Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 19(47): 31756-31765, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29167854

RESUMEN

Pr(OH)3 one-dimensional nanostructures are a less studied member of lanthanide hydroxide nanostructures, which recently demonstrated an excellent adsorption capacity for organic pollutant removal from wastewater. In this study, Pr1-xEux(OH)3 (x = 0, 0.01, 0.03, and 0.05) defective nanostructures were synthesized by a facile and scalable microwave-assisted hydrothermal method using KOH as an alkaline metal precursor. The phase and surface composition, morphology, vibrational, electronic and optical properties of the as-prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma optical emission spectrometry (ICP-OES), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), Raman, infrared (IR), photoluminescence (PL), and diffuse reflectance spectroscopy (DRS). It was deduced that the incorporation of Eu3+ ions promoted the formation of oxygen vacancies in the already defective Pr(OH)3, subsequently changing the Pr(OH)3 nanorod morphology. The presence of KNO3 phase was registered in the Eu-doped samples. The oxygen-deficient Eu-doped Pr(OH)3 nanostructures displayed an improved photocatalytic activity in the removal of reactive orange (RO16) dye under UV-vis light irradiation. An enhanced photocatalytic activity of the Eu-doped Pr(OH)3 nanostructures was caused by the synergetic effect of oxygen vacancies and Eu3+ (NO3-) ions present on the Pr(OH)3 surface, the charge separation efficiency and the formation of the reactive radicals. In addition, the 3% Eu-doped sample exhibited very good adsorptive properties due to different morphology and higher electrostatic attraction with the anionic dye. Pr1-xEux(OH)3 nanostructures with the possibility of tuning their adsorption/photocatalytic properties present a great potential for wastewater treatment.

2.
Int Endod J ; 50 Suppl 2: e95-e108, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28470859

RESUMEN

AIM: To evaluate the influence of the addition of microparticulate (micro) and nanoparticulate (nano) zirconium oxide (ZrO2 ) and niobium pentoxide (Nb2 O5 ) to a calcium silicate-based cement (CS) on the subcutaneous healing process in rats compared with MTA Angelus™. METHODOLOGY: In each rat, two polyethylene tubes filled with the following materials: (i) MTA; (ii) CS + ZrO2 micro; (iii) CS + ZrO2 nano; (iv) CS + Nb2 O5 micro or (v) CS + Nb2 O5 nano were implanted subcutaneously; empty polyethylene tubes were used in the Control group. After 7, 15, 30 and 60 days, the specimens (n = 5 per group in each period) were fixed and embedded in paraffin. Masson's trichrome sections were used to obtain the volume density of the inflammatory cells (VvIC) and fibroblasts (VvFb). The sections were also stained with Picrosirius-red to calculate the birefringent collagen content. Fibroblast growth factor-1 (FGF-1) was detected by immunohistochemistry, and the number of immunolabelled cells was obtained. The data were subjected to two-way anova followed by Tukey's test (P ≤ 0.05). RESULTS: At all periods, the VvIC was significantly lower (P < 0.001) in all the CS and Control groups than in the MTA group. At all periods, the VvFb was reduced significantly (P = 0.023) in the MTA group in comparison with the other groups. In addition, the number of immunolabelled cells in the capsules of the CS groups was significantly higher (P < 0.001) than in the MTA group at all time-points. CONCLUSIONS: The experimental materials (CS + ZrO2 and CS + Nb2 O5 ) induced fibroblast proliferation and accelerated the regression of the inflammatory reaction. However, the addition of nanoparticulate radiopacifiers did not improve the biological properties of a calcium silicate-based cement when compared to microparticulate agents.


Asunto(s)
Compuestos de Calcio/farmacología , Colágeno/efectos de los fármacos , Cementos Dentales/farmacología , Fibroblastos/efectos de los fármacos , Niobio/farmacología , Óxidos/farmacología , Silicatos/farmacología , Circonio/farmacología , Animales , Proliferación Celular/efectos de los fármacos , Técnicas para Inmunoenzimas , Implantes Experimentales , Masculino , Ensayo de Materiales , Tamaño de la Partícula , Politetrafluoroetileno , Ratas
3.
Phys Chem Chem Phys ; 17(5): 3072-80, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25510325

RESUMEN

Ceria (CeO2) is a promising dilute magnetic semiconductor. Several studies report that the intrinsic and extrinsic structural defects are responsible for room temperature ferromagnetism in undoped and transition metal doped CeO2 nanostructures; however, the nature of the kind of defect necessary to promote and stabilize the ferromagnetism in such a system is still a matter of debate. In the work presented here, nanorods from the system Ce1-xCuxO2-δ with x = 0, 0.01, 0.03, 0.05 and 0.10, with the more stable {111} surface exposed were synthesized by a microwave-assisted hydrothermal method. A very careful structure characterization confirms that the Cu in the samples assumes a majority 2+ oxidation state, occupying the Ce (Ce(4+) and Ce(3+)) sites with no secondary phases up to x = 0.05. The inclusion of the Cu(2+) in the CeO2 structure leads to the introduction of oxygen vacancies in a density proportional to the Cu(2+) content. It is supposed that the spatial distribution of the oxygen vacancies follows the Cu(2+) distribution by means of the formation of a defect complex consisting of Cu(2+) ion and an oxygen vacancy. Superconducting quantum interference device magnetometry demonstrated a diamagnetic behavior for the undoped sample and a typical paramagnetic Curie-Weiss behavior with antiferromagnetic interactions between the Cu(2+) ions for the single phase doped samples. We suggest that the presence of oxygen vacancies is not a sufficient condition to mediate ferromagnetism in the CeO2 system, and only oxygen vacancies in the surface of nanostructures would lead to such a long range magnetic order.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA