Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 20(4): e3001627, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35486643

RESUMEN

Brain imaging research enjoys increasing adoption of supervised machine learning for single-participant disease classification. Yet, the success of these algorithms likely depends on population diversity, including demographic differences and other factors that may be outside of primary scientific interest. Here, we capitalize on propensity scores as a composite confound index to quantify diversity due to major sources of population variation. We delineate the impact of population heterogeneity on the predictive accuracy and pattern stability in 2 separate clinical cohorts: the Autism Brain Imaging Data Exchange (ABIDE, n = 297) and the Healthy Brain Network (HBN, n = 551). Across various analysis scenarios, our results uncover the extent to which cross-validated prediction performances are interlocked with diversity. The instability of extracted brain patterns attributable to diversity is located preferentially in regions part of the default mode network. Collectively, our findings highlight the limitations of prevailing deconfounding practices in mitigating the full consequences of population diversity.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Algoritmos , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Aprendizaje Automático Supervisado
2.
Proc Natl Acad Sci U S A ; 119(27): e2116673119, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35776541

RESUMEN

Adolescence is a time of profound changes in the physical wiring and function of the brain. Here, we analyzed structural and functional brain network development in an accelerated longitudinal cohort spanning 14 to 25 y (n = 199). Core to our work was an advanced in vivo model of cortical wiring incorporating MRI features of corticocortical proximity, microstructural similarity, and white matter tractography. Longitudinal analyses assessing age-related changes in cortical wiring identified a continued differentiation of multiple corticocortical structural networks in youth. We then assessed structure-function coupling using resting-state functional MRI measures in the same participants both via cross-sectional analysis at baseline and by studying longitudinal change between baseline and follow-up scans. At baseline, regions with more similar structural wiring were more likely to be functionally coupled. Moreover, correlating longitudinal structural wiring changes with longitudinal functional connectivity reconfigurations, we found that increased structural differentiation, particularly between sensory/unimodal and default mode networks, was reflected by reduced functional interactions. These findings provide insights into adolescent development of human brain structure and function, illustrating how structural wiring interacts with the maturation of macroscale functional hierarchies.


Asunto(s)
Desarrollo del Adolescente , Encéfalo , Conectoma , Adolescente , Encéfalo/fisiología , Encéfalo/ultraestructura , Estudios Transversales , Humanos , Imagen por Resonancia Magnética , Red Nerviosa/fisiología , Red Nerviosa/ultraestructura
3.
Neuroimage ; 285: 120481, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043839

RESUMEN

Autism spectrum disorder (ASD) is one of the most common neurodevelopmental diagnoses. Although incompletely understood, structural and functional network alterations are increasingly recognized to be at the core of the condition. We utilized multimodal imaging and connectivity modeling to study structure-function coupling in ASD and probed mono- and polysynaptic mechanisms on structurally-governed network function. We examined multimodal magnetic resonance imaging data in 80 ASD and 61 neurotypical controls from the Autism Brain Imaging Data Exchange (ABIDE) II initiative. We predicted intrinsic functional connectivity from structural connectivity data in each participant using a Riemannian optimization procedure that varies the times that simulated signals can unfold along tractography-derived personalized connectomes. In both ASD and neurotypical controls, we observed improved structure-function prediction at longer diffusion time scales, indicating better modeling of brain function when polysynaptic mechanisms are accounted for. Prediction accuracy differences (∆prediction accuracy) were marked in transmodal association systems, such as the default mode network, in both neurotypical controls and ASD. Differences were, however, lower in ASD in a polysynaptic regime at higher simulated diffusion times. We compared regional differences in ∆prediction accuracy between both groups to assess the impact of polysynaptic communication on structure-function coupling. This analysis revealed that between-group differences in ∆prediction accuracy followed a sensory-to-transmodal cortical hierarchy, with an increased gap between controls and ASD in transmodal compared to sensory/motor systems. Multivariate associative techniques revealed that structure-function differences reflected inter-individual differences in autistic symptoms and verbal as well as non-verbal intelligence. Our network modeling approach sheds light on atypical structure-function coupling in autism, and suggests that polysynaptic network mechanisms are implicated in the condition and that these can help explain its wide range of associated symptoms.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Conectoma , Humanos , Trastorno Autístico/diagnóstico por imagen , Conectoma/métodos , Encéfalo , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico/métodos
4.
Cereb Cortex ; 33(5): 1566-1580, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-35552620

RESUMEN

BACKGROUND: Autism spectrum disorder (ASD) is a common neurodevelopmental diagnosis showing substantial phenotypic heterogeneity. A leading example can be found in verbal and nonverbal cognitive skills, which vary from elevated to impaired compared with neurotypical individuals. Moreover, deficits in verbal profiles often coexist with normal or superior performance in the nonverbal domain. METHODS: To study brain substrates underlying cognitive imbalance in ASD, we capitalized categorical and dimensional IQ profiling as well as multimodal neuroimaging. RESULTS: IQ analyses revealed a marked verbal to nonverbal IQ imbalance in ASD across 2 datasets (Dataset-1: 155 ASD, 151 controls; Dataset-2: 270 ASD, 490 controls). Neuroimaging analysis in Dataset-1 revealed a structure-function substrate of cognitive imbalance, characterized by atypical cortical thickening and altered functional integration of language networks alongside sensory and higher cognitive areas. CONCLUSION: Although verbal and nonverbal intelligence have been considered as specifiers unrelated to autism diagnosis, our results indicate that intelligence disparities are accentuated in ASD and reflected by a consistent structure-function substrate affecting multiple brain networks. Our findings motivate the incorporation of cognitive imbalances in future autism research, which may help to parse the phenotypic heterogeneity and inform intervention-oriented subtyping in ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Trastorno Autístico/complicaciones , Encéfalo , Inteligencia , Cognición
5.
Neuroimage ; 266: 119807, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36513290

RESUMEN

Analysis and interpretation of neuroimaging datasets has become a multidisciplinary endeavor, relying not only on statistical methods, but increasingly on associations with respect to other brain-derived features such as gene expression, histological data, and functional as well as cognitive architectures. Here, we introduce BrainStat - a toolbox for (i) univariate and multivariate linear models in volumetric and surface-based brain imaging datasets, and (ii) multidomain feature association of results with respect to spatial maps of post-mortem gene expression and histology, task-based fMRI meta-analysis, as well as resting-state fMRI motifs across several common surface templates. The combination of statistics and feature associations into a turnkey toolbox streamlines analytical processes and accelerates cross-modal research. The toolbox is implemented in both Python and MATLAB, two widely used programming languages in the neuroimaging and neuroinformatics communities. BrainStat is openly available and complemented by an expandable documentation.


Asunto(s)
Encéfalo , Programas Informáticos , Humanos , Encéfalo/diagnóstico por imagen , Interpretación Estadística de Datos , Conjuntos de Datos como Asunto , Modelos Lineales , Imagen por Resonancia Magnética , Neuroimagen , Metaanálisis como Asunto
6.
PLoS Biol ; 18(11): e3000979, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33253185

RESUMEN

The vast net of fibres within and underneath the cortex is optimised to support the convergence of different levels of brain organisation. Here, we propose a novel coordinate system of the human cortex based on an advanced model of its connectivity. Our approach is inspired by seminal, but so far largely neglected models of cortico-cortical wiring established by postmortem anatomical studies and capitalises on cutting-edge in vivo neuroimaging and machine learning. The new model expands the currently prevailing diffusion magnetic resonance imaging (MRI) tractography approach by incorporation of additional features of cortical microstructure and cortico-cortical proximity. Studying several datasets and different parcellation schemes, we could show that our coordinate system robustly recapitulates established sensory-limbic and anterior-posterior dimensions of brain organisation. A series of validation experiments showed that the new wiring space reflects cortical microcircuit features (including pyramidal neuron depth and glial expression) and allowed for competitive simulations of functional connectivity and dynamics based on resting-state functional magnetic resonance imaging (rs-fMRI) and human intracranial electroencephalography (EEG) coherence. Our results advance our understanding of how cell-specific neurobiological gradients produce a hierarchical cortical wiring scheme that is concordant with increasing functional sophistication of human brain organisation. Our evaluations demonstrate the cortical wiring space bridges across scales of neural organisation and can be easily translated to single individuals.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/fisiología , Conectoma/métodos , Adulto , Encéfalo/diagnóstico por imagen , Corteza Cerebral/anatomía & histología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiología , Imagen de Difusión por Resonancia Magnética , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/patología , Epilepsia Refractaria/fisiopatología , Electrocorticografía , Epilepsias Parciales/diagnóstico por imagen , Epilepsias Parciales/patología , Epilepsias Parciales/fisiopatología , Femenino , Neuroimagen Funcional , Humanos , Aprendizaje Automático , Masculino , Modelos Anatómicos , Modelos Neurológicos , Red Nerviosa/anatomía & histología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Adulto Joven
7.
Cereb Cortex ; 32(20): 4565-4575, 2022 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-35059701

RESUMEN

Autism spectrum disorder (ASD) and anxiety disorders (ANX) are common neurodevelopmental conditions with several overlapping symptoms. Notably, many children and adolescents with ASD also have an ANX diagnosis, suggesting shared pathological mechanisms. Here, we leveraged structural imaging and phenotypic data from 112 youth (33 ASD, 37 ANX, 42 typically developing controls) to assess shared and distinct cortical thickness patterns of the disorders. ANX was associated with widespread increases in cortical thickness, while ASD related to a mixed pattern of subtle increases and decreases across the cortical mantle. Despite the qualitative difference in the case-control contrasts, the statistical maps from the ANX-vs-controls and ASD-vs-controls analyses were significantly correlated when correcting for spatial autocorrelation. Dimensional analysis, regressing trait anxiety and social responsiveness against cortical thickness measures, partially recapitulated diagnosis-based findings. Collectively, our findings provide evidence for a common axis of neurodevelopmental disturbances as well as distinct effects of ASD and ANX on cortical thickness.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Adolescente , Ansiedad , Trastornos de Ansiedad , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/patología , Estudios de Casos y Controles , Niño , Humanos , Imagen por Resonancia Magnética/métodos
8.
Neuroimage ; 257: 119299, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35636736

RESUMEN

Ongoing brain function is largely determined by the underlying wiring of the brain, but the specific rules governing this relationship remain unknown. Emerging literature has suggested that functional interactions between brain regions emerge from the structural connections through mono- as well as polysynaptic mechanisms. Here, we propose a novel approach based on diffusion maps and Riemannian optimization to emulate this dynamic mechanism in the form of random walks on the structural connectome and predict functional interactions as a weighted combination of these random walks. Our proposed approach was evaluated in two different cohorts of healthy adults (Human Connectome Project, HCP; Microstructure-Informed Connectomics, MICs). Our approach outperformed existing approaches and showed that performance plateaus approximately around the third random walk. At macroscale, we found that the largest number of walks was required in nodes of the default mode and frontoparietal networks, underscoring an increasing relevance of polysynaptic communication mechanisms in transmodal cortical networks compared to primary and unimodal systems.


Asunto(s)
Conectoma , Adulto , Humanos , Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora , Imagen por Resonancia Magnética , Red Nerviosa/diagnóstico por imagen
9.
Neuroimage ; 263: 119612, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36070839

RESUMEN

Multimodal magnetic resonance imaging (MRI) has accelerated human neuroscience by fostering the analysis of brain microstructure, geometry, function, and connectivity across multiple scales and in living brains. The richness and complexity of multimodal neuroimaging, however, demands processing methods to integrate information across modalities and to consolidate findings across different spatial scales. Here, we present micapipe, an open processing pipeline for multimodal MRI datasets. Based on BIDS-conform input data, micapipe can generate i) structural connectomes derived from diffusion tractography, ii) functional connectomes derived from resting-state signal correlations, iii) geodesic distance matrices that quantify cortico-cortical proximity, and iv) microstructural profile covariance matrices that assess inter-regional similarity in cortical myelin proxies. The above matrices can be automatically generated across established 18 cortical parcellations (100-1000 parcels), in addition to subcortical and cerebellar parcellations, allowing researchers to replicate findings easily across different spatial scales. Results are represented on three different surface spaces (native, conte69, fsaverage5), and outputs are BIDS-conform. Processed outputs can be quality controlled at the individual and group level. micapipe was tested on several datasets and is available at https://github.com/MICA-MNI/micapipe, documented at https://micapipe.readthedocs.io/, and containerized as a BIDS App http://bids-apps.neuroimaging.io/apps/. We hope that micapipe will foster robust and integrative studies of human brain microstructure, morphology, function, cand connectivity.


Asunto(s)
Conectoma , Procesamiento Automatizado de Datos , Neuroimagen , Programas Informáticos , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología , Conectoma/métodos , Imagen de Difusión Tensora , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Programas Informáticos/normas , Procesamiento Automatizado de Datos/métodos , Procesamiento Automatizado de Datos/normas
10.
Cereb Cortex ; 31(11): 5151-5164, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34148082

RESUMEN

The temporal lobe is implicated in higher cognitive processes and is one of the regions that underwent substantial reorganization during primate evolution. Its functions are instantiated, in part, by the complex layout of its structural connections. Here, we identified low-dimensional representations of structural connectivity variations in human temporal cortex and explored their microstructural underpinnings and associations to macroscale function. We identified three eigenmodes which described gradients in structural connectivity. These gradients reflected inter-regional variations in cortical microstructure derived from quantitative magnetic resonance imaging and postmortem histology. Gradient-informed models accurately predicted macroscale measures of temporal lobe function. Furthermore, the identified gradients aligned closely with established measures of functional reconfiguration and areal expansion between macaques and humans, highlighting their potential role in shaping temporal lobe function throughout primate evolution. Findings were replicated in several datasets. Our results provide robust evidence for three axes of structural connectivity in human temporal cortex with consistent microstructural underpinnings and contributions to large-scale brain network function.


Asunto(s)
Conectoma , Epilepsia del Lóbulo Temporal , Encéfalo/diagnóstico por imagen , Conectoma/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Lóbulo Temporal/diagnóstico por imagen
11.
Neuroimage ; 224: 117429, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33038538

RESUMEN

Human cognition is dynamic, alternating over time between externally-focused states and more abstract, often self-generated, patterns of thought. Although cognitive neuroscience has documented how networks anchor particular modes of brain function, mechanisms that describe transitions between distinct functional states remain poorly understood. Here, we examined how time-varying changes in brain function emerge within the constraints imposed by macroscale structural network organization. Studying a large cohort of healthy adults (n = 326), we capitalized on manifold learning techniques that identify low dimensional representations of structural connectome organization and we decomposed neurophysiological activity into distinct functional states and their transition patterns using Hidden Markov Models. Structural connectome organization predicted dynamic transitions anchored in sensorimotor systems and those between sensorimotor and transmodal states. Connectome topology analyses revealed that transitions involving sensorimotor states traversed short and intermediary distances and adhered strongly to communication mechanisms of network diffusion. Conversely, transitions between transmodal states involved spatially distributed hubs and increasingly engaged long-range routing. These findings establish that the structure of the cortex is optimized to allow neural states the freedom to vary between distinct modes of processing, and so provides a key insight into the neural mechanisms that give rise to the flexibility of human cognition.


Asunto(s)
Encéfalo/diagnóstico por imagen , Conectoma , Imagen de Difusión por Resonancia Magnética , Neuroimagen Funcional , Imagen por Resonancia Magnética , Adulto , Encéfalo/fisiología , Cognición , Femenino , Humanos , Masculino , Cadenas de Markov , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Adulto Joven
12.
Neuroimage ; 216: 116859, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32325211

RESUMEN

Insular cortex is a core hub involved in multiple cognitive and socio-affective processes. Yet, the anatomical mechanisms that explain how it is involved in such a diverse array of functions remain incompletely understood. Here, we tested the hypothesis that changes in myeloarchitecture across the insular cortex explain how it can be involved in many different facets of cognitive function. Detailed intracortical profiling, performed across hundreds of insular locations on the basis of myelin-sensitive magnetic resonance imaging (MRI), was compressed into a lower-dimensional space uncovering principal axes of myeloarchitectonic variation. Leveraging two datasets with different high-resolution MRI contrasts, we obtained robust support for two principal dimensions of insular myeloarchitectonic differentiation in vivo, one running from ventral anterior to posterior banks and one radiating from dorsal anterior towards both ventral anterior and posterior subregions. Analyses of post mortem 3D histological data showed that the antero-posterior axis was mirrored in cytoarchitectural markers, even when controlling for sulco-gyral folding. Resting-state functional connectomics in the same individuals and ad hoc meta-analyses showed that myelin gradients in the insula relate to diverse affiliation to macroscale intrinsic functional systems, showing differential shifts in functional network embedding across each myelin-derived gradient. Collectively, our findings offer a novel approach to capture structure-function interactions of a key node of the limbic system, and suggest a multidimensional structural basis underlying the diverse functional roles of the insula.


Asunto(s)
Corteza Cerebral , Conectoma/métodos , Sistema Límbico , Imagen por Resonancia Magnética/métodos , Vaina de Mielina , Adulto , Anciano , Corteza Cerebral/anatomía & histología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiología , Diagnóstico , Femenino , Humanos , Sistema Límbico/anatomía & histología , Sistema Límbico/diagnóstico por imagen , Sistema Límbico/fisiología , Masculino , Adulto Joven
13.
Neuroimage ; 220: 117072, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32585346

RESUMEN

Contemporary accounts of ongoing thought recognise it as a heterogeneous and multidimensional construct, varying in both form and content. An emerging body of evidence demonstrates that distinct types of experience are associated with unique neurocognitive profiles, that can be described at the whole-brain level as interactions between multiple large-scale networks. The current study sought to explore the possibility that whole-brain functional connectivity patterns at rest may be meaningfully related to patterns of ongoing thought that occurred over this period. Participants underwent resting-state functional magnetic resonance imaging (rs-fMRI) followed by a questionnaire retrospectively assessing the content and form of their ongoing thoughts during the scan. A non-linear dimension reduction algorithm was applied to the rs-fMRI data to identify components explaining the greatest variance in whole-brain connectivity patterns. Using these data, we examined whether specific types of thought measured at the end of the scan were predictive of individual variation along the first three low-dimensional components of functional connectivity at rest. Multivariate analyses revealed that individuals for whom the connectivity of the sensorimotor system was maximally distinct from the visual system were most likely to report thoughts related to finding solutions to problems or goals and least likely to report thoughts related to the past. These results add to an emerging literature that suggests that unique patterns of experience are associated with distinct distributed neurocognitive profiles and highlight that unimodal systems may play an important role in this process.


Asunto(s)
Encéfalo/diagnóstico por imagen , Red en Modo Predeterminado/diagnóstico por imagen , Individualidad , Red Nerviosa/diagnóstico por imagen , Pensamiento/fisiología , Adolescente , Encéfalo/fisiología , Red en Modo Predeterminado/fisiología , Femenino , Neuroimagen Funcional , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/fisiología , Adulto Joven
14.
Hum Brain Mapp ; 40(13): 3881-3899, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31106942

RESUMEN

Defining anatomically and functionally meaningful parcellation maps on cortical surface atlases is of great importance in surface-based neuroimaging analysis. The conventional cortical parcellation maps are typically defined based on anatomical cortical folding landmarks in adult surface atlases. However, they are not suitable for fetal brain studies, due to dramatic differences in brain size, shape, and properties between adults and fetuses. To address this issue, we propose a novel data-driven method for parcellation of fetal cortical surface atlases into distinct regions based on the dynamic "growth patterns" of cortical properties (e.g., surface area) from a population of fetuses. Our motivation is that the growth patterns of cortical properties indicate the underlying rapid changes of microstructures, which determine the molecular and functional principles of the cortex. Thus, growth patterns are well suitable for defining distinct cortical regions in development, structure, and function. To comprehensively capture the similarities of cortical growth patterns among vertices, we construct two complementary similarity matrices. One is directly based on the growth trajectories of vertices, and the other is based on the correlation profiles of vertices' growth trajectories in relation to a set of reference points. Then, we nonlinearly fuse these two similarity matrices into a single one, which can better capture both their common and complementary information than by simply averaging them. Finally, based on this fused similarity matrix, we perform spectral clustering to divide the fetal cortical surface atlases into distinct regions. By applying our method on 25 normal fetuses from 26 to 29 gestational weeks, we construct age-specific fetal cortical surface atlases equipped with biologically meaningful parcellation maps based on cortical growth patterns. Importantly, our generated parcellation maps reveal spatially contiguous, hierarchical and bilaterally relatively symmetric patterns of fetal cortical surface development.


Asunto(s)
Atlas como Asunto , Corteza Cerebral/anatomía & histología , Corteza Cerebral/crecimiento & desarrollo , Feto/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Neuroimagen/métodos , Corteza Cerebral/diagnóstico por imagen , Desarrollo Fetal/fisiología , Feto/diagnóstico por imagen , Edad Gestacional , Humanos , Imagen por Resonancia Magnética
16.
Hum Brain Mapp ; 38(5): 2772-2787, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28195417

RESUMEN

Investigating the human brain in utero is important for researchers and clinicians seeking to understand early neurodevelopmental processes. With the advent of fast magnetic resonance imaging (MRI) techniques and the development of motion correction algorithms to obtain high-quality 3D images of the fetal brain, it is now possible to gain more insight into the ongoing maturational processes in the brain. In this article, we present a review of the major building blocks of the pipeline toward performing quantitative analysis of in vivo MRI of the developing brain and its potential applications in clinical settings. The review focuses on T1- and T2-weighted modalities, and covers state of the art methodologies involved in each step of the pipeline, in particular, 3D volume reconstruction, spatio-temporal modeling of the developing brain, segmentation, quantification techniques, and clinical applications. Hum Brain Mapp 38:2772-2787, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Encéfalo , Procesamiento Automatizado de Datos , Imagenología Tridimensional , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Humanos
17.
Comput Methods Programs Biomed ; 230: 107334, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36682108

RESUMEN

BACKGROUND AND OBJECTIVE: The automatic segmentation of perinatal brain structures in magnetic resonance imaging (MRI) is of utmost importance for the study of brain growth and related complications. While different methods exist for adult and pediatric MRI data, there is a lack for automatic tools for the analysis of perinatal imaging. METHODS: In this work, a new pipeline for fetal and neonatal segmentation has been developed. We also report the creation of two new fetal atlases, and their use within the pipeline for atlas-based segmentation, based on novel registration methods. The pipeline is also able to extract cortical and pial surfaces and compute features, such as curvature, local gyrification index, sulcal depth, and thickness. RESULTS: Results show that the introduction of the new templates together with our segmentation strategy leads to accurate results when compared to expert annotations, as well as better performances when compared to a reference pipeline (developing Human Connectome Project (dHCP)), for both early and late-onset fetal brains. CONCLUSIONS: These findings show the potential of the presented atlases and the whole pipeline for application in both fetal, neonatal, and longitudinal studies, which could lead to dramatic improvements in the understanding of perinatal brain development.


Asunto(s)
Conectoma , Procesamiento de Imagen Asistido por Computador , Recién Nacido , Adulto , Humanos , Niño , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo/diagnóstico por imagen , Conectoma/métodos , Imagen por Resonancia Magnética/métodos , Feto/diagnóstico por imagen
18.
Sci Data ; 9(1): 569, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109562

RESUMEN

Multimodal neuroimaging grants a powerful window into the structure and function of the human brain at multiple scales. Recent methodological and conceptual advances have enabled investigations of the interplay between large-scale spatial trends (also referred to as gradients) in brain microstructure and connectivity, offering an integrative framework to study multiscale brain organization. Here, we share a multimodal MRI dataset for Microstructure-Informed Connectomics (MICA-MICs) acquired in 50 healthy adults (23 women; 29.54 ± 5.62 years) who underwent high-resolution T1-weighted MRI, myelin-sensitive quantitative T1 relaxometry, diffusion-weighted MRI, and resting-state functional MRI at 3 Tesla. In addition to raw anonymized MRI data, this release includes brain-wide connectomes derived from (i) resting-state functional imaging, (ii) diffusion tractography, (iii) microstructure covariance analysis, and (iv) geodesic cortical distance, gathered across multiple parcellation scales. Alongside, we share large-scale gradients estimated from each modality and parcellation scale. Our dataset will facilitate future research examining the coupling between brain microstructure, connectivity, and function. MICA-MICs is available on the Canadian Open Neuroscience Platform data portal ( https://portal.conp.ca ) and the Open Science Framework ( https://osf.io/j532r/ ).


Asunto(s)
Conectoma , Neuroimagen , Adulto , Canadá , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Masculino , Neuroimagen/métodos
19.
Nat Commun ; 12(1): 2225, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33850128

RESUMEN

The pathophysiology of autism has been suggested to involve a combination of both macroscale connectome miswiring and microcircuit anomalies. Here, we combine connectome-wide manifold learning with biophysical simulation models to understand associations between global network perturbations and microcircuit dysfunctions in autism. We studied neuroimaging and phenotypic data in 47 individuals with autism and 37 typically developing controls obtained from the Autism Brain Imaging Data Exchange initiative. Our analysis establishes significant differences in structural connectome organization in individuals with autism relative to controls, with strong between-group effects in low-level somatosensory regions and moderate effects in high-level association cortices. Computational models reveal that the degree of macroscale anomalies is related to atypical increases of recurrent excitation/inhibition, as well as subcortical inputs into cortical microcircuits, especially in sensory and motor areas. Transcriptomic association analysis based on postmortem datasets identifies genes expressed in cortical and thalamic areas from childhood to young adulthood. Finally, supervised machine learning finds that the macroscale perturbations are associated with symptom severity scores on the Autism Diagnostic Observation Schedule. Together, our analyses suggest that atypical subcortico-cortical interactions are associated with both microcircuit and macroscale connectome differences in autism.


Asunto(s)
Trastorno Autístico/diagnóstico por imagen , Trastorno Autístico/fisiopatología , Conectoma/métodos , Adolescente , Trastorno Autístico/metabolismo , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Corteza Cerebral , Niño , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Neuroimagen , Índice de Severidad de la Enfermedad , Tálamo/fisiopatología , Transcriptoma
20.
Commun Biol ; 4(1): 1078, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526654

RESUMEN

Autism spectrum disorder (ASD) is commonly understood as an alteration of brain networks, yet case-control analyses against typically-developing controls (TD) have yielded inconsistent results. Here, we devised a novel approach to profile the inter-individual variability in functional network organization and tested whether such idiosyncrasy contributes to connectivity alterations in ASD. Studying a multi-centric dataset with 157 ASD and 172 TD, we obtained robust evidence for increased idiosyncrasy in ASD relative to TD in default mode, somatomotor and attention networks, but also reduced idiosyncrasy in lateral temporal cortices. Idiosyncrasy increased with age and significantly correlated with symptom severity in ASD. Furthermore, while patterns of functional idiosyncrasy were not correlated with ASD-related cortical thickness alterations, they co-localized with the expression patterns of ASD risk genes. Notably, we could demonstrate that patterns of atypical idiosyncrasy in ASD closely overlapped with connectivity alterations that are measurable with conventional case-control designs and may, thus, be a principal driver of inconsistency in the autism connectomics literature. These findings support important interactions between inter-individual heterogeneity in autism and functional signatures. Our findings provide novel biomarkers to study atypical brain development and may consolidate prior research findings on the variable nature of connectome level anomalies in autism.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Encéfalo/fisiopatología , Conectoma , Adolescente , Adulto , Niño , Femenino , Francia , Humanos , Irlanda , Masculino , Persona de Mediana Edad , New York , Pennsylvania , Utah , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA