Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(36): e2302720120, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37643212

RESUMEN

Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson's disease (PD) and Alzheimer's disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aß42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues.


Asunto(s)
Enfermedad de Alzheimer , Cadenas HLA-DRB1 , Enfermedad de Parkinson , Humanos , Enfermedad de Alzheimer/genética , Antígenos de Histocompatibilidad , Antígenos HLA , Cadenas HLA-DRB1/genética , Enfermedad de Parkinson/genética
2.
Mol Psychiatry ; 28(7): 2716-2727, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37131074

RESUMEN

Alzheimer's disease (AD) is considered to have a large genetic component. Our knowledge of this component has progressed over the last 10 years, thanks notably to the advent of genome-wide association studies and the establishment of large consortia that make it possible to analyze hundreds of thousands of cases and controls. The characterization of dozens of chromosomal regions associated with the risk of developing AD and (in some loci) the causal genes responsible for the observed disease signal has confirmed the involvement of major pathophysiological pathways (such as amyloid precursor protein metabolism) and opened up new perspectives (such as the central role of microglia and inflammation). Furthermore, large-scale sequencing projects are starting to reveal the major impact of rare variants - even in genes like APOE - on the AD risk. This increasingly comprehensive knowledge is now being disseminated through translational research; in particular, the development of genetic risk/polygenic risk scores is helping to identify the subpopulations more at risk or less at risk of developing AD. Although it is difficult to assess the efforts still needed to comprehensively characterize the genetic component of AD, several lines of research can be improved or initiated. Ultimately, genetics (in combination with other biomarkers) might help to redefine the boundaries and relationships between various neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Estudio de Asociación del Genoma Completo , Factores de Riesgo , Biomarcadores , Apolipoproteínas E/genética
3.
Acta Neuropathol ; 144(5): 821-842, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36066633

RESUMEN

Amyloid-beta 42 (Aß42) and phosphorylated tau (pTau) levels in cerebrospinal fluid (CSF) reflect core features of the pathogenesis of Alzheimer's disease (AD) more directly than clinical diagnosis. Initiated by the European Alzheimer & Dementia Biobank (EADB), the largest collaborative effort on genetics underlying CSF biomarkers was established, including 31 cohorts with a total of 13,116 individuals (discovery n = 8074; replication n = 5042 individuals). Besides the APOE locus, novel associations with two other well-established AD risk loci were observed; CR1 was shown a locus for Aß42 and BIN1 for pTau. GMNC and C16orf95 were further identified as loci for pTau, of which the latter is novel. Clustering methods exploring the influence of all known AD risk loci on the CSF protein levels, revealed 4 biological categories suggesting multiple Aß42 and pTau related biological pathways involved in the etiology of AD. In functional follow-up analyses, GMNC and C16orf95 both associated with lateral ventricular volume, implying an overlap in genetic etiology for tau levels and brain ventricular volume.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/líquido cefalorraquídeo , Apolipoproteínas E/genética , Biomarcadores/líquido cefalorraquídeo , Proteínas de Ciclo Celular , Humanos , Fragmentos de Péptidos/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Proteínas tau/genética
4.
Brain ; 142(4): 1009-1023, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30859180

RESUMEN

We report a composite extreme phenotype design using distribution of white matter hyperintensities and brain infarcts in a population-based cohort of older persons for gene-mapping of cerebral small vessel disease. We demonstrate its application in the 3C-Dijon whole exome sequencing (WES) study (n = 1924, nWESextremes = 512), with both single variant and gene-based association tests. We used other population-based cohort studies participating in the CHARGE consortium for replication, using whole exome sequencing (nWES = 2,868, nWESextremes = 956) and genome-wide genotypes (nGW = 9924, nGWextremes = 3308). We restricted our study to candidate genes known to harbour mutations for Mendelian small vessel disease: NOTCH3, HTRA1, COL4A1, COL4A2 and TREX1. We identified significant associations of a common intronic variant in HTRA1, rs2293871 using single variant association testing (Pdiscovery = 8.21 × 10-5, Preplication = 5.25 × 10-3, Pcombined = 4.72 × 10-5) and of NOTCH3 using gene-based tests (Pdiscovery = 1.61 × 10-2, Preplication = 3.99 × 10-2, Pcombined = 5.31 × 10-3). Follow-up analysis identified significant association of rs2293871 with small vessel ischaemic stroke, and two blood expression quantitative trait loci of HTRA1 in linkage disequilibrium. Additionally, we identified two participants in the 3C-Dijon cohort (0.4%) carrying heterozygote genotypes at known pathogenic variants for familial small vessel disease within NOTCH3 and HTRA1. In conclusion, our proof-of-concept study provides strong evidence that using a novel composite MRI-derived phenotype for extremes of small vessel disease can facilitate the identification of genetic variants underlying small vessel disease, both common variants and those with rare and low frequency. The findings demonstrate shared mechanisms and a continuum between genes underlying Mendelian small vessel disease and those contributing to the common, multifactorial form of the disease.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales/genética , Serina Peptidasa A1 que Requiere Temperaturas Altas/genética , Receptor Notch3/genética , Anciano , Anciano de 80 o más Años , Isquemia Encefálica/genética , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/metabolismo , Estudios de Cohortes , Femenino , Heterocigoto , Serina Peptidasa A1 que Requiere Temperaturas Altas/metabolismo , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Mutación , Polimorfismo de Nucleótido Simple , Receptor Notch3/metabolismo , Receptor Notch3/fisiología , Accidente Cerebrovascular/genética , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/metabolismo , Secuenciación del Exoma/métodos
5.
Alzheimers Dement ; 16(8): 1134-1145, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32573913

RESUMEN

INTRODUCTION: Variability exists in the disease trajectories of Alzheimer's disease (AD) patients. We performed a genome-wide association study to examine rate of cognitive decline (ROD) in patients with AD. METHODS: We tested for interactions between genetic variants and time since diagnosis to predict the ROD of a composite cognitive score in 3946 AD cases and performed pathway analysis on the top genes. RESULTS: Suggestive associations (P < 1.0 × 10-6 ) were observed on chromosome 15 in DNA polymerase-γ (rs3176205, P = 1.11 × 10-7 ), chromosome 7 (rs60465337,P = 4.06 × 10-7 ) in contactin-associated protein-2, in RP11-384F7.1 on chromosome 3 (rs28853947, P = 5.93 × 10-7 ), family with sequence similarity 214 member-A on chromosome 15 (rs2899492, P = 5.94 × 10-7 ), and intergenic regions on chromosomes 16 (rs4949142, P = 4.02 × 10-7 ) and 4 (rs1304013, P = 7.73 × 10-7 ). Significant pathways involving neuronal development and function, apoptosis, memory, and inflammation were identified. DISCUSSION: Pathways related to AD, intelligence, and neurological function determine AD progression, while previously identified AD risk variants, including the apolipoprotein (APOE) ε4 and ε2 variants, do not have a major impact.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/genética , Disfunción Cognitiva/etiología , Disfunción Cognitiva/genética , Anciano , Anciano de 80 o más Años , Progresión de la Enfermedad , Femenino , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos , Masculino
6.
Genet Epidemiol ; 42(2): 201-213, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29319195

RESUMEN

In the search for genetic associations with complex traits, population isolates offer the advantage of reduced genetic and environmental heterogeneity. In addition, cost-efficient next-generation association approaches have been proposed in these populations where only a subsample of representative individuals is sequenced and then genotypes are imputed into the rest of the population. Gene mapping in such populations thus requires high-quality genetic imputation and preliminary phasing. To identify an effective study design, we compare by simulation a range of phasing and imputation software and strategies. We simulated 1,115,604 variants on chromosome 10 for 477 members of the large complex pedigree of Campora, a village within the established isolate of Cilento in southern Italy. We assessed the phasing performance of identical by descent based software ALPHAPHASE and SLRP, LD-based software SHAPEIT2, SHAPEIT3, and BEAGLE, and new software EAGLE that combines both methodologies. For imputation we compared IMPUTE2, IMPUTE4, MINIMAC3, BEAGLE, and new software PBWT. Genotyping errors and missing genotypes were simulated to observe their effects on the performance of each software. Highly accurate phased data were achieved by all software with SHAPEIT2, SHAPEIT3, and EAGLE2 providing the most accurate results. MINIMAC3, IMPUTE4, and IMPUTE2 all performed strongly as imputation software and our study highlights the considerable gain in imputation accuracy provided by a genome sequenced reference panel specific to the population isolate.


Asunto(s)
Efecto Fundador , Genética de Población , Haplotipos/genética , Proyectos de Investigación , Programas Informáticos , Algoritmos , Cromosomas Humanos Par 10/genética , Femenino , Genoma Humano/genética , Humanos , Italia , Desequilibrio de Ligamiento/genética , Masculino , Modelos Genéticos , Linaje , Fenotipo
7.
Am J Hum Genet ; 98(6): 1092-1100, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27236921

RESUMEN

Bacteremia (bacterial bloodstream infection) is a major cause of illness and death in sub-Saharan Africa but little is known about the role of human genetics in susceptibility. We conducted a genome-wide association study of bacteremia susceptibility in more than 5,000 Kenyan children as part of the Wellcome Trust Case Control Consortium 2 (WTCCC2). Both the blood-culture-proven bacteremia case subjects and healthy infants as controls were recruited from Kilifi, on the east coast of Kenya. Streptococcus pneumoniae is the most common cause of bacteremia in Kilifi and was thus the focus of this study. We identified an association between polymorphisms in a long intergenic non-coding RNA (lincRNA) gene (AC011288.2) and pneumococcal bacteremia and replicated the results in the same population (p combined = 1.69 × 10(-9); OR = 2.47, 95% CI = 1.84-3.31). The susceptibility allele is African specific, derived rather than ancestral, and occurs at low frequency (2.7% in control subjects and 6.4% in case subjects). Our further studies showed AC011288.2 expression only in neutrophils, a cell type that is known to play a major role in pneumococcal clearance. Identification of this novel association will further focus research on the role of lincRNAs in human infectious disease.


Asunto(s)
Bacteriemia/genética , Neumonía Neumocócica/genética , Polimorfismo Genético/genética , ARN Largo no Codificante/genética , Streptococcus pneumoniae/genética , Adolescente , Bacteriemia/microbiología , Bacteriemia/patología , Estudios de Casos y Controles , Niño , Preescolar , Estudio de Asociación del Genoma Completo , Humanos , Lactante , Recién Nacido , Kenia/epidemiología , Neumonía Neumocócica/microbiología , Neumonía Neumocócica/patología , Factores de Riesgo
8.
PLoS Genet ; 12(2): e1005874, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26910538

RESUMEN

Vascular endothelial growth factor (VEGF) is an angiogenic and neurotrophic factor, secreted by endothelial cells, known to impact various physiological and disease processes from cancer to cardiovascular disease and to be pharmacologically modifiable. We sought to identify novel loci associated with circulating VEGF levels through a genome-wide association meta-analysis combining data from European-ancestry individuals and using a dense variant map from 1000 genomes imputation panel. Six discovery cohorts including 13,312 samples were analyzed, followed by in-silico and de-novo replication studies including an additional 2,800 individuals. A total of 10 genome-wide significant variants were identified at 7 loci. Four were novel loci (5q14.3, 10q21.3, 16q24.2 and 18q22.3) and the leading variants at these loci were rs114694170 (MEF2C, P = 6.79 x 10(-13)), rs74506613 (JMJD1C, P = 1.17 x 10(-19)), rs4782371 (ZFPM1, P = 1.59 x 10(-9)) and rs2639990 (ZADH2, P = 1.72 x 10(-8)), respectively. We also identified two new independent variants (rs34528081, VEGFA, P = 1.52 x 10(-18); rs7043199, VLDLR-AS1, P = 5.12 x 10(-14)) at the 3 previously identified loci and strengthened the evidence for the four previously identified SNPs (rs6921438, LOC100132354, P = 7.39 x 10(-1467); rs1740073, C6orf223, P = 2.34 x 10(-17); rs6993770, ZFPM2, P = 2.44 x 10(-60); rs2375981, KCNV2, P = 1.48 x 10(-100)). These variants collectively explained up to 52% of the VEGF phenotypic variance. We explored biological links between genes in the associated loci using Ingenuity Pathway Analysis that emphasized their roles in embryonic development and function. Gene set enrichment analysis identified the ERK5 pathway as enriched in genes containing VEGF associated variants. eQTL analysis showed, in three of the identified regions, variants acting as both cis and trans eQTLs for multiple genes. Most of these genes, as well as some of those in the associated loci, were involved in platelet biogenesis and functionality, suggesting the importance of this process in regulation of VEGF levels. This work also provided new insights into the involvement of genes implicated in various angiogenesis related pathologies in determining circulating VEGF levels. The understanding of the molecular mechanisms by which the identified genes affect circulating VEGF levels could be important in the development of novel VEGF-related therapies for such diseases.


Asunto(s)
Sitios Genéticos , Factor A de Crecimiento Endotelial Vascular/sangre , Factor A de Crecimiento Endotelial Vascular/genética , Cromosomas Humanos , Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple , Factor A de Crecimiento Endotelial Vascular/metabolismo , Población Blanca/genética
10.
PLoS Genet ; 11(1): e1004976, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25629528

RESUMEN

Cripto, the founding member of the EGF-CFC genes, plays an essential role in embryo development and is involved in cancer progression. Cripto is a GPI-anchored protein that can interact with various components of multiple signaling pathways, such as TGF-ß, Wnt and MAPK, driving different processes, among them epithelial-mesenchymal transition, cell proliferation, and stem cell renewal. Cripto protein can also be cleaved and released outside the cell in a soluble and still active form. Cripto is not significantly expressed in adult somatic tissues and its re-expression has been observed associated to pathological conditions, mainly cancer. Accordingly, CRIPTO has been detected at very low levels in the plasma of healthy volunteers, whereas its levels are significantly higher in patients with breast, colon or glioblastoma tumors. These data suggest that CRIPTO levels in human plasma or serum may have clinical significance. However, very little is known about the variability of serum levels of CRIPTO at a population level and the genetic contribution underlying this variability remains unknown. Here, we report the first genome-wide association study of CRIPTO serum levels in isolated populations (n = 1,054) from Cilento area in South Italy. The most associated SNPs (p-value<5*10-8) were all located on chromosome 3p22.1-3p21.3, in the CRIPTO gene region. Overall six CRIPTO associated loci were replicated in an independent sample (n = 535). Pathway analysis identified a main network including two other genes, besides CRIPTO, in the associated regions, involved in cell movement and proliferation. The replicated loci explain more than 87% of the CRIPTO variance, with 85% explained by the most associated SNP. Moreover, the functional analysis of the main associated locus identified a causal variant in the 5'UTR of CRIPTO gene which is able to strongly modulate CRIPTO expression through an AP-1-mediate transcriptional regulation.


Asunto(s)
Proliferación Celular/genética , Proteínas Ligadas a GPI/genética , Estudio de Asociación del Genoma Completo , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Adulto , Anciano , Movimiento Celular/genética , Desarrollo Embrionario/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Proteínas Ligadas a GPI/sangre , Regulación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intercelular/sangre , Italia , Persona de Mediana Edad , Proteínas de Neoplasias/sangre , Neoplasias/sangre , Factor de Transcripción AP-1/genética , Factor de Crecimiento Transformador beta
11.
Nature ; 476(7359): 214-9, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-21833088

RESUMEN

Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Inmunidad Celular/inmunología , Esclerosis Múltiple/genética , Esclerosis Múltiple/inmunología , Alelos , Diferenciación Celular/inmunología , Europa (Continente)/etnología , Genoma Humano/genética , Estudio de Asociación del Genoma Completo , Antígenos HLA-A/genética , Antígenos HLA-DR/genética , Cadenas HLA-DRB1 , Humanos , Inmunidad Celular/genética , Complejo Mayor de Histocompatibilidad/genética , Polimorfismo de Nucleótido Simple/genética , Tamaño de la Muestra , Linfocitos T Colaboradores-Inductores/citología , Linfocitos T Colaboradores-Inductores/inmunología
12.
Hum Mol Genet ; 23(24): 6644-58, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25027320

RESUMEN

Cerebrospinal fluid amyloid-beta 1-42 (Aß1-42) and phosphorylated Tau at position 181 (pTau181) are biomarkers of Alzheimer's disease (AD). We performed an analysis and meta-analysis of genome-wide association study data on Aß1-42 and pTau181 in AD dementia patients followed by independent replication. An association was found between Aß1-42 level and a single-nucleotide polymorphism in SUCLG2 (rs62256378) (P = 2.5×10(-12)). An interaction between APOE genotype and rs62256378 was detected (P = 9.5 × 10(-5)), with the strongest effect being observed in APOE-ε4 noncarriers. Clinically, rs62256378 was associated with rate of cognitive decline in AD dementia patients (P = 3.1 × 10(-3)). Functional microglia experiments showed that SUCLG2 was involved in clearance of Aß1-42.


Asunto(s)
Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/genética , Apolipoproteína E4/genética , Proteínas Nucleares/genética , Fragmentos de Péptidos/genética , Polimorfismo de Nucleótido Simple , Proteínas de Unión al ARN/genética , Proteínas tau/genética , Anciano , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/líquido cefalorraquídeo , Apolipoproteína E4/líquido cefalorraquídeo , Cognición , Femenino , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Proteínas Nucleares/líquido cefalorraquídeo , Fragmentos de Péptidos/líquido cefalorraquídeo , Fosforilación , Proteínas de Unión al ARN/líquido cefalorraquídeo , Factores de Empalme Serina-Arginina , Transducción de Señal , Proteínas tau/líquido cefalorraquídeo
14.
PLoS Genet ; 8(5): e1002611, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22570627

RESUMEN

Intraocular pressure (IOP) is a highly heritable risk factor for primary open-angle glaucoma and is the only target for current glaucoma therapy. The genetic factors which determine IOP are largely unknown. We performed a genome-wide association study for IOP in 11,972 participants from 4 independent population-based studies in The Netherlands. We replicated our findings in 7,482 participants from 4 additional cohorts from the UK, Australia, Canada, and the Wellcome Trust Case-Control Consortium 2/Blue Mountains Eye Study. IOP was significantly associated with rs11656696, located in GAS7 at 17p13.1 (p=1.4×10(-8)), and with rs7555523, located in TMCO1 at 1q24.1 (p=1.6×10(-8)). In a meta-analysis of 4 case-control studies (total N = 1,432 glaucoma cases), both variants also showed evidence for association with glaucoma (p=2.4×10(-2) for rs11656696 and p=9.1×10(-4) for rs7555523). GAS7 and TMCO1 are highly expressed in the ciliary body and trabecular meshwork as well as in the lamina cribrosa, optic nerve, and retina. Both genes functionally interact with known glaucoma disease genes. These data suggest that we have identified two clinically relevant genes involved in IOP regulation.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glaucoma de Ángulo Abierto/genética , Presión Intraocular/genética , Proteínas del Tejido Nervioso/genética , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Cuerpo Ciliar/metabolismo , Cuerpo Ciliar/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Nervio Óptico/metabolismo , Nervio Óptico/patología , Polimorfismo de Nucleótido Simple , Malla Trabecular/metabolismo , Malla Trabecular/patología
15.
Hum Mol Genet ; 20(2): 345-53, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21044948

RESUMEN

We performed a genome-wide association study (GWAS) in 1705 Parkinson's disease (PD) UK patients and 5175 UK controls, the largest sample size so far for a PD GWAS. Replication was attempted in an additional cohort of 1039 French PD cases and 1984 controls for the 27 regions showing the strongest evidence of association (P< 10(-4)). We replicated published associations in the 4q22/SNCA and 17q21/MAPT chromosome regions (P< 10(-10)) and found evidence for an additional independent association in 4q22/SNCA. A detailed analysis of the haplotype structure at 17q21 showed that there are three separate risk groups within this region. We found weak but consistent evidence of association for common variants located in three previously published associated regions (4p15/BST1, 4p16/GAK and 1q32/PARK16). We found no support for the previously reported SNP association in 12q12/LRRK2. We also found an association of the two SNPs in 4q22/SNCA with the age of onset of the disease.


Asunto(s)
Cromosomas Humanos Par 17/genética , Predisposición Genética a la Enfermedad , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética , Edad de Inicio , Estudios de Casos y Controles , Estudio de Asociación del Genoma Completo , Haplotipos , Humanos , Polimorfismo de Nucleótido Simple , Tamaño de la Muestra , Población Blanca
16.
Bioinformatics ; 28(1): 134-5, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22057162

RESUMEN

SUMMARY: High-throughput genotyping arrays provide an efficient way to survey single nucleotide polymorphisms (SNPs) across the genome in large numbers of individuals. Downstream analysis of the data, for example in genome-wide association studies (GWAS), often involves statistical models of genotype frequencies across individuals. The complexities of the sample collection process and the potential for errors in the experimental assay can lead to biases and artefacts in an individual's inferred genotypes. Rather than attempting to model these complications, it has become a standard practice to remove individuals whose genome-wide data differ from the sample at large. Here we describe a simple, but robust, statistical algorithm to identify samples with atypical summaries of genome-wide variation. Its use as a semi-automated quality control tool is demonstrated using several summary statistics, selected to identify different potential problems, and it is applied to two different genotyping platforms and sample collections. AVAILABILITY: The algorithm is written in R and is freely available at www.well.ox.ac.uk/chris-spencer CONTACT: chris.spencer@well.ox.ac.uk SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Análisis por Conglomerados , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Estudios de Cohortes , Femenino , Humanos , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos
17.
JAMA Netw Open ; 6(5): e2313734, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37195665

RESUMEN

Importance: An estimated 40% of dementia is potentially preventable by modifying 12 risk factors throughout the life course. However, robust evidence for most of these risk factors is lacking. Effective interventions should target risk factors in the causal pathway to dementia. Objective: To comprehensively disentangle potentially causal aspects of modifiable risk factors for Alzheimer disease (AD) to inspire new drug targeting and improved prevention. Design, Setting, and Participants: This genetic association study was conducted using 2-sample univariable and multivariable mendelian randomization. Independent genetic variants associated with modifiable risk factors were selected as instrumental variables from genomic consortia. Outcome data for AD were obtained from the European Alzheimer & Dementia Biobank (EADB), generated on August 31, 2021. Main analyses were conducted using the EADB clinically diagnosed end point data. All analyses were performed between April 12 and October 27, 2022. Exposures: Genetically determined modifiable risk factors. Main Outcomes and Measures: Odds ratios (ORs) and 95% CIs for AD were calculated per 1-unit change of genetically determined risk factors. Results: The EADB-diagnosed cohort included 39 106 participants with clinically diagnosed AD and 401 577 control participants without AD. The mean age ranged from 72 to 83 years for participants with AD and 51 to 80 years for control participants. Among participants with AD, 54% to 75% were female, and among control participants, 48% to 60% were female. Genetically determined high-density lipoprotein (HDL) cholesterol concentrations were associated with increased odds of AD (OR per 1-SD increase, 1.10 [95% CI, 1.05-1.16]). Genetically determined high systolic blood pressure was associated with increased risk of AD after adjusting for diastolic blood pressure (OR per 10-mm Hg increase, 1.22 [95% CI, 1.02-1.46]). In a second analysis to minimize bias due to sample overlap, the entire UK Biobank was excluded from the EADB consortium; odds for AD were similar for HDL cholesterol (OR per 1-SD unit increase, 1.08 [95% CI, 1.02-1.15]) and systolic blood pressure after adjusting for diastolic blood pressure (OR per 10-mm Hg increase, 1.23 [95% CI, 1.01-1.50]). Conclusions and Relevance: This genetic association study found novel genetic associations between high HDL cholesterol concentrations and high systolic blood pressure with higher risk of AD. These findings may inspire new drug targeting and improved prevention implementation.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Femenino , Anciano , Anciano de 80 o más Años , Masculino , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/genética , HDL-Colesterol , Factores de Riesgo , Causalidad
18.
JAMA Neurol ; 79(7): 652-663, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35639372

RESUMEN

Importance: The APOE ε2 and APOE ε4 alleles are the strongest protective and risk-increasing, respectively, genetic variants for late-onset Alzheimer disease (AD). However, the mechanisms linking APOE to AD-particularly the apoE protein's role in AD pathogenesis and how this is affected by APOE variants-remain poorly understood. Identifying missense variants in addition to APOE ε2 and APOE ε4 could provide critical new insights, but given the low frequency of additional missense variants, AD genetic cohorts have previously been too small to interrogate this question robustly. Objective: To determine whether rare missense variants on APOE are associated with AD risk. Design, Setting, and Participants: Association with case-control status was tested in a sequenced discovery sample (stage 1) and followed up in several microarray imputed cohorts as well as the UK Biobank whole-exome sequencing resource using a proxy-AD phenotype (stages 2 and 3). This study combined case-control, family-based, population-based, and longitudinal AD-related cohorts that recruited referred and volunteer participants. Stage 1 included 37 409 nonunique participants of European or admixed European ancestry, with 11 868 individuals with AD and 11 934 controls passing analysis inclusion criteria. In stages 2 and 3, 475 473 participants were considered across 8 cohorts, of which 84 513 individuals with AD and proxy-AD and 328 372 controls passed inclusion criteria. Selection criteria were cohort specific, and this study was performed a posteriori on individuals who were genotyped. Among the available genotypes, 76 195 were excluded. All data were retrieved between September 2015 and November 2021 and analyzed between April and November 2021. Main Outcomes and Measures: In primary analyses, the AD risk associated with each missense variant was estimated, as appropriate, with either linear mixed-model regression or logistic regression. In secondary analyses, associations were estimated with age at onset using linear mixed-model regression and risk of conversion to AD using competing-risk regression. Results: A total of 544 384 participants were analyzed in the primary case-control analysis; 312 476 (57.4%) were female, and the mean (SD; range) age was 64.9 (15.2; 40-110) years. Two missense variants were associated with a 2-fold to 3-fold decreased AD risk: APOE ε4 (R251G) (odds ratio, 0.44; 95% CI, 0.33-0.59; P = 4.7 × 10-8) and APOE ε3 (V236E) (odds ratio, 0.37; 95% CI, 0.25-0.56; P = 1.9 × 10-6). Additionally, the cumulative incidence of AD in carriers of these variants was found to grow more slowly with age compared with noncarriers. Conclusions and Relevance: In this genetic association study, a novel variant associated with AD was identified: R251G always coinherited with ε4 on the APOE gene, which mitigates the ε4-associated AD risk. The protective effect of the V236E variant, which is always coinherited with ε3 on the APOE gene, was also confirmed. The location of these variants confirms that the carboxyl-terminal portion of apoE plays an important role in AD pathogenesis. The large risk reductions reported here suggest that protein chemistry and functional assays of these variants should be pursued, as they have the potential to guide drug development targeting APOE.


Asunto(s)
Enfermedad de Alzheimer , Edad de Inicio , Alelos , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/genética , Apolipoproteína E2/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Femenino , Genotipo , Humanos , Masculino
19.
Nat Genet ; 54(4): 412-436, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379992

RESUMEN

Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Disfunción Cognitiva/psicología , Estudio de Asociación del Genoma Completo , Humanos , Proteínas tau/genética
20.
Sci Rep ; 11(1): 16821, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34413389

RESUMEN

Placental growth factor (PlGF) is a member of the vascular endothelial growth factor family and is involved in bone marrow-derived cell activation, endothelial stimulation and pathological angiogenesis. High levels of PlGF have been observed in several pathological conditions especially in cancer, cardiovascular, autoimmune and inflammatory diseases. Little is known about the genetics of circulating PlGF levels. Indeed, although the heritability of circulating PlGF levels is around 40%, no studies have assessed the relation between PlGF plasma levels and genetic variants at a genome-wide level. In the current study, PlGF plasma levels were measured in a population-based sample of 2085 adult individuals from three isolated populations of South Italy. A GWAS was performed in a discovery cohort (N = 1600), followed by a de novo replication (N = 468) from the same populations. The meta-analysis of the discovery and replication samples revealed one signal significantly associated with PlGF circulating levels. This signal was mapped to the PlGF co-receptor coding gene NRP1, indicating its important role in modulating the PlGF plasma levels. Two additional signals, at the PlGF receptor coding gene FLT1 and RAPGEF5 gene, were identified at a suggestive level. Pathway and TWAS analyses highlighted genes known to be involved in angiogenesis and immune response, supporting the link between these processes and PlGF regulation. Overall, these data improve our understanding of the genetic variation underlying circulating PlGF levels. This in turn could lead to new preventive and therapeutic strategies for a wide variety of PlGF-related pathologies.


Asunto(s)
Inmunidad , Neovascularización Fisiológica , Factor de Crecimiento Placentario/sangre , Adulto , Estudios de Cohortes , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Inmunidad/genética , Masculino , Metaanálisis como Asunto , Persona de Mediana Edad , Neovascularización Fisiológica/genética , Reproducibilidad de los Resultados , Transducción de Señal/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA