RESUMEN
A label-free one-step lithographically masked deposition technique was implemented for the fabrication of gold nanoparticle (Au NP) micropatterns. These micropatterns serve as active substrates for surface-enhanced infrared absorption spectroscopy (SEIRAS) and exhibit a substantial increase in the IR signal upon adsorption of multiple proteins compared to untreated surfaces. Micro-FTIR chemical imaging was conducted to evaluate the efficacy of Au NP micropatterns as singular enhancers for SEIRAS across diverse IR-active substrates demonstrating a promising application for the detection of proteins at low concentrations within biological fluids.
Asunto(s)
Oro , Nanopartículas del Metal , Propiedades de Superficie , Oro/química , Nanopartículas del Metal/química , Proteínas/análisis , Proteínas/química , Adsorción , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
Integrating in situ biofuel production and energy conversion into a single system ensures the production of more robust networks as well as more renewable technologies. For this purpose, identifying and developing new biocatalysts is crucial. Herein, is reported a bioelectrochemical system consisting of alcohol dehydrogenase (ADH) and Saccharomyces cerevisiae, wherein both function cooperatively for ethanol production and its bioelectrochemical oxidation. Here, it is shown that it is possible to produce ethanol and use it as a biofuel in a tandem manner. The strategy is to employ flexible carbon fibres (FCF) electrode that could adsorb both the enzyme and the yeast cells. Glucose is used as a substrate for the yeast for the production of ethanol, while the enzyme is used to catalyse the oxidation of ethanol to acetaldehyde. Regarding the generation of reliable electricity based on electrochemical systems, the biosystem proposed in this study operates at a low temperature and ethanol production is proportional to the generated current. With further optimisation of electrode design, we envision the use of the cooperative biofuel cell for energy conversion and management of organic compounds.