Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 155(1): 242-56, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-24074872

RESUMEN

The complex network of specialized cells and molecules in the immune system has evolved to defend against pathogens, but inadvertent immune system attacks on "self" result in autoimmune disease. Both genetic regulation of immune cell levels and their relationships with autoimmunity are largely undetermined. Here, we report genetic contributions to quantitative levels of 95 cell types encompassing 272 immune traits, in a cohort of 1,629 individuals from four clustered Sardinian villages. We first estimated trait heritability, showing that it can be substantial, accounting for up to 87% of the variance (mean 41%). Next, by assessing ∼8.2 million variants that we identified and confirmed in an extended set of 2,870 individuals, 23 independent variants at 13 loci associated with at least one trait. Notably, variants at three loci (HLA, IL2RA, and SH2B3/ATXN2) overlap with known autoimmune disease associations. These results connect specific cellular phenotypes to specific genetic variants, helping to explicate their involvement in disease.


Asunto(s)
Citometría de Flujo/métodos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Enfermedades del Sistema Inmune/genética , Polimorfismo de Nucleótido Simple , Humanos , Fenotipo
2.
Hepatology ; 79(5): 1075-1087, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37976411

RESUMEN

BACKGROUND AND AIMS: Pediatric acute liver failure (PALF) is a life-threatening condition. In Europe, the main causes are viral infections (12%-16%) and inherited metabolic diseases (14%-28%). Yet, in up to 50% of cases the underlying etiology remains elusive, challenging clinical management, including liver transplantation. We systematically studied indeterminate PALF cases referred for genetic evaluation by whole-exome sequencing (WES), and analyzed phenotypic and biochemical markers, and the diagnostic yield of WES in this condition. APPROACH AND RESULTS: With this international, multicenter observational study, patients (0-18 y) with indeterminate PALF were analyzed by WES. Data on the clinical and biochemical phenotype were retrieved and systematically analyzed. RESULTS: In total, 260 indeterminate PALF patients from 19 countries were recruited between 2011 and 2022, of whom 59 had recurrent PALF. WES established a genetic diagnosis in 37% of cases (97/260). Diagnostic yield was highest in children with PALF in the first year of life (41%), and in children with recurrent acute liver failure (64%). Thirty-six distinct disease genes were identified. Defects in NBAS (n=20), MPV17 (n=8), and DGUOK (n=7) were the most frequent findings. When categorizing, the most frequent were mitochondrial diseases (45%), disorders of vesicular trafficking (28%), and cytosolic aminoacyl-tRNA synthetase deficiencies (10%). One-third of patients had a fatal outcome. Fifty-six patients received liver transplantation. CONCLUSIONS: This study elucidates a large contribution of genetic causes in PALF of indeterminate origin with an increasing spectrum of disease entities. The high proportion of diagnosed cases and potential treatment implications argue for exome or in future rapid genome sequencing in PALF diagnostics.


Asunto(s)
Fallo Hepático Agudo , Trasplante de Hígado , Niño , Humanos , Recurrencia Local de Neoplasia , Fallo Hepático Agudo/diagnóstico , Biomarcadores , Trasplante de Hígado/efectos adversos , Europa (Continente)
3.
Hum Mol Genet ; 31(14): 2386-2395, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35179199

RESUMEN

Clonal hematopoiesis because of somatic mutations in hematopoietic stem/progenitor cells is an age-related phenomenon and commonly observed when sequencing blood DNA in elderly individuals. Several genes that are implicated in clonal hematopoiesis are also associated with Mendelian disorders when mutated in the germline, potentially leading to variant misinterpretation. We performed a literature search to identify genes associated with age-related clonal hematopoiesis followed by an OMIM query to identify the subset of genes in which germline variants are associated with Mendelian disorders. We retrospectively screened for diagnostic cases in which the presence of age-related clonal hematopoiesis confounded exome sequencing data interpretation. We found 58 genes in which somatic mutations are implicated in clonal hematopoiesis, while germline variants in the same genes are associated with Mendelian (mostly neurodevelopmental) disorders. Using five selected cases of individuals with suspected monogenic disorders, we illustrate how clonal hematopoiesis in either variant databases or exome sequencing datasets poses a pitfall, potentially leading to variant misclassification and erroneous conclusions regarding gene-disease associations.


Asunto(s)
Hematopoyesis Clonal , Hematopoyesis , Anciano , Células Germinativas , Hematopoyesis/genética , Humanos , Mutación , Estudios Retrospectivos
4.
Clin Genet ; 105(4): 406-414, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38214412

RESUMEN

Alport syndrome (AS) shows a broad phenotypic spectrum ranging from isolated microscopic hematuria (MH) to end-stage kidney disease (ESKD). Monoallelic disease-causing variants in COL4A3/COL4A4 have been associated with autosomal dominant AS (ADAS) and biallelic variants with autosomal recessive AS (ARAS). The aim of this study was to analyze clinical and genetic data regarding a possible genotype-phenotype correlation in individuals with disease-causing variants in COL4A3/COL4A4. Eighty-nine individuals carrying at least one COL4A3/COL4A4 variant classified as (likely) pathogenic according to the American College of Medical Genetics guidelines and current amendments were recruited. Clinical data concerning the prevalence and age of first reported manifestation of MH, proteinuria, ESKD, and extrarenal manifestations were collected. Individuals with monoallelic non-truncating variants reported a significantly higher prevalence and earlier diagnosis of MH and proteinuria than individuals with monoallelic truncating variants. Individuals with biallelic variants were more severely affected than those with monoallelic variants. Those with biallelic truncating variants were more severely affected than those with compound heterozygous non-truncating/truncating variants or individuals with biallelic non-truncating variants. In this study an association of heterozygous non-truncating COL4A3/COL4A4 variants with a more severe phenotype in comparison to truncating variants could be shown indicating a potential dominant-negative effect as an explanation for this observation. The results for individuals with ARAS support the, still scarce, data in the literature.


Asunto(s)
Colágeno Tipo IV , Nefritis Hereditaria , Humanos , Mutación , Colágeno Tipo IV/genética , Autoantígenos/genética , Nefritis Hereditaria/diagnóstico , Hematuria/genética , Proteinuria/genética
5.
Ann Neurol ; 93(2): 330-335, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36333996

RESUMEN

Infantile striatonigral degeneration is caused by a homozygous variant of the nuclear-pore complex (NPC) gene NUP62, involved in nucleo-cytoplasmic trafficking. By querying sequencing-datasets of patients with dystonia and/or Leigh(-like) syndromes, we identified 3 unrelated individuals with biallelic variants in NUP54. All variants clustered in the C-terminal protein region that interacts with NUP62. Associated phenotypes were similar to those of NUP62-related disease, including early-onset dystonia with dysphagia, choreoathetosis, and T2-hyperintense lesions in striatum. In silico and protein-biochemical studies gave further evidence for the argument that the variants were pathogenic. We expand the spectrum of NPC component-associated dystonic conditions with localized basal-ganglia abnormalities. ANN NEUROL 2023;93:330-335.


Asunto(s)
Distonía , Trastornos Distónicos , Proteínas de Complejo Poro Nuclear , Humanos , Cuerpo Estriado , Distonía/genética , Trastornos Distónicos/genética , Neostriado , Proteínas de Complejo Poro Nuclear/genética
6.
Hum Genomics ; 17(1): 55, 2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37330543

RESUMEN

Early-onset dementia (EOD), with symptom onset before age 65, has a strong genetic burden. Due to genetic and clinical overlaps between different types of dementia, whole-exome sequencing (WES) has emerged as an appropriate screening method for diagnostic testing and novel gene-finding approaches. We performed WES and C9orf72 repeat testing in 60 well-defined Austrian EOD patients. Seven patients (12%) carried likely disease-causing variants in monogenic genes, PSEN1, MAPT, APP, and GRN. Five patients (8%) were APOE4 homozygote carriers. Definite and possible risk variants were detected in the genes TREM2, SORL1, ABCA7 and TBK1. In an explorative approach, we cross-checked rare gene variants in our cohort with a curated neurodegeneration candidate gene list and identified DCTN1, MAPK8IP3, LRRK2, VPS13C and BACE1 as promising candidate genes. Conclusively, 12 cases (20%) carried variants relevant to patient counseling, comparable to previously reported studies, and can thus be considered genetically resolved. Reduced penetrance, oligogenic inheritance and not yet identified high-risk genes might explain the high number of unresolved cases. To address this issue, we provide complete genetic and phenotypic information (uploaded to the European Genome-phenome Archive), enabling other researchers to cross-check variants. Thereby, we hope to increase the chance of independently finding the same gene/variant-hit in other well-defined EOD patient cohorts, thus confirming new genetic risk variants or variant combinations.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Anciano , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Predisposición Genética a la Enfermedad , Austria , Ácido Aspártico Endopeptidasas/genética , Pruebas Genéticas , Mutación , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas de Transporte de Membrana/genética
7.
Neuropediatrics ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38547905

RESUMEN

In patients with neurodevelopmental disorders (NDDs), exome sequencing (ES), the diagnostic gold standard, reveals an underlying monogenic condition in only approximately 40% of cases. We report the case of a female patient with profound NDD who died 30 years ago at the age of 3 years and for whom genome sequencing (GS) now identified a single-exon deletion in TBCK previously missed by ExomeDepth, the copy number variation (CNV) detection algorithm in ES.Deoxyribonucleic acid (DNA) was extracted from frozen muscle tissue of the index patient and the parents' blood. Genome data were analyzed for structural variants and single nucleotide variants (SUVs)/indels as part of the Bavarian Genomes consortium project.Biallelic variants in TBCK, which are linked to the autosomal recessive disorder TBCK syndrome, were detected in the affected individual: a novel frameshift variant and a deletion of exon 23, previously established as common but underrecognized pathogenic variant in individuals with TBCK syndrome. While in the foregoing ES analysis, calling algorithms for (SNVs)/indels were able to identify the frameshift variant, ExomeDepth failed to call the intragenic deletion.Our case illustrates the added value of GS for the detection of single-exon deletions for which calling from ES data remains challenging and confirms that the deletion of exon 23 in TBCK may be underdiagnosed in patients with NDDs. Furthermore, it shows the importance of "molecular or genetic autopsy" allowing genetic risk counseling for family members as well as the end of a diagnostic odyssey of 30 years.

8.
Ann Neurol ; 91(2): 225-237, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34954817

RESUMEN

OBJECTIVE: ATP synthase (ATPase) is responsible for the majority of ATP production. Nevertheless, disease phenotypes associated with mutations in ATPase subunits are extremely rare. We aimed at expanding the spectrum of ATPase-related diseases. METHODS: Whole-exome sequencing in cohorts with 2,962 patients diagnosed with mitochondrial disease and/or dystonia and international collaboration were used to identify deleterious variants in ATPase-encoding genes. Findings were complemented by transcriptional and proteomic profiling of patient fibroblasts. ATPase integrity and activity were assayed using cells and tissues from 5 patients. RESULTS: We present 10 total individuals with biallelic or de novo monoallelic variants in nuclear ATPase subunit genes. Three unrelated patients showed the same homozygous missense ATP5F1E mutation (including one published case). An intronic splice-disrupting alteration in compound heterozygosity with a nonsense variant in ATP5PO was found in one patient. Three patients had de novo heterozygous missense variants in ATP5F1A, whereas another 3 were heterozygous for ATP5MC3 de novo missense changes. Bioinformatics methods and populational data supported the variants' pathogenicity. Immunohistochemistry, proteomics, and/or immunoblotting revealed significantly reduced ATPase amounts in association to ATP5F1E and ATP5PO mutations. Diminished activity and/or defective assembly of ATPase was demonstrated by enzymatic assays and/or immunoblotting in patient samples bearing ATP5F1A-p.Arg207His, ATP5MC3-p.Gly79Val, and ATP5MC3-p.Asn106Lys. The associated clinical profiles were heterogeneous, ranging from hypotonia with spontaneous resolution (1/10) to epilepsy with early death (1/10) or variable persistent abnormalities, including movement disorders, developmental delay, intellectual disability, hyperlactatemia, and other neurologic and systemic features. Although potentially reflecting an ascertainment bias, dystonia was common (7/10). INTERPRETATION: Our results establish evidence for a previously unrecognized role of ATPase nuclear-gene defects in phenotypes characterized by neurodevelopmental and neurodegenerative features. ANN NEUROL 2022;91:225-237.


Asunto(s)
Mitocondrias/enzimología , ATPasas de Translocación de Protón Mitocondriales/genética , Enfermedades del Sistema Nervioso/enzimología , Enfermedades del Sistema Nervioso/genética , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/genética , Trastornos del Neurodesarrollo/enzimología , Trastornos del Neurodesarrollo/genética , Distonía/enzimología , Distonía/genética , Epilepsia/genética , Variación Genética , Humanos , Mitocondrias/genética , Translocasas Mitocondriales de ADP y ATP/genética , Enfermedades Mitocondriales/enzimología , Enfermedades Mitocondriales/genética , Modelos Moleculares , Mutación , Mutación Missense , Linaje , Fenotipo , Proteómica , Secuenciación del Exoma
9.
Mov Disord ; 38(10): 1914-1924, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37485550

RESUMEN

BACKGROUND: Protein synthesis is a tightly controlled process, involving a host of translation-initiation factors and microRNA-associated repressors. Variants in the translational regulator EIF2AK2 were first linked to neurodevelopmental-delay phenotypes, followed by their implication in dystonia. Recently, de novo variants in EIF4A2, encoding eukaryotic translation initiation factor 4A isoform 2 (eIF4A2), have been described in pediatric cases with developmental delay and intellectual disability. OBJECTIVE: We sought to characterize the role of EIF4A2 variants in dystonic conditions. METHODS: We undertook an unbiased search for likely deleterious variants in mutation-constrained genes among 1100 families studied with dystonia. Independent cohorts were screened for EIF4A2 variants. Western blotting and immunocytochemical studies were performed in patient-derived fibroblasts. RESULTS: We report the discovery of a novel heterozygous EIF4A2 frameshift deletion (c.896_897del) in seven patients from two unrelated families. The disease was characterized by adolescence- to adulthood-onset dystonia with tremor. In patient-derived fibroblasts, eIF4A2 production amounted to only 50% of the normal quantity. Reduction of eIF4A2 was associated with abnormally increased levels of IMP1, a target of Ccr4-Not, the complex that interacts with eIF4A2 to mediate microRNA-dependent translational repression. By complementing the analyses with fibroblasts bearing EIF4A2 biallelic mutations, we established a correlation between IMP1 expression alterations and eIF4A2 functional dosage. Moreover, eIF4A2 and Ccr4-Not displayed significantly diminished colocalization in dystonia patient cells. Review of international databases identified EIF4A2 deletion variants (c.470_472del, c.1144_1145del) in another two dystonia-affected pedigrees. CONCLUSIONS: Our findings demonstrate that EIF4A2 haploinsufficiency underlies a previously unrecognized dominant dystonia-tremor syndrome. The data imply that translational deregulation is more broadly linked to both early neurodevelopmental phenotypes and later-onset dystonic conditions. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Distonía , Trastornos Distónicos , MicroARNs , Trastornos del Movimiento , Adolescente , Niño , Humanos , Distonía/genética , Trastornos Distónicos/genética , Haploinsuficiencia/genética , MicroARNs/genética , Factores de Iniciación de Péptidos/genética , Biosíntesis de Proteínas/genética , Temblor
10.
Hum Mutat ; 43(8): 1056-1070, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35645004

RESUMEN

Over the last 5 years, RNA sequencing (RNA-seq) has been established and is increasingly applied as an effective approach complementary to DNA sequencing in molecular diagnostics. Currently, three RNA phenotypes, aberrant expression, aberrant splicing, and allelic imbalance, are considered to provide information about pathogenic variants. By providing a high-throughput, transcriptome-wide functional readout on variants causing aberrant RNA phenotypes, RNA-seq has increased diagnostic rates by about 15% over whole-exome sequencing. This breakthrough encouraged the development of computational tools and pipelines aiming to streamline RNA-seq analysis for implementation in clinical diagnostics. Although a number of studies showed the added value of RNA-seq for the molecular diagnosis of individuals with Mendelian disorders, there is no formal consensus on assessing variant pathogenicity strength based on RNA phenotypes. Taking RNA-seq as a functional assay for genetic variants, we evaluated the value of statistical significance and effect size of RNA phenotypes as evidence for the strength of variant pathogenicity. This was determined by the analysis of 394 pathogenic variants, of which 198 were associated with aberrant RNA phenotypes and 723 benign variants. Overall, this study seeks to establish recommendations for integrating functional RNA-seq data into the the American College of Medical Genetics and Genomics and the Association for Molecular Pathology guidelines classification system.


Asunto(s)
Variación Genética , ARN , Humanos , Fenotipo , ARN/genética , Análisis de Secuencia de ADN , Virulencia
11.
Circulation ; 144(17): 1409-1428, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34694888

RESUMEN

BACKGROUND: Complex molecular programs in specific cell lineages govern human heart development. Hypoplastic left heart syndrome (HLHS) is the most common and severe manifestation within the spectrum of left ventricular outflow tract obstruction defects occurring in association with ventricular hypoplasia. The pathogenesis of HLHS is unknown, but hemodynamic disturbances are assumed to play a prominent role. METHODS: To identify perturbations in gene programs controlling ventricular muscle lineage development in HLHS, we performed whole-exome sequencing of 87 HLHS parent-offspring trios, nuclear transcriptomics of cardiomyocytes from ventricles of 4 patients with HLHS and 15 controls at different stages of heart development, single cell RNA sequencing, and 3D modeling in induced pluripotent stem cells from 3 patients with HLHS and 3 controls. RESULTS: Gene set enrichment and protein network analyses of damaging de novo mutations and dysregulated genes from ventricles of patients with HLHS suggested alterations in specific gene programs and cellular processes critical during fetal ventricular cardiogenesis, including cell cycle and cardiomyocyte maturation. Single-cell and 3D modeling with induced pluripotent stem cells demonstrated intrinsic defects in the cell cycle/unfolded protein response/autophagy hub resulting in disrupted differentiation of early cardiac progenitor lineages leading to defective cardiomyocyte subtype differentiation/maturation in HLHS. Premature cell cycle exit of ventricular cardiomyocytes from patients with HLHS prevented normal tissue responses to developmental signals for growth, leading to multinucleation/polyploidy, accumulation of DNA damage, and exacerbated apoptosis, all potential drivers of left ventricular hypoplasia in absence of hemodynamic cues. CONCLUSIONS: Our results highlight that despite genetic heterogeneity in HLHS, many mutations converge on sequential cellular processes primarily driving cardiac myogenesis, suggesting novel therapeutic approaches.


Asunto(s)
Síndrome del Corazón Izquierdo Hipoplásico/genética , Organogénesis/genética , Heterogeneidad Genética , Humanos
12.
Mov Disord ; 37(1): 137-147, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34596301

RESUMEN

BACKGROUND: Monogenic causes of isolated dystonia are heterogeneous. Assembling cohorts of affected individuals sufficiently large to establish new gene-disease relationships can be challenging. OBJECTIVE: We sought to expand the catalogue of monogenic etiologies for isolated dystonia. METHODS: After the discovery of a candidate variant in a multicenter exome-sequenced cohort of affected individuals with dystonia, we queried online platforms and genomic data repositories worldwide to identify subjects with matching genotypic profiles. RESULTS: Seven different biallelic loss-of-function variants in AOPEP were detected in five probands from four unrelated families with strongly overlapping phenotypes. In one proband, we observed a homozygous nonsense variant (c.1477C>T [p.Arg493*]). A second proband harbored compound heterozygous nonsense variants (c.763C>T [p.Arg255*]; c.777G>A [p.Trp259*]), whereas a third proband possessed a frameshift variant (c.696_697delAG [p.Ala234Serfs*5]) in trans with a splice-disrupting alteration (c.2041-1G>A). Two probands (siblings) from a fourth family shared compound heterozygous frameshift alleles (c.1215delT [p.Val406Cysfs*14]; c.1744delA [p.Met582Cysfs*6]). All variants were rare and expected to result in truncated proteins devoid of functionally important amino acid sequence. AOPEP, widely expressed in developing and adult human brain, encodes a zinc-dependent aminopeptidase, a member of a class of proteolytic enzymes implicated in synaptogenesis and neural maintenance. The probands presented with disabling progressive dystonia predominantly affecting upper and lower extremities, with variable involvement of craniocervical muscles. Dystonia was unaccompanied by any additional symptoms in three families, whereas the fourth family presented co-occurring late-onset parkinsonism. CONCLUSIONS: Our findings suggest a likely causative role of predicted inactivating biallelic AOPEP variants in cases of autosomal recessive dystonia. Additional studies are warranted to understand the pathophysiology associated with loss-of-function variation in AOPEP. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Aminopeptidasas , Distonía , Trastornos Distónicos , Mutación con Pérdida de Función , Aminopeptidasas/genética , Distonía/genética , Trastornos Distónicos/genética , Exoma , Humanos , Mutación , Linaje , Fenotipo
13.
Mol Psychiatry ; 26(10): 5824-5832, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34561610

RESUMEN

Frontotemporal dementia (FTD) is a clinically and genetically heterogeneous disorder. To which extent genetic aberrations dictate clinical presentation remains elusive. We investigated the spectrum of genetic causes and assessed the genotype-driven differences in biomarker profiles, disease severity and clinical manifestation by recruiting 509 FTD patients from different centers of the German FTLD consortium where individuals were clinically assessed including biomarker analysis. Exome sequencing as well as C9orf72 repeat analysis were performed in all patients. These genetic analyses resulted in a diagnostic yield of 18.1%. Pathogenic variants in C9orf72 (n = 47), GRN (n = 26), MAPT (n = 11), TBK1 (n = 5), FUS (n = 1), TARDBP (n = 1), and CTSF (n = 1) were identified across all clinical subtypes of FTD. TBK1-associated FTD was frequent accounting for 5.4% of solved cases. Detection of a homozygous missense variant verified CTSF as an FTD gene. ABCA7 was identified as a candidate gene for monogenic FTD. The distribution of APOE alleles did not differ significantly between FTD patients and the average population. Male sex was weakly associated with clinical manifestation of the behavioral variant of FTD. Age of onset was lowest in MAPT patients. Further, high CSF neurofilament light chain levels were found to be related to GRN-associated FTD. Our study provides large-scale retrospective clinico-genetic data such as on disease manifestation and progression of FTD. These data will be relevant for counseling patients and their families.


Asunto(s)
Demencia Frontotemporal , Proteína C9orf72/genética , Demencia Frontotemporal/genética , Genotipo , Humanos , Masculino , Mutación , Estudios Retrospectivos , Secuenciación del Exoma , Proteínas tau/genética
14.
Am J Hum Genet ; 103(5): 817-825, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30401461

RESUMEN

ADP-ribosylation is a reversible posttranslational modification used to regulate protein function. ADP-ribosyltransferases transfer ADP-ribose from NAD+ to the target protein, and ADP-ribosylhydrolases, such as ADPRHL2, reverse the reaction. We used exome sequencing to identify five different bi-allelic pathogenic ADPRHL2 variants in 12 individuals from 8 families affected by a neurodegenerative disorder manifesting in childhood or adolescence with key clinical features including developmental delay or regression, seizures, ataxia, and axonal (sensori-)motor neuropathy. ADPRHL2 was virtually absent in available affected individuals' fibroblasts, and cell viability was reduced upon hydrogen peroxide exposure, although it was rescued by expression of wild-type ADPRHL2 mRNA as well as treatment with a PARP1 inhibitor. Our findings suggest impaired protein ribosylation as another pathway that, if disturbed, causes neurodegenerative diseases.


Asunto(s)
Ataxia Cerebelosa/genética , Discapacidades del Desarrollo/genética , Glicósido Hidrolasas/genética , Mutación/genética , Enfermedades Neurodegenerativas/genética , ADP-Ribosilación/genética , Adenosina Difosfato Ribosa/genética , Adolescente , Alelos , Niño , Preescolar , Exoma/genética , Femenino , Humanos , Lactante , Masculino , Malformaciones del Sistema Nervioso/genética , Procesamiento Proteico-Postraduccional/genética
15.
Am J Hum Genet ; 102(6): 1018-1030, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29754768

RESUMEN

Coenzyme A (CoA) is an essential metabolic cofactor used by around 4% of cellular enzymes. Its role is to carry and transfer acetyl and acyl groups to other molecules. Cells can synthesize CoA de novo from vitamin B5 (pantothenate) through five consecutive enzymatic steps. Phosphopantothenoylcysteine synthetase (PPCS) catalyzes the second step of the pathway during which phosphopantothenate reacts with ATP and cysteine to form phosphopantothenoylcysteine. Inborn errors of CoA biosynthesis have been implicated in neurodegeneration with brain iron accumulation (NBIA), a group of rare neurological disorders characterized by accumulation of iron in the basal ganglia and progressive neurodegeneration. Exome sequencing in five individuals from two unrelated families presenting with dilated cardiomyopathy revealed biallelic mutations in PPCS, linking CoA synthesis with a cardiac phenotype. Studies in yeast and fruit flies confirmed the pathogenicity of identified mutations. Biochemical analysis revealed a decrease in CoA levels in fibroblasts of all affected individuals. CoA biosynthesis can occur with pantethine as a source independent from PPCS, suggesting pantethine as targeted treatment for the affected individuals still alive.


Asunto(s)
Cardiomiopatía Dilatada/enzimología , Cardiomiopatía Dilatada/genética , Genes Recesivos , Mutación/genética , Péptido Sintasas/genética , Secuencia de Aminoácidos , Animales , Vías Biosintéticas , Cardiomiopatía Dilatada/diagnóstico , Carnitina/análogos & derivados , Carnitina/metabolismo , Preescolar , Coenzima A/biosíntesis , Demografía , Drosophila , Estabilidad de Enzimas , Femenino , Fibroblastos/metabolismo , Corazón/fisiopatología , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Panteteína/administración & dosificación , Panteteína/análogos & derivados , Linaje , Péptido Sintasas/sangre , Péptido Sintasas/química , Péptido Sintasas/deficiencia , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/genética
16.
Clin Genet ; 100(1): 14-28, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33619735

RESUMEN

Up to 40% of neurodevelopmental disorders (NDDs) such as intellectual disability, developmental delay, autism spectrum disorder, and developmental motor abnormalities have a documented underlying monogenic defect, primarily due to de novo variants. Still, the overall burden of de novo variants as well as novel disease genes in NDDs await discovery. We performed parent-offspring trio exome sequencing in 231 individuals with NDDs. Phenotypes were compiled using human phenotype ontology terms. The overall diagnostic yield was 49.8% (n = 115/231) with de novo variants contributing to more than 80% (n = 93/115) of all solved cases. De novo variants affected 72 different-mostly constrained-genes. In addition, we identified putative pathogenic variants in 16 genes not linked to NDDs to date. Reanalysis performed in 80 initially unsolved cases revealed a definitive diagnosis in two additional cases. Our study consolidates the contribution and genetic heterogeneity of de novo variants in NDDs highlighting trio exome sequencing as effective diagnostic tool for NDDs. Besides, we illustrate the potential of a trio-approach for candidate gene discovery and the power of systematic reanalysis of unsolved cases.


Asunto(s)
Variación Genética/genética , Trastornos del Neurodesarrollo/genética , Adolescente , Adulto , Niño , Preescolar , Exoma/genética , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Fenotipo , Estudios Retrospectivos , Centros de Atención Terciaria , Secuenciación del Exoma/métodos , Adulto Joven
17.
Ann Neurol ; 88(5): 867-877, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32808683

RESUMEN

OBJECTIVES: The majority of people with suspected genetic dystonia remain undiagnosed after maximal investigation, implying that a number of causative genes have not yet been recognized. We aimed to investigate this paucity of diagnoses. METHODS: We undertook weighted burden analysis of whole-exome sequencing (WES) data from 138 individuals with unresolved generalized dystonia of suspected genetic etiology, followed by additional case-finding from international databases, first for the gene implicated by the burden analysis (VPS16), and then for other functionally related genes. Electron microscopy was performed on patient-derived cells. RESULTS: Analysis revealed a significant burden for VPS16 (Fisher's exact test p value, 6.9 × 109 ). VPS16 encodes a subunit of the homotypic fusion and vacuole protein sorting (HOPS) complex, which plays a key role in autophagosome-lysosome fusion. A total of 18 individuals harboring heterozygous loss-of-function VPS16 variants, and one with a microdeletion, were identified. These individuals experienced early onset progressive dystonia with predominant cervical, bulbar, orofacial, and upper limb involvement. Some patients had a more complex phenotype with additional neuropsychiatric and/or developmental comorbidities. We also identified biallelic loss-of-function variants in VPS41, another HOPS-complex encoding gene, in an individual with infantile-onset generalized dystonia. Electron microscopy of patient-derived lymphocytes and fibroblasts from both patients with VPS16 and VPS41 showed vacuolar abnormalities suggestive of impaired lysosomal function. INTERPRETATION: Our study strongly supports a role for HOPS complex dysfunction in the pathogenesis of dystonia, although variants in different subunits display different phenotypic and inheritance characteristics. ANN NEUROL 2020;88:867-877.


Asunto(s)
Distonía/genética , Enfermedades por Almacenamiento Lisosomal/genética , Proteínas de Transporte Vesicular/genética , Adulto , Costo de Enfermedad , Distonía/patología , Exoma/genética , Femenino , Fibroblastos/patología , Predisposición Genética a la Enfermedad/genética , Variación Genética , Humanos , Enfermedades por Almacenamiento Lisosomal/patología , Masculino , Persona de Mediana Edad , Mutación/genética , Linaje
18.
Mov Disord ; 36(8): 1959-1964, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33949708

RESUMEN

BACKGROUND: Despite the established value of genomic testing strategies, practice guidelines for their use do not exist in many indications. OBJECTIVES: We sought to validate a recently introduced scoring algorithm for dystonia, predicting the diagnostic utility of whole-exome sequencing (WES) based on individual phenotypic aspects (age-at-onset, body distribution, presenting comorbidity). METHODS: We prospectively enrolled a set of 209 dystonia-affected families and obtained summary scores (0-5 points) according to the algorithm. Singleton (N = 146), duo (N = 11), and trio (N = 52) WES data were generated to identify genetic diagnoses. RESULTS: Diagnostic yield was highest (51%) among individuals with a summary score of 5, corresponding to a manifestation of early-onset segmental or generalized dystonia with coexisting non-movement disorder-related neurological symptoms. Sensitivity and specificity at the previously suggested threshold for implementation of WES (3 points) was 96% and 52%, with area under the curve of 0.81. CONCLUSIONS: The algorithm is a useful predictive tool and could be integrated into dystonia routine diagnostic protocols. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.


Asunto(s)
Distonía , Trastornos Distónicos , Enfermedad de Parkinson , Algoritmos , Distonía/diagnóstico , Distonía/genética , Trastornos Distónicos/genética , Pruebas Genéticas , Humanos
19.
Am J Hum Genet ; 100(2): 257-266, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-28132689

RESUMEN

Phenylketonuria (PKU, phenylalanine hydroxylase deficiency), an inborn error of metabolism, can be detected through newborn screening for hyperphenylalaninemia (HPA). Most individuals with HPA harbor mutations in the gene encoding phenylalanine hydroxylase (PAH), and a small proportion (2%) exhibit tetrahydrobiopterin (BH4) deficiency with additional neurotransmitter (dopamine and serotonin) deficiency. Here we report six individuals from four unrelated families with HPA who exhibited progressive neurodevelopmental delay, dystonia, and a unique profile of neurotransmitter deficiencies without mutations in PAH or BH4 metabolism disorder-related genes. In these six affected individuals, whole-exome sequencing (WES) identified biallelic mutations in DNAJC12, which encodes a heat shock co-chaperone family member that interacts with phenylalanine, tyrosine, and tryptophan hydroxylases catalyzing the BH4-activated conversion of phenylalanine into tyrosine, tyrosine into L-dopa (the precursor of dopamine), and tryptophan into 5-hydroxytryptophan (the precursor of serotonin), respectively. DNAJC12 was undetectable in fibroblasts from the individuals with null mutations. PAH enzyme activity was reduced in the presence of DNAJC12 mutations. Early treatment with BH4 and/or neurotransmitter precursors had dramatic beneficial effects and resulted in the prevention of neurodevelopmental delay in the one individual treated before symptom onset. Thus, DNAJC12 deficiency is a preventable and treatable cause of intellectual disability that should be considered in the early differential diagnosis when screening results are positive for HPA. Sequencing of DNAJC12 may resolve any uncertainty and should be considered in all children with unresolved HPA.


Asunto(s)
Distonía/genética , Discapacidad Intelectual/genética , Fenilcetonurias/genética , Proteínas Represoras/genética , Alelos , Secuencia de Aminoácidos , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Estudios de Casos y Controles , Dopamina/deficiencia , Dopamina/metabolismo , Exones , Femenino , Fibroblastos/metabolismo , Eliminación de Gen , Estudio de Asociación del Genoma Completo , Proteínas HSP70 de Choque Térmico/genética , Humanos , Masculino , Linaje , Fenilalanina/metabolismo , Fenilalanina Hidroxilasa/genética , Serotonina/deficiencia , Serotonina/metabolismo , Triptófano/metabolismo , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo , Tirosina/metabolismo , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo
20.
Am J Hum Genet ; 99(6): 1377-1387, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27839873

RESUMEN

Early-onset generalized dystonia represents the severest form of dystonia, a hyperkinetic movement disorder defined by involuntary twisting postures. Although frequently transmitted as a single-gene trait, the molecular basis of dystonia remains largely obscure. By whole-exome sequencing a parent-offspring trio in an Austrian kindred affected by non-familial early-onset generalized dystonia, we identified a dominant de novo frameshift mutation, c.6406delC (p.Leu2136Serfs∗17), in KMT2B, encoding a lysine-specific methyltransferase involved in transcriptional regulation via post-translational modification of histones. Whole-exome-sequencing-based exploration of a further 30 German-Austrian individuals with early-onset generalized dystonia uncovered another three deleterious mutations in KMT2B-one de novo nonsense mutation (c.1633C>T [p.Arg545∗]), one de novo essential splice-site mutation (c.7050-2A>G [p.Phe2321Serfs∗93]), and one inherited nonsense mutation (c.2428C>T [p.Gln810∗]) co-segregating with dystonia in a three-generation kindred. Each of the four mutations was predicted to mediate a loss-of-function effect by introducing a premature termination codon. Suggestive of haploinsufficiency, we found significantly decreased total mRNA levels of KMT2B in mutant fibroblasts. The phenotype of individuals with KMT2B loss-of-function mutations was dominated by childhood lower-limb-onset generalized dystonia, and the family harboring c.2428C>T (p.Gln810∗) showed variable expressivity. In most cases, dystonic symptoms were accompanied by heterogeneous non-motor features. Independent support for pathogenicity of the mutations comes from the observation of high rates of dystonic presentations in KMT2B-involving microdeletion syndromes. Our findings thus establish generalized dystonia as the human phenotype associated with haploinsufficiency of KMT2B. Moreover, we provide evidence for a causative role of disordered histone modification, chromatin states, and transcriptional deregulation in dystonia pathogenesis.


Asunto(s)
Trastornos Distónicos/genética , Haploinsuficiencia/genética , N-Metiltransferasa de Histona-Lisina/genética , Lisina/metabolismo , Adolescente , Adulto , Edad de Inicio , Secuencia de Bases , Niño , Femenino , Humanos , Masculino , Linaje , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA