polyethylene plastic film was stored under controlled isothermal conditions (0, 5, 10, and 15 °C). A population level of pseudomonads equal to 7.0 ± 0.5 log10 colony forming units (CFU)/g was considered as the potential spoilage level. Using principal component analysis, samples were distinguished on the basis of their microbial load. A significant positive correlation between microbial population and carbonyls, metmyoglobin, TBARS, water-holding capacity, and a negative correlation with thiols and color parameters (L* , chroma) were observed. Two different approaches were followed to estimate the quality status of samples: (i) the partial least square (PLS) regression with R2 of 0.93 and root mean square error prediction of 0.44 for pseudomonads, using the above physicochemical characteristics as the dominant input variables, which allowed prediction of the microbiological status of ground beef regardless of time-temperature storage profile and fat content, and (ii) a square-root-type model (adjusted R2 of 0.952) that satisfactorily predicted the growth of spoilage pseudomonads under isothermal and dynamic conditions, regardless of the above physicochemical changes. The above results suggest that depending on the available input data, the two modeling approaches can accurately (and complementarily) assess quality of aerobically stored ground beef. PRACTICAL APPLICATION: Changes in appearance and quality of fat and low-fat raw ground beef are associated with physicochemical alteration and/or microbial growth. The study provides two different modeling approaches that can be integrated in an intelligent interface of the refrigerator having specific colorimetric and/or temperature sensors, to evaluate in a convenience way the quality of stored meat thus reducing domestic waste: the partial least square model was based on physicochemical parameters (particularly chroma, metmyoglobin, and thiobarbituric acid reactive substances), while the square root model was based on the time-temperature conditions during storage.
Asunto(s)
Bacterias/aislamiento & purificación , Grasas/análisis , Carne/análisis , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bovinos , Recuento de Colonia Microbiana , Color , Microbiología de Alimentos , Almacenamiento de Alimentos , Refrigeración , Temperatura , Sustancias Reactivas al Ácido Tiobarbitúrico/análisisRESUMEN
Exopolysaccharides (EPSs) are known for their positive contribute to the technological properties of many foods, including bakery products. These molecules can be obtained performing piloted fermentation with lactic acid bacteria (LAB). In order to select strains able to produce EPS, a screening test in agar medium containing sucrose, fructose or glucose as carbohydrate source was performed on 21 LAB strains. Results allowed to select 8 Weissella cibaria, 2 Weissella confusa, and 2 Leuconostoc spp. strains as EPS producers only in the presence of sucrose. A further screening in liquid medium enriched with sucrose (10%) (mMRS_S) indicated the W. cibaria strain C43-11 as the higher EPS producer. The selected strain was used to develop liquid sourdoughs (LSs) with dough yield (DY) 500, fermented for 15 h and based on wheat flour and wheat gluten or pseudocereals (quinoa or amaranth) in ratio 1:1, in the presence or not of sucrose at 3% (w/w, LS weight), in comparison to Lactobacillus plantarum ITM21B, a strain not producing EPS in mMRS_S. Results indicated that the use of pseudocereals favored the EPS production. Formulations were optimized by modifying DY (500 or 250), sucrose concentration (3 or 6%) and flour ratio. LSs were characterized for the content of organic acids (lactic, acetic, phenyllactic, OH-phenyllactic), pH, TTA, EPS, viscosity, total protein degradation and protein pattern. The highest EPS production (20.79 g/kg) and viscosity (1168 mPa s) were obtained in LS (DY 250, sucrose 6%) based on quinoa flour and started with C43-11 strain. The LS was characterized by the presence of phenyllactic and OH-phenyllactic acids, protein degradation by 51.7% and proteins in the range 14-80 kDa. In these conditions, also strain ITM21B was able to produce EPS at level of 4.61 g/kg and to degrade proteins by 53.8% in LS based on wheat and quinoa flours (1:1) (DY250 and sucrose 3%). Therefore, results demonstrated that the use of selected conditions (flour type, DY, sucrose) can stimulate specific attributes of strains making them suitable for production of short fermented (15 h) LSs which can be used as bread improvers.