Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Respir Cell Mol Biol ; 66(4): 439-451, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35081328

RESUMEN

Persistent neutrophilic inflammation associated with chronic pulmonary infection causes progressive lung injury and, eventually, death in individuals with cystic fibrosis (CF), a genetic disease caused by biallelic mutations in the CF transmembrane conductance regulator (CFTR) gene. Therefore, we examined whether roscovitine, a cyclin-dependent kinase inhibitor that (in other conditions) reduces inflammation while promoting host defense, might provide a beneficial effect in the context of CF. Herein, using CFTR-depleted zebrafish larvae as an innovative vertebrate model of CF immunopathophysiology, combined with murine and human approaches, we sought to determine the effects of roscovitine on innate immune responses to tissue injury and pathogens in the CF condition. We show that roscovitine exerts antiinflammatory and proresolution effects in neutrophilic inflammation induced by infection or tail amputation in zebrafish. Roscovitine reduces overactive epithelial reactive oxygen species (ROS)-mediated neutrophil trafficking by reducing DUOX2/NADPH-oxidase activity and accelerates inflammation resolution by inducing neutrophil apoptosis and reverse migration. It is important to note that, although roscovitine efficiently enhances intracellular bacterial killing of Mycobacterium abscessus in human CF macrophages ex vivo, we found that treatment with roscovitine results in worse infection in mouse and zebrafish models. By interfering with DUOX2/NADPH oxidase-dependent ROS production, roscovitine reduces the number of neutrophils at infection sites and, consequently, compromises granuloma formation and maintenance, favoring extracellular multiplication of M. abscessus and more severe infection. Our findings bring important new understanding of the immune-targeted action of roscovitine and have significant therapeutic implications for safely targeting inflammation in CF.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Neutrófilos , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Oxidasas Duales , Ratones , Infecciones por Mycobacterium no Tuberculosas/microbiología , Roscovitina/farmacología , Roscovitina/uso terapéutico , Pez Cebra
2.
Proc Natl Acad Sci U S A ; 115(43): E10147-E10156, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30301802

RESUMEN

Mycobacterium abscessus is a peculiar rapid-growing Mycobacterium (RGM) capable of surviving within eukaryotic cells thanks to an arsenal of virulence genes also found in slow-growing mycobacteria (SGM), such as Mycobacterium tuberculosis A screen based on the intracellular survival in amoebae and macrophages (MΦ) of an M. abscessus transposon mutant library revealed the important role of MAB_0855, a yet uncharacterized Mycobacterial membrane protein Large (MmpL). Large-scale comparisons with SGM and RGM genomes uncovered MmpL12 proteins as putative orthologs of MAB_0855 and a locus-scale synteny between the MAB_0855 and Mycobacterium chelonae mmpL8 loci. A KO mutant of the MAB_0855 gene, designated herein as mmpL8MAB , had impaired adhesion to MΦ and displayed a decreased intracellular viability. Despite retaining the ability to block phagosomal acidification, like the WT strain, the mmpL8MAB mutant was delayed in damaging the phagosomal membrane and in making contact with the cytosol. Virulence attenuation of the mutant was confirmed in vivo by impaired zebrafish killing and a diminished propensity to induce granuloma formation. The previously shown role of MmpL in lipid transport prompted us to investigate the potential lipid substrates of MmpL8MAB Systematic lipid analysis revealed that MmpL8MAB was required for the proper expression of a glycolipid entity, a glycosyl diacylated nonadecyl diol (GDND) alcohol comprising different combinations of oleic and stearic acids. This study shows the importance of MmpL8MAB in modifying interactions between the bacteria and phagocytic cells and in the production of a previously unknown glycolipid family.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glucolípidos/metabolismo , Mycobacterium abscessus/metabolismo , Factores de Virulencia/metabolismo , Virulencia/fisiología , Amoeba/microbiología , Animales , Transporte Biológico/fisiología , Línea Celular , Citosol/metabolismo , Humanos , Lípidos , Macrófagos/metabolismo , Macrófagos/microbiología , Proteínas de la Membrana/metabolismo , Ratones , Fagosomas/microbiología , Pez Cebra/microbiología
3.
Proc Natl Acad Sci U S A ; 115(5): E1002-E1011, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29343644

RESUMEN

Mycobacterium abscessus, a rapidly growing mycobacterium (RGM) and an opportunistic human pathogen, is responsible for a wide spectrum of clinical manifestations ranging from pulmonary to skin and soft tissue infections. This intracellular organism can resist the bactericidal defense mechanisms of amoebae and macrophages, an ability that has not been observed in other RGM. M. abscessus can up-regulate several virulence factors during transient infection of amoebae, thereby becoming more virulent in subsequent respiratory infections in mice. Here, we sought to identify the M. abscessus genes required for replication within amoebae. To this end, we constructed and screened a transposon (Tn) insertion library of an M. abscessus subspecies massiliense clinical isolate for attenuated clones. This approach identified five genes within the ESX-4 locus, which in M. abscessus encodes an ESX-4 type VII secretion system that exceptionally also includes the ESX conserved EccE component. To confirm the screening results and to get further insight into the contribution of ESX-4 to M. abscessus growth and survival in amoebae and macrophages, we generated a deletion mutant of eccB4 that encodes a core structural element of ESX-4. This mutant was less efficient at blocking phagosomal acidification than its parental strain. Importantly, and in contrast to the wild-type strain, it also failed to damage phagosomes and showed reduced signs of phagosome-to-cytosol contact, as demonstrated by a combination of cellular and immunological assays. This study attributes an unexpected and genuine biological role to the underexplored mycobacterial ESX-4 system and its substrates.


Asunto(s)
Amoeba/microbiología , Mycobacterium abscessus/patogenicidad , Fagosomas/microbiología , Sistemas de Secreción Tipo IV/genética , Factores de Virulencia/genética , Proteínas Bacterianas/genética , Caspasa 1/metabolismo , Cromatografía en Capa Delgada , Citosol/metabolismo , Activación Enzimática , Citometría de Flujo , Galectina 3/metabolismo , Eliminación de Gen , Genómica , Humanos , Lípidos/química , Macrófagos/microbiología , Mutación , Mycobacterium abscessus/genética , Mycobacterium tuberculosis/patogenicidad , Células THP-1 , Virulencia
4.
Proc Natl Acad Sci U S A ; 113(29): E4228-37, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27385830

RESUMEN

Mycobacterium abscessus (Mabs) is a rapidly growing Mycobacterium and an emerging pathogen in humans. Transitioning from a smooth (S) high-glycopeptidolipid (GPL) producer to a rough (R) low-GPL producer is associated with increased virulence in zebrafish, which involves the formation of massive serpentine cords, abscesses, and rapid larval death. Generating a cord-deficient Mabs mutant would allow us to address the contribution of cording in the physiopathological signs of the R variant. Herein, a deletion mutant of MAB_4780, encoding a dehydratase, distinct from the ß-hydroxyacyl-ACP dehydratase HadABC complex, was constructed in the R morphotype. This mutant exhibited an alteration of the mycolic acid composition and a pronounced defect in cording. This correlated with an extremely attenuated phenotype not only in wild-type but also in immunocompromised zebrafish embryos lacking either macrophages or neutrophils. The abolition of granuloma formation in embryos infected with the dehydratase mutant was associated with a failure to replicate in macrophages, presumably due to limited inhibition of the phagolysosomal fusion. Overall, these results indicate that MAB_4780 is required for Mabs to successfully establish acute and lethal infections. Therefore, targeting MAB_4780 may represent an attractive antivirulence strategy to control Mabs infections, refractory to most standard chemotherapeutic interventions. The combination of a dehydratase assay with a high-resolution crystal structure of MAB_4780 opens the way to identify such specific inhibitors.


Asunto(s)
Hidroliasas/fisiología , Infecciones por Mycobacterium/enzimología , Mycobacterium/patogenicidad , Proteínas de Pez Cebra/fisiología , Animales , Línea Celular , Embrión no Mamífero/enzimología , Embrión no Mamífero/inmunología , Embrión no Mamífero/microbiología , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Infecciones por Mycobacterium/microbiología , Neutrófilos/inmunología , Virulencia , Pez Cebra/inmunología , Pez Cebra/metabolismo , Pez Cebra/microbiología
5.
PLoS Pathog ; 12(11): e1005986, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27806130

RESUMEN

Mycobacterium abscessus is considered the most common respiratory pathogen among the rapidly growing non-tuberculous mycobacteria. Infections with M. abscessus are increasingly found in patients with chronic lung diseases, especially cystic fibrosis, and are often refractory to antibiotic therapy. M. abscessus has two morphotypes with distinct effects on host cells and biological responses. The smooth (S) variant is recognized as the initial airway colonizer while the rough (R) is known to be a potent inflammatory inducer associated with invasive disease, but the underlying immunopathological mechanisms of the infection remain unsolved. We conducted a comparative stepwise dissection of the inflammatory response in S and R pathogenesis by monitoring infected transparent zebrafish embryos. Loss of TNFR1 function resulted in increased mortality with both variants, and was associated with unrestricted intramacrophage bacterial growth and decreased bactericidal activity. The use of transgenic zebrafish lines harboring fluorescent macrophages and neutrophils revealed that neutrophils, like macrophages, interact with M. abscessus at the initial infection sites. Impaired TNF signaling disrupted the IL8-dependent neutrophil mobilization, and the defect in neutrophil trafficking led to the formation of aberrant granulomas, extensive mycobacterial cording, unrestricted bacterial growth and subsequent larval death. Our findings emphasize the central role of neutrophils for the establishment and maintenance of the protective M. abscessus granulomas. These results also suggest that the TNF/IL8 inflammatory axis is necessary for protective immunity against M. abscessus and may be of clinical relevance to explain why immunosuppressive TNF therapy leads to the exacerbation of M. abscessus infections.


Asunto(s)
Granuloma/inmunología , Infecciones por Mycobacterium no Tuberculosas/inmunología , Neutrófilos/inmunología , Transducción de Señal/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Animales , Animales Modificados Genéticamente , Quimiotaxis de Leucocito/inmunología , Modelos Animales de Enfermedad , Granuloma/patología , Microscopía , Infecciones por Mycobacterium no Tuberculosas/microbiología , Infecciones por Mycobacterium no Tuberculosas/patología , Neutrófilos/citología , Micobacterias no Tuberculosas/inmunología , Reacción en Cadena de la Polimerasa , Pez Cebra
6.
Mol Microbiol ; 99(5): 866-83, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26585558

RESUMEN

In mycobacteria, MmpL proteins represent key components that participate in the biosynthesis of the complex cell envelope. Whole genome analysis of a spontaneous rough morphotype variant of Mycobacterium abscessus subsp. bolletii identified a conserved tyrosine that is crucial for the function of MmpL family proteins. Isogenic smooth (S) and rough (R) variants differed by a single mutation linked to a Y842H substitution in MmpL4a. This mutation caused a deficiency in glycopeptidolipid production/transport in the R variant and a gain in the capacity to produce cords in vitro. In zebrafish, increased virulence of the M. bolletii R variant over the parental S strain was found, involving massive production of serpentine cords, abscess formation and rapid larval death. Importantly, this finding allowed us to demonstrate an essential role of Tyr842 in several different MmpL proteins, including Mycobacterium tuberculosis MmpL3. Structural homology models of MmpL4a and MmpL3 identified two additional critical residues located in the transmembrane regions TM10 and TM4 that are facing each other. We propose that these central residues are part of the proton-motive force that supplies the energy for substrate transport. Hence, we provide important insights into mechanistic/structural aspects of MmpL proteins as lipid transporters and virulence determinants in mycobacteria.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Mycobacterium/metabolismo , Tirosina/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico , Pared Celular/metabolismo , Secuencia Conservada , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mycobacterium/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Fuerza Protón-Motriz , Virulencia , Factores de Virulencia/metabolismo , Pez Cebra
7.
Mol Microbiol ; 101(3): 515-29, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27121350

RESUMEN

The natural resistance of Mycobacterium abscessus to most commonly available antibiotics seriously limits chemotherapeutic treatment options, which is particularly challenging for cystic fibrosis patients infected with this rapid-growing mycobacterium. New drugs with novel molecular targets are urgently needed against this emerging pathogen. However, the discovery of such new chemotypes has not been appropriately performed. Here, we demonstrate the utility of a phenotypic screen for bactericidal compounds against M. abscessus using a library of compounds previously validated for activity against M. tuberculosis. We identified a new piperidinol-based molecule, PIPD1, exhibiting potent activity against clinical M. abscessus strains in vitro and in infected macrophages. Treatment of infected zebrafish with PIPD1 correlated with increased embryo survival and decreased bacterial burden. Whole genome analysis of M. abscessus strains resistant to PIPD1 identified several mutations in MAB_4508, encoding a protein homologous to MmpL3. Biochemical analyses demonstrated that while de novo mycolic acid synthesis was unaffected, PIPD1 strongly inhibited the transport of trehalose monomycolate, thereby abrogating mycolylation of arabinogalactan. Mapping the mutations conferring resistance to PIPD1 on a MAB_4508 tridimensional homology model defined a potential PIPD1-binding pocket. Our data emphasize a yet unexploited chemical structure class against M. abscessus infections with promising translational development possibilities.


Asunto(s)
Antituberculosos/farmacología , Ácidos Micólicos/metabolismo , Micobacterias no Tuberculosas/efectos de los fármacos , Piperidinas/farmacología , Animales , Sitios de Unión , Modelos Animales de Enfermedad , Infecciones por Mycobacterium no Tuberculosas/microbiología , Micobacterias no Tuberculosas/metabolismo , Pez Cebra
8.
Artículo en Inglés | MEDLINE | ID: mdl-28096155

RESUMEN

Mycobacterium abscessus pulmonary infections are treated with a macrolide (clarithromycin or azithromycin), an aminoglycoside (amikacin), and a ß-lactam (cefoxitin or imipenem). The triple combination is used without any ß-lactamase inhibitor, even though Mabscessus produces the broad-spectrum ß-lactamase BlaMab We determine whether inhibition of BlaMab by avibactam improves the activity of imipenem against M. abscessus The bactericidal activity of drug combinations was assayed in broth and in human macrophages. The in vivo efficacy of the drugs was tested by monitoring the survival of infected zebrafish embryos. The level of BlaMab production in broth and in macrophages was compared by quantitative reverse transcription-PCR and Western blotting. The triple combination of imipenem (8 or 32 µg/ml), amikacin (32 µg/ml), and avibactam (4 µg/ml) was bactericidal in broth (<0.1% survival), with 3.2- and 4.3-log10 reductions in the number of CFU being achieved at 72 h when imipenem was used at 8 and 32 µg/ml, respectively. The triple combination achieved significant intracellular killing, with the bacterial survival rates being 54% and 7% with the low (8 µg/ml) and high (32 µg/ml) dosages of imipenem, respectively. In vivo inhibition of BlaMab by avibactam improved the survival of zebrafish embryos treated with imipenem. Expression of the gene encoding BlaMab was induced (20-fold) in the infected macrophages. Inhibition of BlaMab by avibactam improved the efficacy of imipenem against M. abscessusin vitro, in macrophages, and in zebrafish embryos, indicating that this ß-lactamase inhibitor should be clinically evaluated. The in vitro evaluation of imipenem may underestimate the impact of BlaMab, since the production of the ß-lactamase is inducible in macrophages.


Asunto(s)
Antibacterianos/farmacología , Compuestos de Azabiciclo/farmacología , Imipenem/farmacología , Mycobacterium/efectos de los fármacos , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/farmacología , Amicacina/farmacología , Animales , Western Blotting , Embrión no Mamífero/microbiología , Humanos , Macrófagos/microbiología , Pruebas de Sensibilidad Microbiana , Mycobacterium/genética , Mycobacterium/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Pez Cebra
9.
PLoS Pathog ; 11(6): e1004969, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26080006

RESUMEN

Pathogenic bacteria have developed strategies to adapt to host environment and resist host immune response. Several intracellular bacterial pathogens, including Salmonella enterica and Mycobacterium tuberculosis, share the horizontally-acquired MgtC virulence factor that is important for multiplication inside macrophages. MgtC is also found in pathogenic Pseudomonas species. Here we investigate for the first time the role of MgtC in the virulence of an extracellular pathogen, Pseudomonas aeruginosa. A P. aeruginosa mgtC mutant is attenuated in the systemic infection model of zebrafish embryos, and strikingly, the attenuated phenotype is dependent on the presence of macrophages. In ex vivo experiments, the P. aeruginosa mgtC mutant is more sensitive to macrophage killing than the wild-type strain. However, wild-type and mutant strains behave similarly toward macrophage killing when macrophages are treated with an inhibitor of the vacuolar proton ATPase. Importantly, P. aeruginosa mgtC gene expression is strongly induced within macrophages and phagosome acidification contributes to an optimal expression of the gene. Thus, our results support the implication of a macrophage intracellular stage during P. aeruginosa acute infection and suggest that Pseudomonas MgtC requires phagosome acidification to play its intracellular role. Moreover, we demonstrate that P. aeruginosa MgtC is required for optimal growth in Mg2+ deprived medium, a property shared by MgtC factors from intracellular pathogens and, under Mg2+ limitation, P. aeruginosa MgtC prevents biofilm formation. We propose that MgtC shares a similar function in intracellular and extracellular pathogens, which contributes to macrophage resistance and fine-tune adaptation to host immune response in relation to the different bacterial lifestyles. In addition, the phenotypes observed with the mgtC mutant in infection models can be mimicked in wild-type P. aeruginosa strain by producing a MgtC antagonistic peptide, thus highlighting MgtC as a promising new target for anti-virulence strategies.


Asunto(s)
Proteínas Bacterianas/genética , Evasión Inmune/genética , Macrófagos/microbiología , Pseudomonas aeruginosa/patogenicidad , Factores de Virulencia/genética , Virulencia/genética , Animales , Secuencia de Bases , Modelos Animales de Enfermedad , Embrión no Mamífero , Espacio Extracelular , Espacio Intracelular , Microscopía Confocal , Microscopía Fluorescente , Datos de Secuencia Molecular , Filogenia , Infecciones por Pseudomonas/genética , Pseudomonas aeruginosa/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Pez Cebra
10.
Cell Microbiol ; 18(11): 1489-1507, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27120981

RESUMEN

Despite intense research, PE_PGRS proteins still represent an intriguing aspect of mycobacterial pathogenesis. These cell surface proteins influence virulence in several pathogenic species, but their diverse and exact functions remain unclear. Herein, we focussed on a PE_PGRS member from Mycobacterium marinum, MMAR_0242, characterized by an extended and unique C-terminal domain. We demonstrate that an M. marinum mutant carrying a transposon insertion in MMAR_0242 is highly impaired in its ability to replicate in macrophages and amoebae, because of its inability to inhibit lysosomal fusion. As a consequence, this mutant failed to survive intracellularly as evidenced by a reduced number of cytosolic actin tail-forming bacteria and by quantitative electron microscopy, which mainly localized MMAR_0242::Tn within membrane-defined vacuoles. Functional complementation studies indicated that the C-terminus, but not the N-terminal PE_PGRS domain, is required for intracellular growth/survival. In line with these findings, disruption of MMAR_0242 resulted in a highly attenuated virulence phenotype in zebrafish embryos, characterized by restricted bacterial loads and a failure to produce granulomas. Furthermore, expression of MMAR_0242 in Mycobacterium smegmatis, a non-pathogenic species naturally deficient in PE_PGRS production, resulted in increased survival in amoebae with enhanced cytotoxic cell death and increased survival in infected mice with splenomegaly. Overall, these results indicate that MMAR_0242 is required for full virulence of M. marinum and sufficient to confer pathogenic properties to M. smegmatis.


Asunto(s)
Proteínas Bacterianas/fisiología , Mycobacterium marinum/fisiología , Amoeba/microbiología , Animales , Línea Celular , Interacciones Huésped-Patógeno , Macrófagos/microbiología , Ratones , Viabilidad Microbiana , Mycobacterium marinum/patogenicidad , Mycobacterium smegmatis/patogenicidad , Mycobacterium smegmatis/fisiología , Virulencia , Factores de Virulencia/fisiología
11.
Proc Natl Acad Sci U S A ; 111(10): E943-52, 2014 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-24567393

RESUMEN

Mycobacterium abscessus is a rapidly growing Mycobacterium causing a wide spectrum of clinical syndromes. It now is recognized as a pulmonary pathogen to which cystic fibrosis patients have a particular susceptibility. The M. abscessus rough (R) variant, devoid of cell-surface glycopeptidolipids (GPLs), causes more severe clinical disease than the smooth (S) variant, but the underlying mechanisms of R-variant virulence remain obscure. Exploiting the optical transparency of zebrafish embryos, we observed that the increased virulence of the M. abscessus R variant compared with the S variant correlated with the loss of GPL production. The virulence of the R variant involved the massive production of serpentine cords, absent during S-variant infection, and the cords initiated abscess formation leading to rapid larval death. Cording occurred within the vasculature and was highly pronounced in the central nervous system (CNS). It appears that M. abscessus is transported to the CNS within macrophages. The release of M. abscessus from apoptotic macrophages initiated the formation of cords that grew too large to be phagocytized by macrophages or neutrophils. This study is a description of the crucial role of cording in the in vivo physiopathology of M. abscessus infection and emphasizes cording as a mechanism of immune evasion.


Asunto(s)
Absceso/fisiopatología , Factores Cordón/metabolismo , Glucolípidos/metabolismo , Glicopéptidos/metabolismo , Factores Inmunológicos/metabolismo , Infecciones por Mycobacterium/fisiopatología , Mycobacterium/patogenicidad , Animales , Ácido Clodrónico , Factores Cordón/inmunología , Cartilla de ADN/genética , Embrión no Mamífero , Histocitoquímica , Procesamiento de Imagen Asistido por Computador , Macrófagos/metabolismo , Microscopía Fluorescente , Morfolinos/administración & dosificación , Morfolinos/genética , Mycobacterium/citología , Mycobacterium/metabolismo , Fagocitosis/fisiología , Virulencia , Pez Cebra
12.
Infect Immun ; 84(10): 2895-903, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27481243

RESUMEN

Mycobacterium abscessus is an emerging pathogenic mycobacterium involved in pulmonary and mucocutaneous infections, presenting a serious threat for patients with cystic fibrosis (CF). The lack of an efficient treatment regimen and the emergence of multidrug resistance in clinical isolates require the development of new therapeutic strategies against this pathogen. Reverse genetics has revealed genes that are present in M. abscessus but absent from saprophytic mycobacteria and that are potentially involved in pathogenicity. Among them, MAB_3593 encodes MgtC, a known virulence factor involved in intramacrophage survival and adaptation to Mg(2+) deprivation in several major bacterial pathogens. Here, we demonstrated a strong induction of M. abscessus MgtC at both the transcriptional and translational levels when bacteria reside inside macrophages or upon Mg(2+) deprivation. Moreover, we showed that M. abscessus MgtC was recognized by sera from M. abscessus-infected CF patients. The intramacrophage growth (J774 or THP1 cells) of a M. abscessus knockout mgtC mutant was, however, not significantly impeded. Importantly, our results indicated that inhibition of MgtC in vivo through immunization with M. abscessus mgtC DNA, formulated with a tetrafunctional amphiphilic block copolymer, exerted a protective effect against an aerosolized M. abscessus challenge in CF (ΔF508 FVB) mice. The formulated DNA immunization was likely associated with the production of specific MgtC antibodies, which may stimulate a protective effect by counteracting MgtC activity during M. abscessus infection. These results emphasize the importance of M. abscessus MgtC in vivo and provide a basis for the development of novel therapeutic tools against pulmonary M. abscessus infections in CF patients.


Asunto(s)
Vacunas Bacterianas/inmunología , Infecciones por Mycobacterium no Tuberculosas/inmunología , Mycobacterium/inmunología , Factores de Virulencia/inmunología , Animales , Proteínas Bacterianas/genética , Western Blotting , Fibrosis Quística/complicaciones , Modelos Animales de Enfermedad , Femenino , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Infecciones por Mycobacterium no Tuberculosas/prevención & control , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
13.
Int J Syst Evol Microbiol ; 66(9): 3694-3702, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27375118

RESUMEN

From our recent survey of non-pigmented rapidly growing mycobacteria in the Parisian water system, three groups of isolates (taxons 1-3) corresponding to possible novel species were selected for taxonomic study. The three taxa each formed creamy white, rough colonies, had an optimal growth temperature of 30 °C, hydrolyzed Tween 80, were catalase-positive at 22 °C and expressed arylsulfatase activity. All three were susceptible to amikacin, ciprofloxacin and tigecycline. The three taxa produced specific sets of mycolic acids, including one family that has never previously been described, as determined by thin layer chromatography and nuclear magnetic resonance. The partial rpoB sequences (723 bp) showed 4-6 % divergence from each other and more than 5 % differences from the most similar species. Partial 16S rRNA gene sequences showed 99 % identity within each species. The most similar sequences for 16S rRNA genes (98-99 % identity over 1444-1461 bp) were found in the Mycobacterium fortuitum group, Mycobacterium septicum and Mycobacterium farcinogenes. The three taxa formed a new clade (bootstrap value, 99 %) on trees reconstructed from concatenated partial 16S rRNA, hsp65 and rpoB sequences. The above results led us to propose three novel species for the three groups of isolates, namely Mycobacterium lutetiense sp. nov. [type strain 071T=ParisRGMnew_1T (CIP 110656T=DSM 46713T)], Mycobacterium montmartrense sp. nov. [type strain 196T=ParisRGMnew_2T (CIP 110655T=DSM 46714T)] and Mycobacteriu marcueilense sp. nov. [type strain of 269T=ParisRGMnew_3T (CIP 110654T=DSM 46715T)].


Asunto(s)
Mycobacterium/clasificación , Filogenia , Microbiología del Agua , Abastecimiento de Agua , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Mycobacterium/genética , Mycobacterium/aislamiento & purificación , Ácidos Micólicos/metabolismo , Paris , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
14.
J Antimicrob Chemother ; 70(4): 1051-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25525201

RESUMEN

OBJECTIVES: Two ß-lactams, cefoxitin and imipenem, are part of the reference treatment for pulmonary infections with Mycobacterium abscessus. M. abscessus has recently been shown to produce a broad-spectrum ß-lactamase, BlaMab, indicating that the combination of ß-lactams with a BlaMab inhibitor may improve treatment efficacy. The objectives of this study were to evaluate the impact of BlaMab production on the efficacy of ß-lactams in vitro and to assess the benefit of BlaMab inhibition on the activity of ß-lactams intracellularly and in an animal model. METHODS: We analysed the mechanism and kinetics of BlaMab inactivation by avibactam, a non-ß-lactam ß-lactamase inhibitor currently in Phase III of development, in combination with ceftazidime for the treatment of serious infections due to Gram-negative bacteria. We then deleted the gene encoding BlaMab to assess the extent of BlaMab inhibition by avibactam based on a comparison of the impact of chemical and genetic inactivation. Finally, the efficacy of amoxicillin in combination with avibactam was evaluated in cultured human macrophages and in a zebrafish model of M. abscessus infection. RESULTS: We showed that avibactam efficiently inactivated BlaMab via the reversible formation of a covalent adduct. An inhibition of BlaMab by avibactam was observed in both infected macrophages and zebrafish. CONCLUSIONS: Our data identify avibactam as the first efficient inhibitor of BlaMab and strongly suggest that ß-lactamase inhibition should be evaluated to provide improved therapeutic options for M. abscessus infections.


Asunto(s)
Compuestos de Azabiciclo/metabolismo , Compuestos de Azabiciclo/uso terapéutico , Mycobacterium/efectos de los fármacos , Mycobacterium/enzimología , Inhibidores de beta-Lactamasas/metabolismo , Inhibidores de beta-Lactamasas/uso terapéutico , beta-Lactamasas/metabolismo , Amoxicilina/metabolismo , Amoxicilina/uso terapéutico , Animales , Antibacterianos/metabolismo , Antibacterianos/uso terapéutico , Línea Celular , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Modelos Animales , Infecciones por Mycobacterium/tratamiento farmacológico , Infecciones por Mycobacterium/microbiología , Resultado del Tratamiento , Pez Cebra
15.
Med Sci (Paris) ; 31(6-7): 638-46, 2015.
Artículo en Francés | MEDLINE | ID: mdl-26152168

RESUMEN

The zebrafish offers many advantages that motivated and validated its use to study the virulence of numerous human pathogens, including viruses, bacteria and fungi. Its immune system is homologous to the one of mammals. The optical transparency of zebrafish embryos allows non-invasive and real-time monitoring of the infection processes through the use of imaging techniques. The zebrafish is therefore a useful and powerful model to study host-pathogen interactions at a cellular level. It may be used to describe pathophysiological events and subversion mechanisms that are specific to each pathogen. In addition to increasing our understanding of the host immune defense, this model is of high potential for medical application, being particularly amenable to high-throughput screening for the discovery of new anti-infective molecules.


Asunto(s)
Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno , Infecciones/patología , Pez Cebra , Animales , Bacterias/patogenicidad , Embrión no Mamífero , Hongos/patogenicidad , Interacciones Huésped-Patógeno/inmunología , Humanos , Infecciones/inmunología , Infecciones/fisiopatología , Virus/patogenicidad , Pez Cebra/embriología , Pez Cebra/crecimiento & desarrollo , Pez Cebra/inmunología
16.
Antimicrob Agents Chemother ; 58(7): 4054-63, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24798271

RESUMEN

Mycobacterium abscessus is responsible for a wide spectrum of clinical syndromes and is one of the most intrinsically drug-resistant mycobacterial species. Recent evaluation of the in vivo therapeutic efficacy of the few potentially active antibiotics against M. abscessus was essentially performed using immunocompromised mice. Herein, we assessed the feasibility and sensitivity of fluorescence imaging for monitoring the in vivo activity of drugs against acute M. abscessus infection using zebrafish embryos. A protocol was developed where clarithromycin and imipenem were directly added to water containing fluorescent M. abscessus-infected embryos in a 96-well plate format. The status of the infection with increasing drug concentrations was visualized on a spatiotemporal level. Drug efficacy was assessed quantitatively by measuring the index of protection, the bacterial burden (CFU), and the number of abscesses through fluorescence measurements. Both drugs were active in infected embryos and were capable of significantly increasing embryo survival in a dose-dependent manner. Protection from bacterial killing correlated with restricted mycobacterial growth in the drug-treated larvae and with reduced pathophysiological symptoms, such as the number of abscesses within the brain. In conclusion, we present here a new and efficient method for testing and compare the in vivo activity of two clinically relevant drugs based on a fluorescent reporter strain in zebrafish embryos. This approach could be used for rapid determination of the in vivo drug susceptibility profile of clinical isolates and to assess the preclinical efficacy of new compounds against M. abscessus.


Asunto(s)
Claritromicina/uso terapéutico , Imipenem/uso terapéutico , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Micobacterias no Tuberculosas/efectos de los fármacos , Imagen Óptica/métodos , Animales , Absceso Encefálico/tratamiento farmacológico , Absceso Encefálico/microbiología , Farmacorresistencia Bacteriana Múltiple , Quimioterapia Combinada , Larva/microbiología , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/microbiología , Pez Cebra/microbiología
17.
Science ; 385(6704): eadi0908, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38963857

RESUMEN

The major human bacterial pathogen Pseudomonas aeruginosa causes multidrug-resistant infections in people with underlying immunodeficiencies or structural lung diseases such as cystic fibrosis (CF). We show that a few environmental isolates, driven by horizontal gene acquisition, have become dominant epidemic clones that have sequentially emerged and spread through global transmission networks over the past 200 years. These clones demonstrate varying intrinsic propensities for infecting CF or non-CF individuals (linked to specific transcriptional changes enabling survival within macrophages); have undergone multiple rounds of convergent, host-specific adaptation; and have eventually lost their ability to transmit between different patient groups. Our findings thus explain the pathogenic evolution of P. aeruginosa and highlight the importance of global surveillance and cross-infection prevention in averting the emergence of future epidemic clones.


Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Humanos , Fibrosis Quística/microbiología , Evolución Molecular , Transferencia de Gen Horizontal , Adaptación al Huésped , Especificidad del Huésped , Macrófagos/microbiología , Macrófagos/inmunología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Infecciones por Pseudomonas/microbiología , Interacciones Huésped-Patógeno
18.
Front Immunol ; 11: 1733, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849617

RESUMEN

Inflammation-related progressive lung destruction is the leading causes of premature death in cystic fibrosis (CF), a genetic disorder caused by a defective cystic fibrosis transmembrane conductance regulator (CFTR). However, therapeutic targeting of inflammation has been hampered by a lack of understanding of the links between a dysfunctional CFTR and the deleterious innate immune response in CF. Herein, we used a CFTR-depleted zebrafish larva, as an innovative in vivo vertebrate model, to understand how CFTR dysfunction leads to abnormal inflammatory status in CF. We show that impaired CFTR-mediated inflammation correlates with an exuberant neutrophilic response after injury: CF zebrafish exhibit enhanced and sustained accumulation of neutrophils at wounds. Excessive epithelial oxidative responses drive enhanced neutrophil recruitment towards wounds. Persistence of neutrophils at inflamed sites is associated with impaired reverse migration of neutrophils and reduction in neutrophil apoptosis. As a consequence, the increased number of neutrophils at wound sites causes tissue damage and abnormal tissue repair. Importantly, the molecule Tanshinone IIA successfully accelerates inflammation resolution and improves tissue repair in CF animal. Our findings bring important new understanding of the mechanisms underlying the inflammatory pathology in CF, which could be addressed therapeutically to prevent inflammatory lung damage in CF patients with potential improvements in disease outcomes.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/inmunología , Inmunidad Innata/inmunología , Inflamación/inmunología , Infiltración Neutrófila/inmunología , Cicatrización de Heridas/inmunología , Proteínas de Pez Cebra/inmunología , Animales , Animales Modificados Genéticamente , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Pez Cebra , Proteínas de Pez Cebra/genética
20.
Cell Rep ; 26(7): 1828-1840.e4, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30759393

RESUMEN

Infection by rapidly growing Mycobacterium abscessus is increasingly prevalent in cystic fibrosis (CF), a genetic disease caused by a defective CF transmembrane conductance regulator (CFTR). However, the potential link between a dysfunctional CFTR and vulnerability to M. abscessus infection remains unknown. Herein, we exploit a CFTR-depleted zebrafish model, recapitulating CF immuno-pathogenesis, to study the contribution of CFTR in innate immunity against M. abscessus infection. Loss of CFTR increases susceptibility to infection through impaired NADPH oxidase-dependent restriction of intracellular growth and reduced neutrophil chemotaxis, which together compromise granuloma formation and integrity. As a consequence, extracellular multiplication of M. abscessus expands rapidly, inducing abscess formation and causing lethal infections. Because these phenotypes are not observed with other mycobacteria, our findings highlight the crucial and specific role of CFTR in the immune control of M. abscessus by mounting effective oxidative responses.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/inmunología , Infecciones por Mycobacterium no Tuberculosas/inmunología , Mycobacterium abscessus/inmunología , Estrés Oxidativo/inmunología , Proteínas de Pez Cebra/inmunología , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Infecciones por Mycobacterium no Tuberculosas/microbiología , Infecciones por Mycobacterium no Tuberculosas/prevención & control , Mycobacterium abscessus/aislamiento & purificación , Especies Reactivas de Oxígeno/inmunología , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA