Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cell ; 172(6): 1178-1180, 2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29522740

RESUMEN

Plants greatly rely on their root microbiome for uptake of nutrients and protection against stresses. Recent studies have uncovered the involvement of plant stress responses in the assembly of plant-beneficial microbiomes. To facilitate durable crop production, deciphering the driving forces that shape the microbiome is crucial.


Asunto(s)
Interacciones Microbiota-Huesped , Microbiota/fisiología , Raíces de Plantas/microbiología , Microbiología del Suelo , Modelos Biológicos , Raíces de Plantas/metabolismo , Plantas/metabolismo , Plantas/microbiología , Rizosfera , Suelo/química
2.
Proc Natl Acad Sci U S A ; 115(22): E5213-E5222, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29686086

RESUMEN

Plant roots nurture a tremendous diversity of microbes via exudation of photosynthetically fixed carbon sources. In turn, probiotic members of the root microbiome promote plant growth and protect the host plant against pathogens and pests. In the Arabidopsis thaliana-Pseudomonas simiae WCS417 model system the root-specific transcription factor MYB72 and the MYB72-controlled ß-glucosidase BGLU42 emerged as important regulators of beneficial rhizobacteria-induced systemic resistance (ISR) and iron-uptake responses. MYB72 regulates the biosynthesis of iron-mobilizing fluorescent phenolic compounds, after which BGLU42 activity is required for their excretion into the rhizosphere. Metabolite fingerprinting revealed the antimicrobial coumarin scopoletin as a dominant metabolite that is produced in the roots and excreted into the rhizosphere in a MYB72- and BGLU42-dependent manner. Shotgun-metagenome sequencing of root-associated microbiota of Col-0, myb72, and the scopoletin biosynthesis mutant f6'h1 showed that scopoletin selectively impacts the assembly of the microbial community in the rhizosphere. We show that scopoletin selectively inhibits the soil-borne fungal pathogens Fusarium oxysporum and Verticillium dahliae, while the growth-promoting and ISR-inducing rhizobacteria P. simiae WCS417 and Pseudomonas capeferrum WCS358 are highly tolerant of the antimicrobial effect of scopoletin. Collectively, our results demonstrate a role for coumarins in microbiome assembly and point to a scenario in which plants and probiotic rhizobacteria join forces to trigger MYB72/BGLU42-dependent scopolin production and scopoletin excretion, resulting in improved niche establishment for the microbial partner and growth and immunity benefits for the host plant.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Microbiota/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Escopoletina/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Fusarium/metabolismo , Hierro/metabolismo , Metaboloma , Pseudomonas/metabolismo , Rizosfera , Verticillium/metabolismo
3.
Plant Dis ; 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34319768

RESUMEN

In July 2020, plants with crinkled, chlorotic, occasionally necrotic leaves, typical for Soybean Mosaic Virus (SMV), were observed in eight soybean fields (Glycine max L.) in Flevoland, The Netherlands (Supp. Fig. 1). Disease incidence varied from 5-50% and the plants affected often occurred in small or extensive patches. Leaves from several symptomatic plants were sampled from each of two fields planted with soybean variety Green Shell or Summer Shell. Total RNA was extracted from one plant leaf sample per field using InviTrap Spin Plant RNA Mini Kit (Invitek, Germany). One-tube RT-PCRs employing potyvirus generic primers P9502 and CPUP (Van der Vlugt et al, 1999) and SMV-specific primers SMV-dT (5'-TTTTTTTTTTTTTTTAGGACAAC-3') and SMV-Nib-Fw (5'-CAAGGATGARTTTAAGGAG-3') combined with Sanger sequencing confirmed the presence of SMV in all leaf samples. To exclude the presence of other agents in the samples, total RNA from each cultivar was used in standard Illumina library preparation with ribosomal RNA depletion followed by sequencing on an Illumina NovaSeq6000 (paired-end, 150 bp) which yielded 66,579,158 reads (Summer Shell) and 223,953,206 reads (Green Shell). After quality trimming in CLC Genomics Workbench 20.0.4 (CLC-GWB; Qiagen, Hilden), four million reads were randomly sampled for de novo assembly. Contigs over 500 nucleotides (nts) in length with a minimum of 500 reads were annotated by BLASTn against NCBI GenBank. This identified one contig of 9,883 nts (6,233,397 reads) in Summer Shell and one contig of 9,727 nts (3,139,927 reads) in Green Shell with clear homology to SMV (E-value = 0.0). No other viruses were identified in the datasets. Reference assemblies against the SMV reference sequence (NC_002634) mapped 24,090,763 reads (36.2%) for Summer Shell and 175,459,637 reads (78.3%) for Green Shell. Extracted consensus sequences for SMV in both soybean cultivars were 9,584 nts long (excluding the poly-A tail). Sequence data from the de novo and reference assemblies were combined into consensus sequences which showed over 98% overall nt sequence identity to NC_002634 and 99.6% to each other. Both consensus sequences were deposited in GenBank under accession numbers MW822167 (SMV-Summer Shell) and MW822168 (SMV-Green Shell). In addition, the presence of SMV in the field samples was confirmed with an inoculation assay. Leaf samples from both fields were ground in phosphate buffer (0.1M, pH 7.2) and inoculated on cotyledons and first expanded leaves of soybean plants (unknown cv.) 12 days post-germination. Plants showed veinal chlorosis in systemic leaves from 12 days post-inoculation, which developed into veinal necrosis. SMV infections were confirmed by RT-PCR in systemic, chlorotic leaf samples of all symptomatic plants using the SMV-specific primers described above. To our knowledge, this is the first report of SMV in The Netherlands. As soybean is a relatively new but expanding crop in this country, information about emerging diseases is highly relevant. SMV can be transmitted via seeds and aphids, where seeds can serve as primary source of virus inoculum (Cui et al., 2011; Hartman et al., 2016; Hajimorad et al., 2018). Weeds and non-commercial plants can also serve as origin of SMV, particularly in subsequent growing seasons, although this virus infects a limited host range of six plant families (Cui et al., 2011; Hill & Whitham, 2014). Special monitoring would be advised for the recurrence and possible damage by SMV in Dutch soybean fields.

4.
Plant Cell Environ ; 42(10): 2860-2870, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31353481

RESUMEN

Plant roots interact with an enormous diversity of commensal, mutualistic, and pathogenic microbes, which poses a big challenge to roots to distinguish beneficial microbes from harmful ones. Plants can effectively ward off pathogens following immune recognition of conserved microbe-associated molecular patterns (MAMPs). However, such immune elicitors are essentially not different from those of neutral and beneficial microbes that are abundantly present in the root microbiome. Recent studies indicate that the plant immune system plays an active role in influencing rhizosphere microbiome composition. Moreover, it has become increasingly clear that root-invading beneficial microbes, including rhizobia and arbuscular mycorrhiza, evade or suppress host immunity to establish a mutualistic relationship with their host. Evidence is accumulating that many free-living rhizosphere microbiota members can suppress root immune responses, highlighting root immune suppression as an important function of the root microbiome. Thus, the gate keeping functions of the plant immune system are not restricted to warding off root-invading pathogens but also extend to rhizosphere microbiota, likely to promote colonization by beneficial microbes and prevent growth-defense tradeoffs triggered by the MAMP-rich rhizosphere environment.


Asunto(s)
Microbiota/fisiología , Inmunidad de la Planta/fisiología , Raíces de Plantas/inmunología , Raíces de Plantas/microbiología , Evasión Inmune , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Rizosfera , Microbiología del Suelo , Simbiosis
5.
BMC Genomics ; 16: 539, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26198432

RESUMEN

BACKGROUND: Plant growth-promoting rhizobacteria (PGPR) can protect plants against pathogenic microbes through a diversity of mechanisms including competition for nutrients, production of antibiotics, and stimulation of the host immune system, a phenomenon called induced systemic resistance (ISR). In the past 30 years, the Pseudomonas spp. PGPR strains WCS358, WCS374 and WCS417 of the Willie Commelin Scholten (WCS) collection have been studied in detail in pioneering papers on the molecular basis of PGPR-mediated ISR and mechanisms of biological control of soil-borne pathogens via siderophore-mediated competition for iron. RESULTS: The genomes of the model WCS PGPR strains were sequenced and analyzed to unearth genetic cues related to biological questions that surfaced during the past 30 years of functional studies on these plant-beneficial microbes. Whole genome comparisons revealed important novel insights into iron acquisition strategies with consequences for both bacterial ecology and plant protection, specifics of bacterial determinants involved in plant-PGPR recognition, and diversity of protein secretion systems involved in microbe-microbe and microbe-plant communication. Furthermore, multi-locus sequence alignment and whole genome comparison revealed the taxonomic position of the WCS model strains within the Pseudomonas genus. Despite the enormous diversity of Pseudomonas spp. in soils, several plant-associated Pseudomonas spp. strains that have been isolated from different hosts at different geographic regions appear to be nearly isogenic to WCS358, WCS374, or WCS417. Interestingly, all these WCS look-a-likes have been selected because of their plant protective or plant growth-promoting properties. CONCLUSIONS: The genome sequences of the model WCS strains revealed that they can be considered representatives of universally-present plant-beneficial Pseudomonas spp. With their well-characterized functions in the promotion of plant growth and health, the fully sequenced genomes of the WCS strains provide a genetic framework that allows for detailed analysis of the biological mechanisms of the plant-beneficial traits of these PGPR. Considering the increasing focus on the role of the root microbiome in plant health, functional genomics of the WCS strains will enhance our understanding of the diversity of functions of the root microbiome.


Asunto(s)
Raíces de Plantas/microbiología , Pseudomonas/genética , Microbiología del Suelo , Microbiota/genética , Datos de Secuencia Molecular , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Raíces de Plantas/genética , Pseudomonas/crecimiento & desarrollo , Sideróforos/genética
6.
Environ Microbiol Rep ; 16(1): e13205, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38018445

RESUMEN

Soil and plant roots are colonized by highly complex and diverse communities of microbes. It has been proposed that bacteria and fungi have synergistic effects on litter decomposition, but experimental evidence supporting this claim is weak. In this study, we manipulated the composition of two microbial kingdoms (Bacteria and Fungi) in experimental microcosms. In microcosms that were inoculated with fungi, litter loss was 47% higher than in microcosms that were not inoculated or only inoculated with bacteria. Combined inoculation with both bacteria and fungi did not significantly enhance decomposition compared with the fungi-only treatments, and, as such, we found no evidence for complementary effects using our experimental setup. Inoculation with fungi also had a positive impact on plant growth after 4 and 8 weeks (480% and 710% growth stimulation, respectively). After 16 weeks, plant biomass was highest in microcosms where both bacteria and fungi were present pointing to fungal-bacterial complementarity in stimulating plant growth. Overall, this study suggests that fungi are the main decomposers of plant litter and that the inoculated fungi contribute to plant growth in our experimental system.


Asunto(s)
Hongos , Plantas , Hongos/genética , Biomasa , Desarrollo de la Planta , Raíces de Plantas , Hojas de la Planta/microbiología , Ecosistema , Microbiología del Suelo
7.
Microbiome ; 12(1): 13, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38243337

RESUMEN

BACKGROUND: Plant microbiomes play crucial roles in nutrient cycling and plant growth, and are shaped by a complex interplay between plants, microbes, and the environment. The role of bacteria as mediators of the 400-million-year-old partnership between the majority of land plants and, arbuscular mycorrhizal (AM) fungi is still poorly understood. Here, we test whether AM hyphae-associated bacteria influence the success of the AM symbiosis. RESULTS: Using partitioned microcosms containing field soil, we discovered that AM hyphae and roots selectively assemble their own microbiome from the surrounding soil. In two independent experiments, we identified several bacterial genera, including Devosia, that are consistently enriched on AM hyphae. Subsequently, we isolated 144 pure bacterial isolates from a mycorrhiza-rich sample of extraradical hyphae and isolated Devosia sp. ZB163 as root and hyphal colonizer. We show that this AM-associated bacterium synergistically acts with mycorrhiza on the plant root to strongly promote plant growth, nitrogen uptake, and mycorrhization. CONCLUSIONS: Our results highlight that AM fungi do not function in  isolation and that the plant-mycorrhiza symbiont can recruit beneficial bacteria that support the symbiosis. Video Abstract.


Asunto(s)
Micorrizas , Simbiosis , Raíces de Plantas/microbiología , Plantas , Bacterias/genética , Suelo
8.
Annu Rev Phytopathol ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38857541

RESUMEN

Plants have coevolved together with the microbes that surround them and this assemblage of host and microbes functions as a discrete ecological unit called a holobiont. This review outlines plant-driven assembly of disease-suppressive microbiomes. Plants are colonized by microbes from seed, soil, and air but selectively shape the microbiome with root exudates, creating microenvironment hot spots where microbes thrive. Using plant immunity for gatekeeping and surveillance, host-plant genetic properties govern microbiome assembly and can confer adaptive advantages to the holobiont. These advantages manifest in disease-suppressive soils, where buildup of specific microbes inhibits the causal agent of disease, that typically develop after an initial disease outbreak. Based on disease-suppressive soils such as take-all decline, we developed a conceptual model of how plants in response to pathogen attack cry for help and recruit plant-protective microbes that confer increased resistance. Thereby, plants create a soilborne legacy that protects subsequent generations and forms disease-suppressive soils.

9.
Environ Microbiome ; 19(1): 12, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383442

RESUMEN

BACKGROUND: Potato seed tubers are colonized and inhabited by soil-borne microbes, that can affect the performance of the emerging daughter plant in the next season. In this study, we investigated the intergenerational inheritance of microbiota from seed tubers to next-season daughter plants under field condition by amplicon sequencing of bacterial and fungal microbiota associated with tubers and roots, and tracked the microbial transmission from different seed tuber compartments to sprouts. RESULTS: We observed that field of production and potato genotype significantly (P < 0.01) affected the composition of the seed tuber microbiome and that these differences persisted during winter storage of the seed tubers. Remarkably, when seed tubers from different production fields were planted in a single trial field, the microbiomes of daughter tubers and roots of the emerging plants could still be distinguished (P < 0.01) according to the production field of the seed tuber. Surprisingly, we found little vertical inheritance of field-unique microbes from the seed tuber to the daughter tubers and roots, constituting less than 0.2% of their respective microbial communities. However, under controlled conditions, around 98% of the sprout microbiome was found to originate from the seed tuber and had retained their field-specific patterns. CONCLUSIONS: The field of production shapes the microbiome of seed tubers, emerging potato plants and even the microbiome of newly formed daughter tubers. Different compartments of seed tubers harbor distinct microbiomes. Both bacteria and fungi on seed tubers have the potential of being vertically transmitted to the sprouts, and the sprout subsequently promotes proliferation of a select number of microbes from the seed tuber. Recognizing the role of plant microbiomes in plant health, the initial microbiome of seed tubers specifically or planting materials in general is an overlooked trait. Elucidating the relative importance of the initial microbiome and the mechanisms by which the origin of planting materials affect microbiome assembly will pave the way for the development of microbiome-based predictive models that may predict the quality of seed tuber lots, ultimately facilitating microbiome-improved potato cultivation.

10.
Appl Microbiol Biotechnol ; 97(12): 5535-43, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23467828

RESUMEN

Dry bubble disease caused by Lecanicillium fungicola is a persistent problem in the cultivation of the white button mushroom (Agaricus bisporus). Because control is hampered by chemicals becoming less effective, new ways to control dry bubble disease are urgently required. 1-Octen-3-ol is a volatile that is produced by A. bisporus and many other fungi. In A. bisporus, it has been implicated in self-inhibition of fruiting body formation while it was shown to inhibit spore germination in ascomycetes. Here, we show that 1-octen-3-ol inhibits germination of L. fungicola and that enhanced levels of 1-octen-3-ol can effectively control the malady. In addition, application of 1-octen-3-ol stimulates growth of bacterial populations in the casing and of Pseudomonas spp. specifically. Pseudomonas spp. and other bacteria have been demonstrated to play part in both the onset of mushroom formation in A. bisporus, as well as the inhibition of L. fungicola spore germination. A potential role of 1-octen-3-ol in the ecology of L. fungicola is discussed.


Asunto(s)
Agaricus/química , Inhibidores de Crecimiento/aislamiento & purificación , Inhibidores de Crecimiento/farmacología , Hypocreales/efectos de los fármacos , Hypocreales/crecimiento & desarrollo , Octanoles/aislamiento & purificación , Octanoles/farmacología , Interacciones Microbianas , Pseudomonas/efectos de los fármacos , Pseudomonas/crecimiento & desarrollo
11.
Antonie Van Leeuwenhoek ; 103(3): 539-50, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23100063

RESUMEN

Lecanicillium fungicola causes dry bubble disease and is an important problem in the cultivation of Agaricus bisporus. Little is known about the defense of mushrooms against pathogens in general and L. fungicola in particular. In plants and animals, a first attack by a pathogen often induces a systemic response that results in an acquired resistance to subsequent attacks by the same pathogen. The development of functionally similar responses in these two eukaryotic kingdoms indicates that they are important to all multi-cellular organisms. We investigated if such responses also occur in the interaction between the white button mushroom and L. fungicola. A first infection of mushrooms of the commercial A. bisporus strain Sylvan A15 by L. fungicola did not induce systemic resistance against a subsequent infection. Similar results were obtained with the A. bisporus strain MES01497, which was demonstrated to be more resistant to dry bubble disease. Apparently, fruiting bodies of A. bisporus do not express induced resistance against L. fungicola.


Asunto(s)
Agaricus/fisiología , Hypocreales/fisiología , Interacciones Microbianas , Animales
12.
Nat Microbiol ; 8(12): 2349-2364, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37973867

RESUMEN

Hyaloperonospora arabidopsidis (Hpa) is an obligately biotrophic downy mildew that is routinely cultured on Arabidopsis thaliana hosts that harbour complex microbiomes. We hypothesized that the culturing procedure proliferates Hpa-associated microbiota (HAM) in addition to the pathogen and exploited this model system to investigate which microorganisms consistently associate with Hpa. Using amplicon sequencing, we found nine bacterial sequence variants that are shared between at least three out of four Hpa cultures in the Netherlands and Germany and comprise 34% of the phyllosphere community of the infected plants. Whole-genome sequencing showed that representative HAM bacterial isolates from these distinct Hpa cultures are isogenic and that an additional seven published Hpa metagenomes contain numerous sequences of the HAM. Although we showed that HAM benefit from Hpa infection, HAM negatively affect Hpa spore formation. Moreover, we show that pathogen-infected plants can selectively recruit HAM to both their roots and shoots and form a soil-borne infection-associated microbiome that helps resist the pathogen. Understanding the mechanisms by which infection-associated microbiomes are formed might enable breeding of crop varieties that select for protective microbiomes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Microbiota , Oomicetos , Arabidopsis/genética , Arabidopsis/microbiología , Enfermedades de las Plantas/microbiología , Oomicetos/genética
13.
Sci Rep ; 12(1): 22473, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36577764

RESUMEN

Plants deposit photosynthetically-fixed carbon in the rhizosphere, the thin soil layer directly around the root, thereby creating a hospitable environment for microbes. To manage the inhabitants of this nutrient-rich environment, plant roots exude and dynamically adjust microbe-attracting and -repelling compounds to stimulate specific members of the microbiome. Previously, we demonstrated that foliar infection of Arabidopsis thaliana by the biotrophic downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa) leads to a disease-induced modification of the rhizosphere microbiome. Soil conditioned with Hpa-infected plants provided enhanced protection against foliar downy mildew infection in a subsequent population of plants, a phenomenon dubbed the soil-borne legacy (SBL). Here, we show that for the creation of the SBL, plant-produced coumarins play a prominent role as coumarin-deficient myb72 and f6'h1 mutants were defective in creating a Hpa-induced SBL. Root exudation profiles changed significantly in Col-0 upon foliar Hpa infection, and this was accompanied by a compositional shift in the root microbiome that was significantly different from microbial shifts occurring on roots of Hpa-infected coumarin-deficient mutants. Our data further show that the Hpa-induced SBL primes Col-0 plants growing in SBL-conditioned soil for salicylic acid (SA)-dependent defenses. The SA-signaling mutants sid2 and npr1 were unresponsive to the Hpa-induced SBL, suggesting that the protective effect of the Hpa-induced shift in the root microbiome results from an induced systemic resistance that requires SA-signaling in the plant.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oomicetos , Peronospora , Proteínas de Arabidopsis/genética , Ácido Salicílico/farmacología , Arabidopsis/metabolismo , Cumarinas/farmacología , Enfermedades de las Plantas/genética , Regulación de la Expresión Génica de las Plantas
14.
Methods Mol Biol ; 2232: 305-317, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33161556

RESUMEN

In nature and agriculture, plants interact with an astonishing number of microbes, collectively referred to as the "plant microbiome." Roots are a microbial hotspot where beneficial plant-microbe interactions are established that support plant growth and provide protection against pathogens and insects. Recently, we discovered that in response to foliar pathogen attack, plant roots can recruit specific protective microbes into the rhizosphere. Root exudates play an essential role in the interaction between plant roots and rhizosphere microbiota. In order to study the chemical communication between plant roots and the rhizosphere microbiome, it is essential to study the metabolite profile of root exudates. Here, we describe a detailed protocol for the collection of sterile root exudates that are secreted by Arabidopsis thaliana roots in response to inoculation of the leaves with the biotrophic pathogen Hyaloperonospora arabidopsidis.


Asunto(s)
Arabidopsis/microbiología , Microbiota/genética , Desarrollo de la Planta/genética , Raíces de Plantas/microbiología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Oomicetos/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Exudados de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Rizosfera , Microbiología del Suelo
15.
Methods Mol Biol ; 2232: 209-218, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33161550

RESUMEN

The rhizosphere microbiome of plants is essential for plant growth and health. Recent studies have shown that upon infection of leaves with a foliar pathogen, the composition of the root microbiome is altered and enriched with bacteria that in turn can systemically protect the plant against the foliar pathogen. This protective effect is extended to successive populations of plants that are grown on soil that was first conditioned by pathogen-infected plants, a phenomenon that was coined "the soil-borne legacy." Here we provide a detailed protocol for soil-borne legacy experiments with the model plant Arabidopsis thaliana after infection with the obligate biotrophic pathogen Hyaloperonospora arabidopsidis. This protocol can easily be extended to infection with other pathogens or even infestation with herbivorous insects and can function as a blueprint for soil-borne legacy experiments with crop species.


Asunto(s)
Arabidopsis/microbiología , Resistencia a la Enfermedad/genética , Microbiota/genética , Enfermedades de las Plantas/microbiología , Arabidopsis/genética , Interacciones Huésped-Patógeno/genética , Oomicetos/patogenicidad , Enfermedades de las Plantas/genética , Microbiología del Suelo
16.
Plants (Basel) ; 10(2)2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33672351

RESUMEN

Pseudomonas simiae PICF7 is an indigenous inhabitant of the olive (Olea europaea L.) rhizosphere/root endosphere and an effective biocontrol agent against Verticillium wilt of olive (VWO), caused by the soil-borne fungus Verticillium dahliae. This study aimed to evaluate the potential involvement of selected phenotypes of strain PICF7 in root colonization ability and VWO biocontrol. Therefore, a random transposon-insertion mutant bank of P. simiae PICF7 was screened for the loss of phenotypes likely involved in rhizosphere/soil persistence (copper resistance), root colonization (biofilm formation) and plant growth promotion (phytase activity). Transposon insertions in genes putatively coding for the transcriptional regulator CusR or the chemotaxis protein CheV were found to affect copper resistance, whereas an insertion in fleQ gene putatively encoding a flagellar regulatory protein hampered the ability to form a biofilm. However, these mutants displayed the same antagonistic effect against V. dahliae as the parental strain. Remarkably, two mutants impaired in biofilm formation were never found inside olive roots, whereas their ability to colonize the root exterior and to control VWO remained unaffected. Endophytic colonization of olive roots was unaltered in mutants impaired in copper resistance and phytase production. Results demonstrated that the phenotypes studied were irrelevant for VWO biocontrol.

17.
Microorganisms ; 9(3)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799825

RESUMEN

Pseudomonas simiae WCS417 is a root-colonizing bacterium with well-established plant-beneficial effects. Upon colonization of Arabidopsis roots, WCS417 evades local root immune responses while triggering an induced systemic resistance (ISR) in the leaves. The early onset of ISR in roots shows similarities with the iron deficiency response, as both responses are associated with the production and secretion of coumarins. Coumarins can mobilize iron from the soil environment and have a selective antimicrobial activity that impacts microbiome assembly in the rhizosphere. Being highly coumarin-tolerant, WCS417 induces the secretion of these phenolic compounds, likely to improve its own niche establishment, while providing growth and immunity benefits for the host in return. To investigate the possible signaling function of coumarins in the mutualistic Arabidopsis-WCS417 interaction, we analyzed the transcriptome of WCS417 growing in root exudates of coumarin-producing Arabidopsis Col-0 and the coumarin-biosynthesis mutant f6'h1. We found that coumarins in F6'H1-dependent root exudates significantly affected the expression of 439 bacterial genes (8% of the bacterial genome). Of those, genes with functions related to transport and metabolism of carbohydrates, amino acids, and nucleotides were induced, whereas genes with functions related to cell motility, the bacterial mobilome, and energy production and conversion were repressed. Strikingly, most genes related to flagellar biosynthesis were down-regulated by F6'H1-dependent root exudates and we found that application of selected coumarins reduces bacterial motility. These findings suggest that coumarins' function in the rhizosphere as semiochemicals in the communication between the roots and WCS417. Collectively, our results provide important novel leads for future functional analysis of molecular processes in the establishment of plant-mutualist interactions.

18.
Mol Plant ; 13(10): 1394-1401, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32979564

RESUMEN

Looking forward includes looking back every now and then. In 2007, David Weller looked back at 30 years of biocontrol of soil-borne pathogens by Pseudomonas and signified that the progress made over decades of research has provided a firm foundation to formulate current and future research questions. It has been recognized for more than a century that soil-borne microbes play a significant role in plant growth and health. The recent application of high-throughput omics technologies has enabled detailed dissection of the microbial players and molecular mechanisms involved in the complex interactions in plant-associated microbiomes. Here, we highlight old and emerging plant microbiome concepts related to plant disease control, and address perspectives that modern and emerging microbiomics technologies can bring to functionally characterize and exploit plant-associated microbiomes for the benefit of plant health in future microbiome-assisted agriculture.


Asunto(s)
Microbiología del Suelo , Microbiota/genética , Microbiota/fisiología , Enfermedades de las Plantas/microbiología , Raíces de Plantas/microbiología , Rizosfera
19.
Front Microbiol ; 10: 1631, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31379783

RESUMEN

Plants roots host myriads of microbes, some of which enhance the defense potential of plants by activating a broad-spectrum immune response in leaves, known as induced systemic resistance (ISR). Nevertheless, establishment of this mutualistic interaction requires active suppression of local root immune responses to allow successful colonization. To facilitate host colonization, phytopathogenic bacteria secrete immune-suppressive effectors into host cells via the type III secretion system (T3SS). Previously, we searched the genomes of the ISR-inducing rhizobacteria Pseudomonas simiae WCS417 and Pseudomonas defensor WCS374 for the presence of a T3SS and identified the components for a T3SS in the genomes of WCS417 and WCS374. By performing a phylogenetic and gene cluster alignment analysis we show that the T3SS of WCS417 and WCS374 are grouped in a clade that is enriched for beneficial rhizobacteria. We also found sequences of putative novel effectors in their genomes, which may facilitate future research on the role of T3SS effectors in plant-beneficial microbe interactions in the rhizosphere.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA