Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(3)2022 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35164355

RESUMEN

We have synthetized two classes of dibenzofulvene-arylamino derivatives with an H-shape design, for a total of six different molecules. The molecular structures consist of two D-A-D units connected by a thiophene or bitiophene bridge, using diarylamino substituents as donor groups anchored to the 2,7- (Group A) and 3,6- (Group B) positions of the dibenzofulvene backbone. The donor units and the thiophene or bithiophene bridges were used as chemico-structural tools to modulate electro-optical and morphological-electrical properties. A combination of experiments, such as absorption measurements (UV-Vis spectroscopy), cyclic voltammetry, ellipsometry, Raman, atomic force microscopy, TD-DFT calculation and hole-mobility measurements, were carried out on the synthesized small organic molecules to investigate the differences between the two classes and therefore understand the relevance of the molecular design of the various properties. We found that the anchoring position on dibenzofulvene plays a crucial key for fine-tuning the optical, structural, and morphological properties of molecules. In particular, molecules with substituents in 2,7 positions (Group A) showed a lower structural disorder, a larger molecular planarity, and a lower roughness.

2.
J Sci Food Agric ; 102(14): 6566-6577, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35580080

RESUMEN

BACKGROUND: Biocompatible Pickering emulsions (PE) stabilized by tailor-made antioxidant-loaded particles have been known for some time now, but antioxidant-rich natural plant particle-based emulsions are much less well known. This study aimed to investigate the physico-chemical properties of commercial Zingiber officinale powders obtained from biological and conventional agricultural practice and ginger powder-based PE. RESULTS: The physico-chemical and biological properties of Zingiber officinale powders (GDPs) obtained from conventional (GDPC1 and GDPC2) and biological agricultural (GDPBIO) practices, and the properties of derived PE (PE_GDPs) were examined. All GDPs showed weak aggregation in aqueous media and a sufficiently hydrophobic surface to stabilize oil-in-water (O/W) PE against coalescence for at least 1 month. Zingiber officinale powders (2% w/w) derived from biological agricultural practices (GDPBIO) demonstrated the best emulsifying properties. The Zingiber officinale powders and PE_GDPs were also characterized by their phytochemical profiles. All the investigated samples exhibited ferric reducing ability power greater than the positive control, butylated hydroxytoluene (BHT), with values ranging from 91.21 to 102.63 µmol L-1 Fe (II) g-1 for GDPC2 and 05PE_GDPC1 (O/W=1:1), respectively. In ß-carotene bleaching test the following trend GDPC1 > GDPBIO > GDPC2 was observed. A 05PE_GDPBIO sample with the oil volume fraction equal to 50% was stable to oxidation and exhibited a promising α-amylase inhibitory activity. CONCLUSION: The results suggest that ginger powder should be used as a starting point to design biocompatible PEs for different applications in the functional food, nutraceutical, and pharmaceutical industries. In fact, powder and based PE are characterized by a promising antioxidant activity, carbohydrate hydrolyzing enzyme and lipase inhibitory properties. Further in vivo studies are necessary to confirm these findings. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Zingiber officinale , Antioxidantes/análisis , Antioxidantes/farmacología , Hidroxitolueno Butilado , Carbohidratos , Emulsiones/química , Zingiber officinale/química , Lipasa , Polvos , Agua , alfa-Amilasas , beta Caroteno
3.
Molecules ; 26(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34770909

RESUMEN

In this work, the solubility of vanillic, gallic, syringic, p-coumaric, ferulic and caffeic acids was determined at 37 °C under different conditions, namely pure water and two different ionic media, NaCl(aq) and NaClO4(aq), at different ionic strengths (i.e., 0.16, 0.50, 1.0, 2.0 and 3.0 M). The solubility in water of all the acids was found to be higher than that in both of the ionic media. Moreover, the solubility of hydroxycinnamic acids was lower than that of hydroxybenzoic acids. The activity coefficients of neutral species were calculated from these data; this knowledge is necessary when modeling the dependence of equilibrium constants on the ionic strength. Results obtained in this work can be useful for further studies regarding complex formation equilibria between these ligands and bioavailable metal cations.

4.
Molecules ; 26(22)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34833911

RESUMEN

Electrofluorochromic devices (EFCDs) that allow the modulation of the light emitted by electroactive fluorophores are very attractive in the research field of optoelectronics. Here, the electrofluorochromic behaviour of a series of squaraine dyes was studied for the first time. In solutions, all compounds are photoluminescent with maxima located in the range 665-690 nm, characterized by quantum yields ranging from 30% to 4.1%. Squaraines were incorporated in a polymer gel used as an active layer in all-in-one gel switchable EFCDs. An aggregation induced quenching occurs in the gel phase, causing a significant decrease in the emission quantum yield in the device. However, the squaraines containing the thieno groups (thienosquaraines, TSQs) show a panchromatic emission and their electrofluorochromism allows the tuning of the fluorescence intensity from 500 nm to the near infrared. Indeed, the application of a potential difference to the device induces a reversible quenching of their emission that is significantly higher and occurs at shorter switching times for TSQs-based devices compared to the reference squaraine dye (DIBSQ). Interestingly, the TSQs fluorescence spectral profile becomes more structured under voltage, and this could be explained by the shift of the aggregates/monomer equilibrium toward the monomeric species, due to electrochemical oxidation, which causes the disassembling of aggregates. This effect may be used to modulate the colour of the fluorescence light emitted by a device and paves the way for conceiving new electrofluorochromic materials based on this mechanism.

5.
Molecules ; 26(9)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33946938

RESUMEN

This review focuses on the ability of some natural antioxidant molecules (i.e., hydroxycinnamic acids, coumarin-3-carboxylic acid, quercetin, luteolin and curcumin) to form Al(III)- and Fe(III)-complexes with the aim of evaluating the coordination properties from a combined experimental and theoretical point of view. Despite the contributions of previous studies on the chemical properties and biological activity of these metal complexes involving such natural antioxidants, further detailed relationships between the structure and properties are still required. In this context, the investigation on the coordination properties of Al(III) and Fe(III) toward these natural antioxidant molecules might deserve high interest to design water soluble molecule-based metal carriers that can improve the metal's intake and/or its removal in living organisms.


Asunto(s)
Aluminio/química , Antioxidantes/química , Productos Biológicos/química , Complejos de Coordinación/química , Compuestos Férricos/química , Modelos Moleculares , Modelos Teóricos , Algoritmos , Antioxidantes/farmacología , Sitios de Unión , Productos Biológicos/farmacología , Quelantes/química , Quelantes/farmacología , Fenómenos Químicos , Metales/química , Análisis Espectral
6.
Kidney Blood Press Res ; 45(3): 455-466, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32434200

RESUMEN

INTRODUCTION: Renal dysfunction is a frequent complication in patients suffering from ß-thalassemia major (ß-TM). The aim of this study was to analyze the renal function and urine metabolomic profile of ß-TM patients undergoing transfusions and deferasirox (DFX) therapy, in order to better characterize and shed light on the pathogenesis of renal disease in this setting. METHODS AND SUBJECTS: 40 patients affected by ß-TM treated with DFX and 35 age- and gender-matched healthy controls were enrolled in the study. Renal function was assessed. Glomerular filtration rate (GFR) was estimated with CKD-EPI and Schwartz formula for adults and children, respectively. Renal tubular function and maximal urine concentration ability were tested. Urine specimens were analyzed by nuclear magnetic resonance spectroscopy to identify the urinary metabolite profiles. RESULTS: The study of renal function in ß-TM patients revealed normal estimated (e)GFR mean values and the albumin-to-creatinine ratio was <30 mg/g. The analysis of tubular function showed normal basal plasma electrolyte levels; 60% of patients presented hypercalciuria and many subjects showed defective urine concentration. Several amino acids, N-methyl compounds, and organic acids were overexcreted in the urine of thalassemic patients compared with controls. DISCUSSION: The major finding of this work is that ß-TM patients and controls exhibit different concentrations of some metabolites in the urine. Early recognition of urinary abnormalities may be useful to detect and prevent kidney damage.


Asunto(s)
Deferasirox/uso terapéutico , Urinálisis/métodos , Talasemia beta/tratamiento farmacológico , Talasemia beta/orina , Adulto , Deferasirox/farmacología , Femenino , Humanos , Masculino
7.
Photochem Photobiol Sci ; 18(9): 2248-2258, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31044191

RESUMEN

Fabrics obtained from cellulose spinning, extracted from Spanish broom, were coated with TiO2 film, through the low pressure plasma sputtering technique, in order to get antibacterial activity. The obtained fabrics were used for the photocatalytic degradation of Escherichia coli, by irradiation with UV-light emitting diodes (UV-LED), in a batch photocatalytic reactor. Before and after functionalization treatments, cellulosic substrates were chemically characterized by X-ray photoelectron spectroscopy (XPS) analyses. Water Contact Angle (WCA) measurements allowed obtaining information about the hydrophilicity of the materials, while their antibacterial efficiency was determined at several initial concentrations (from 103 up to 108 CFU mL-1) of bacteria in distilled water, bottled water and synthetic wastewater. It was found that photocatalytic reactions were capable of achieving up to 100% bacterial inactivation in 1 h of treatment, following a pseudo-first order kinetic model. No bacterial regrowth was observed after photocatalytic treatments in almost all experimental conditions. In contrast, during photolytic treatment (i.e. in the absence of the TiO2 coated fabrics) bacteria recovered their initial concentration after 3 h in the dark. Finally, the reusability of the plasma modified fibers to inactivate bacteria was studied.


Asunto(s)
Antibacterianos/farmacología , Celulosa/farmacología , Escherichia coli/efectos de los fármacos , Procesos Fotoquímicos , Gases em Plasma/química , Titanio/farmacología , Agua/metabolismo , Antibacterianos/química , Catálisis , Celulosa/química , Escherichia coli/metabolismo , Presión , Titanio/química , Microbiología del Agua
8.
J Phys Chem A ; 121(51): 9773-9781, 2017 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-29207872

RESUMEN

Despite the potential versatility of Vitamin C as a ligand, only for few metal complexes does full characterization exist. Vitamin C metal complexes, indeed, are difficult to study experimentally because the ligand has multiple protonation and oxidation states, and the metal-ligand complexes are in general not as tight as one might expect and frequently resistant to crystallographic characterization. In most cases, coordination via one of the hypothesized modes is invoked, characterized by monodentate or bidentate coordination via the most acidic oxygen atoms, with the ligand singly or doubly deprotonated. In this study the ability of l-ascorbic acid to form complexes with Al3+ and Ni2+ ions under physiological conditions was investigated by using a combination of potentiometric measurements, 1H NMR spectroscopy, and DFT computations in order to recognize the structural properties of the resulting complexes in aqueous solution. The comparison between the values of the free energies of complexation obtained by using DFT quantum chemical calculations and estimated from experimental stability constants according to the mass action law and by considering the involved equilibria allows to select structure and preferred coordination modes of formed complexes. The protonation constant of the free ligand was also determined using potentiometric data and its reproduction by using computational approaches was critically commented.


Asunto(s)
Aluminio/química , Ácido Ascórbico/química , Níquel/química , Compuestos Organometálicos/química , Teoría Cuántica , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/síntesis química , Potenciometría , Espectroscopía de Protones por Resonancia Magnética
9.
Chemistry ; 22(29): 10179-86, 2016 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-27334359

RESUMEN

Thienosquaraines are an interesting class of electroactive dyes that are useful for applications in organic electronics. Herein, the redox chemistry and electrochromic response of a few newly synthesized thienosquaraines are presented. These properties are compared to those of the commercial 2,4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl]squaraine. The stability of the radical ions formed in electrochemical processes strongly affects these properties, as shown by cyclic voltammetry, in situ spectroelectrochemistry, and quantum chemical calculations. Furthermore, all of the dyes show aggregation tendency resulting in panchromatic absorption covering the whole UV/Vis spectral range.

10.
Soft Matter ; 10(30): 5559-67, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-24959858

RESUMEN

The nonthermal biological effects of millimeter waves have been mainly attributed to the interaction with biological membranes. Several data on biomimetic membrane systems seem to support this conclusion. In this paper a mechanistic hypothesis is evaluated to explain such an interaction taking into account experimental NMR data on deuterium-labeled phospholipid vesicles. These data showed that millimeter waves induce a time and a hydration-dependent reduction of the water ordering around the phosphocholine headgroups. This effect is here interpreted as a change in membrane water partitioning, due to the coupling of the radiation with the fast rotational dynamics of bound water molecules, that results in a measurable relocation of water molecules from the inner to the outer binding regions of the membrane interface. When millimeter wave exposure is performed in the vicinity of the transition point, this effect can lead to an upward shift of the membrane phase transition temperature from the fluid to the gel phase. At a macroscopic level, this unique sensitivity may be explained by the universal dynamic behaviour of the membranes in the vicinity of the transition point, where a pretransitional increase of membrane area fluctuations, i.e., of the mean area per phospholipid headgroup, is observed. Exposure to millimeter waves increases the above fluctuations and enhances the second order character of the transition.


Asunto(s)
Dimiristoilfosfatidilcolina/química , Modelos Teóricos , Deuterio , Espectroscopía de Resonancia Magnética , Membranas Artificiales
11.
Chemosphere ; 355: 141891, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38575086

RESUMEN

Mercury pollution poses a global health threat due to its high toxicity, especially in seafood where it accumulates through various pathways. Developing effective and affordable technologies for mercury removal from water is crucial. Adsorption stands out as a promising method, but creating low-cost materials with high selectivity and capacity for mercury adsorption is challenging. Here we show a sustainable method to synthesize low-cost sulfhydrylated cellulose with ethylene sulfide functionalities bonded glucose units. Thiol-functionalized cellulose exhibits exceptional adsorption capacity (1325 mg g-1) and selectivity for Hg(II) over other heavy metals (Co, Cu, Zn, Pb) and common cations (Ca++, Mg++) found in natural waters. It performs efficiently across a wide pH range and different aqueous matrices, including wastewater, and can be regenerated and reused multiple times without significant loss of performance. This approach offers a promising solution for addressing mercury contamination in water sources.


Asunto(s)
Mercurio , Contaminantes Químicos del Agua , Mercurio/análisis , Agua/química , Celulosa/química , Compuestos de Sulfhidrilo , Adsorción , Contaminantes Químicos del Agua/química , Cinética
12.
J Biol Phys ; 39(3): 395-410, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23860916

RESUMEN

Exposure of cell membranes to an electromagnetic field (EMF) in the millimeter wave band (30-300 GHz) can produce a variety of responses. Further, many of the vibrational modes in complex biomolecules fall in the 1-100 GHz range. In addition to fundamental scientific interest, this may have applications in the development of diagnostic and therapeutic medical applications. In the present work, lipid vesicles of different size were used to study the effects of exposure to radiation at 52-72 GHz, with incident power densities (IPD) of 0.0035-0.010 mW/cm(2), on the chemical-physical properties of cell membranes. Large unilamellar vesicles (LUVs) were used to study the effect of the radiation on the physical stability of vesicles by dynamic light scattering. An inhibition of the aging processes (Ostwald ripening), which usually occur in these vesicles because of their thermodynamic instability, resulted. Giant unilamellar vesicles (GUVs) were used to study the effect of the radiation on membrane water permeability under osmotic stress by phase contrast microscopy. In this case, a decrease in the water membrane permeability of the irradiated samples was observed. We advance the hypothesis that both the above effects may be explained in terms of a change of the polarization states of water induced by the radiation, which causes a partial dehydration of the membrane and consequently a greater packing density (increased membrane rigidity).


Asunto(s)
Campos Electromagnéticos , Liposomas Unilamelares/química , Liposomas Unilamelares/efectos de la radiación , Membrana Celular/efectos de la radiación , Presión Osmótica/efectos de la radiación , Temperatura
13.
Nanomaterials (Basel) ; 13(16)2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37630910

RESUMEN

Bisphenol A (BPA), an endocrine-disrupting compound with estrogenic behavior, is of great concern within the scientific community due to its high production levels and increasing concentration in various surface aquifers. While several materials exhibit excellent capacity for the photocatalytic degradation of BPA, their powdered nature and poor chemical stability render them unsuitable for practical application in large-scale water decontamination. In this study, a new class of nanocomposite membranes based on sulfonated polyethersulfone (sPES) and multiwalled carbon nanotubes decorated with TiO2 nanoparticles (MWCNTs-TiO2) were investigated as efficient and scalable photocatalysts for the photodegradation of BPA in aqueous solutions. The MWCNTs-TiO2 hybrid material was prepared through a facile and inexpensive hydrothermal method and extensively characterized by XRD, Raman, FTIR, BET, and TGA. Meanwhile, nanocomposite membranes at different filler loadings were prepared by a simple casting procedure. Swelling tests and PFG NMR analyses provided insights into the impact of filler introduction on membrane hydrophilicity and water molecular dynamics, whereas the effectiveness of the various photocatalysts in BPA removal was monitored using HPLC. Among the different MWCNTs-TiO2 content nanocomposites, the one at 10 wt% loading (sP-MT10) showed the best photoactivity. Under UV irradiation at 254 nm and 365 nm for 240 min, photocatalytic oxidation of 5 mg/L bisphenol A by sP-MT10 resulted in 91% and 82% degradation, respectively. Both the effect of BPA concentration and the membrane regenerability were evaluated, revealing that the sP-MT10 maintained its maximum BPA removal capability over more than 10 cycles. Our findings indicate that sP-MT nanocomposite membranes are versatile, scalable, efficient, and highly reusable photocatalysts for the degradation of BPA, as well as potentially for other endocrine disruptors.

14.
Nanomaterials (Basel) ; 12(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36500907

RESUMEN

Thermofluorochromic materials exhibit tunable fluorescence emission on heating or cooling. They are highly desirable for applications ranging from temperature sensing to high-security anti-counterfeiting. Luminescent matrices based on liquid crystals are very promising, particularly those based on liquid crystals with intrinsic fluorescence. However, only a few examples have been reported, suggesting ample margins for development in the field, due to the wide range of fluorophores and supramolecular organizations to be explored. Moreover, thermofluorochromic liquid crystals can be tailored with further functionalities to afford multi-stimuli responsive materials. For the first time, herein we report the thermofluorochromism of thienoviologen liquid crystals, already known to show bulk electrochromism and electrofluorochromism. In particular, we studied their photophysics in the 25 °C-220 °C range and as a function of the length of the N-linear alkyl chains, m (9 ≤ m ≤ 12 C atoms), and the type of anion, X (X = OTs-, OTf-, BF4-, NTf2-). Interestingly, by changing the parameters m, X and T, their fluorescence can be finely tuned in the whole visible spectral range up to the NIR, by switching among different mesophases. Importantly, by fixing the structural parameters m and X, an interesting thermofluorochromism can be achieved for each thienoviologen in a homologous series, leading to a switch of the emitted light from red to green and from white to blue as a consequence of the temperature-induced variation in the supramolecular interactions in the self-assembled phases.

15.
Sci Rep ; 11(1): 35, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420106

RESUMEN

Long cellulose fiber (10-30 cm), extracted from Spartium junceum, was chemically treated with different softening agents with the aim to improve its textile applicability. A preliminary sensory evaluation of the treated fibers revealed an evident, though qualitative, improvement of the fiber softness. The effects of the softening agents on the fiber was evaluated quantitatively, by means of macroscopic measurements of the wettability, viscoelasticity, and thermal (thermal gravimetry) properties. Moreover, the effects of the softening treatments on the microscopic structure of the fiber and on its properties at a molecular level, were studied by optical and scanning electron microscope and X-ray diffraction (XRD), respectively. The macroscopic analysis showed that the softeners used increases the hydrophilicity and water wettability of the cellulose fiber with respect to the raw one. Moreover, the dynamical mechanical analysis on sample yarns showed that the softeners increase the interfiber frictional forces. A linear correlation between the interfiber friction and the increase of hydrophilicity and fiber wettability was shown. The treated fiber exhibits a more homogeneous thermal behaviour, due to more homogeneous structural features, since the thermal-induced cellulose fibrils depolimerization undergoes a marked temperature range contraction. These data can be well related with those obtained by microscopy analysis, showing that the fiber surface, after the treatment, appears thinner and less rough, as well as with the XRD analysis, which shows that softeners induce a significant decrease of the fiber crystallinity.

16.
Biochim Biophys Acta ; 1788(7): 1497-507, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19376085

RESUMEN

Due to the increasing interest in millimeter waves (MMW) applications in medicine and telecommunications, the investigation of their potential biological effects is of utmost importance. Here we report results of the study of interaction between low-intensity radiation at 53.37 GHz and giant vesicles. Direct optical observations of vesicles subjected to irradiation enabled the monitoring in real time of the response of vesicles. Physical changes of vesicles, i.e. elongation, induced diffusion of fluorescent dye di-8-ANEPPS, and increased attractions between vesicles are demonstrated. These effects are reversible and occur only during irradiation with a "switch on" of the effect requiring a short time. Since the average temperature change was very small the effects could not be attributed to thermal mechanisms. We assume that the interaction of MMW with lipid membrane leads to changes at the membrane-water interface, where charged and dipolar residues are located.


Asunto(s)
Microondas , Fosfolípidos/efectos de la radiación , Liposomas Unilamelares/efectos de la radiación , Fosfolípidos/química , Liposomas Unilamelares/química
17.
Amino Acids ; 38(1): 65-73, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19067108

RESUMEN

The study of two different Italian isolated populations was combined with a metabonomic approach to better understand tubular handling of amino acids. Levels of amino acids and metabolites have been analyzed by Nucleic Magnetic Resonance and expressed as ratio vs urinary creatinine concentration (mmol/mol). For most of the amino acids there is an age-related U shape pattern of excretion, with the peaks during childhood and old age, and a significant reduction in the adult age. Hierarchical cluster analysis has clearly identified three groups clustering the same amino acids: His, Thr and Ala (group one); Gly and Phe (group two) and a third larger one. Results have been further confirmed by factor and regression analysis, and used to confirm and, in some cases, infer new amino acids networks. As a matter of facts, the identification of strong evidences for clustering of urine excretion of several neutral amino acids suggests the predominant impact of relevant and common transporters.


Asunto(s)
Aminoácidos/orina , Metabolómica , Grupos de Población , Adolescente , Adulto , Factores de Edad , Anciano , Aminoácidos/química , Niño , Preescolar , Femenino , Humanos , Italia , Masculino , Persona de Mediana Edad , Población Rural , Adulto Joven
18.
J Nephrol ; 23 Suppl 16: S213-20, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21170883

RESUMEN

High resolution proton magnetic resonance spectroscopy (1H-NMR) of body fluids coupled with multivariate data analysis has led to a new science known as metabonomics. Metabonomics is a powerful tool for investigating any disturbance in the normal homeostasis of biochemical processes. In particular, urine metabonomics provides information on the metabolite phenotype of the human being and is therefore appropriate to study the status of the global system. Here we applied 1H-NMR-based urinary metabonomics in a perspective study of the inherited lysosomal storage disorder known as Fabry disease, starting from the metabolite profiling of urine samples of male and female naïve Fabry subjects. Here we show that the 2 groups of patients can be fairly clearly separated into 2 classes due to statistically significant differences in the urinary level of some metabolites. This preliminary study shows that metabonomics can potentially be used for characterizing the biochemical mechanisms underlying the disease and, hopefully, for early diagnosis of Fabry disease.


Asunto(s)
Enfermedad de Fabry/orina , Espectroscopía de Resonancia Magnética/métodos , Metabolómica/métodos , Terapia de Reemplazo Enzimático , Enfermedad de Fabry/terapia , Femenino , Humanos , Análisis de los Mínimos Cuadrados , Masculino , Análisis de Componente Principal
19.
J Nephrol ; 23 Suppl 16: S199-212, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21170881

RESUMEN

Fabry disease (FD) is an X-linked lysosomal storage disorder caused by mutations in the gene encoding the lysosomal enzyme a-galactosidase A (a-GalA). The resulting deficiency in a-GalA activity leads to intra-lysosomal accumulation of neutral glycosphingolipids, mainly globotriaosylceramide (Gb3), in various organ systems. As a consequence, a multisystem disorder develops, culminating in strokes and progressive renal and cardiac dysfunction. Enzyme replacement therapy (ERT) offers a specific treatment for patients affected by FD, though monitoring treatment is hampered by a lack of surrogate markers of response. Furthermore, even if signs and symptoms of the disease become manifest in childhood, its diagnosis is often delayed. Biomarkers that predict disease progression and respond relatively quickly to effective therapy may be useful to follow individual patients or groups of patients. Here we report the use of 2 different mass spectrometry-based proteomic techniques to identify disease-associated compositional changes that can be used as early biomarkers of the pathology, as well as for monitoring the effectiveness of ERT. To this purpose, we compared the renal Fabry urinary proteome with normal (control) urine using, respectively, 2-dimensional gel electrophoresis and label-free quantification. Our preliminary results show that the urinary protein pattern of affected patients can be easily distinguished from that of healthy subjects both qualitatively and quantitatively, thus encouraging further studies in the search for FD-specific biomarkers using this proteomic approach.


Asunto(s)
Enfermedad de Fabry/orina , Proteómica/métodos , Biomarcadores/orina , Cromatografía Líquida de Alta Presión , Electroforesis en Gel Bidimensional , Terapia de Reemplazo Enzimático , Enfermedad de Fabry/terapia , Humanos , Masculino , Espectrometría de Masas en Tándem
20.
RSC Adv ; 10(57): 34738-34751, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-35514415

RESUMEN

The simultaneous transformation of crystalline or amorphous cellulose into a furan-based bio-oil and cellulose citrate was realized avoiding the use of strong inorganic acids, drastic conditions, enzymatic treatments or microorganism fermentation. This innovative method is very eco-friendly and involves the use of molten citric acid under solvent free conditions at atmospheric pressure. An accurate discussion on chemical composition of the bio-oil enriched in bioprivileged molecules as well as structural and morphological characterization of cellulose citrate was reported. Moreover, mechanistic hypotheses were formulated on the basis of experimental findings and detailed DFT quantum-mechanical simulations were carried out to confirm, step by step, the proposed reaction paths.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA