Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Physiol Mol Biol Plants ; 27(3): 457-468, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33854276

RESUMEN

The ability to respond quickly to salt stress can determine the tolerance level of a species. Here, we test how rapidly the roots of Calotropis procera react to high salinity conditions. In the first 24 h after saline exposure, the plants reduced stomatal conductance, increased CO2 assimilation, and water use efficiency. Thus, the root tissue showed an immediate increase in soluble sugars, free amino acid, and soluble protein contents. Twelve aquaporins showed differential gene expression in the roots of C. procera under salinity. Transcriptional upregulation was observed only after 2 h, with greater induction of CpTIP1.4 (fourfold). Transcriptional downregulation, in turn, occurred mainly after 8 h, with the largest associated with CpPIP1.2 (fourfold). C. procera plants responded quickly to high saline levels. Our results showed a strong stomatal control associated with high free amino acid and soluble sugar contents, regulated aquaporin expression in roots, and supported the high performance of the root system of C. procera under salinity. Moreover, this species was able to maintain a lower Na+/K+ ratio in the leaves compared to that of the roots of stressed plants. The first response of the root system, after immediate contact with saline solution, present an interesting scenario to discuss. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-00957-9.

2.
BMC Bioinformatics ; 14 Suppl 1: S7, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23369061

RESUMEN

BACKGROUND: Despite the importance of osmoprotectants, no previous in silico evaluation of high throughput data is available for higher plants. The present approach aimed at the identification and annotation of osmoprotectant-related sequences applied to short transcripts from a soybean HT-SuperSAGE (High Throughput Super Serial Analysis of Gene Expression; 26-bp tags) database, and also its comparison with other transcriptomic and genomic data available from different sources. METHODS: A curated set of osmoprotectants related sequences was generated using text mining and selected seed sequences for identification of the respective transcripts and proteins in higher plants. To test the efficiency of the seed sequences, these were aligned against four HT-SuperSAGE contrasting libraries generated by our group using soybean tolerant and sensible plants against water deficit, considering only differentially expressed transcripts (p ≤ 0.05). Identified transcripts from soybean and their respective tags were aligned and anchored against the soybean virtual genome. RESULTS: The workflow applied resulted in a set including 1,996 seed sequences that allowed the identification of 36 differentially expressed genes related to the biosynthesis of osmoprotectants [Proline (P5CS: 4, P5CR: 2), Trehalose (TPS1: 9, TPPB: 1), Glycine betaine (BADH: 4) and Myo-inositol (MIPS: 7, INPS1: 8)], also mapped in silico in the soybean genome (25 loci). Another approach considered matches using Arabidopsis full length sequences as seed sequences, and allowed the identification of 124 osmoprotectant-related sequences, matching ~10.500 tags anchored in the soybean virtual chromosomes. Osmoprotectant-related genes appeared clustered in all soybean chromosomes, with higher density in some subterminal regions and synteny among some chromosome pairs. CONCLUSIONS: Soybean presents all searched osmoprotectant categories with some important members differentially expressed among the comparisons considered (drought tolerant or sensible vs. control; tolerant vs. sensible), allowing the identification of interesting candidates for biotechnological inferences. The identified tags aligned to corresponding genes that matched 19 soybean chromosomes. Osmoprotectant-related genes are not regularly distributed in the soybean genome, but clustered in some regions near the chromosome terminals, with some redundant clusters in different chromosomes indicating their involvement in previous duplication and rearrangements events. The seed sequences, transcripts and map represent the first transversal evaluation for osmoprotectant-related genes and may be easily applied to other plants of interest.


Asunto(s)
Glycine max/genética , Estrés Fisiológico/genética , Análisis por Conglomerados , Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica , Genes de Plantas , Genoma de Planta , Secuenciación de Nucleótidos de Alto Rendimiento , Presión Osmótica , Semillas/genética , Glycine max/enzimología , Sintenía
3.
PLoS One ; 14(4): e0215729, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30998798

RESUMEN

Calotropis procera is a perennial Asian shrub with significant adaptation to adverse climate conditions and poor soils. Given its increased salt and drought stress tolerance, C. procera stands out as a powerful candidate to provide alternative genetic resources for biotechnological approaches. The qPCR (real-time quantitative polymerase chain reaction), widely recognized among the most accurate methods for quantifying gene expression, demands suitable reference genes (RGs) to avoid over- or underestimations of the relative expression and incorrect interpretation. This study aimed at evaluating the stability of ten RGs for normalization of gene expression of root and leaf of C. procera under different salt stress conditions and different collection times. The selected RGs were used on expression analysis of three target genes. Three independent experiments were carried out in greenhouse with young plants: i) Leaf100 = leaf samples collected 30 min, 2 h, 8 h and 45 days after NaCl-stress (100 mM NaCl); ii) Root50 and iii) Root200 = root samples collected 30 min, 2 h, 8 h and 1day after NaCl-stress (50 and 200 mM NaCl, respectively). Stability rank among the three algorithms used showed high agreement for the four most stable RGs. The four most stable RGs showed high congruence among all combination of collection time, for each software studied, with minor disagreements. CYP23 was the best RG (rank of top four) for all experimental conditions (Leaf100, Root50, and Root200). Using appropriated RGs, we validated the relative expression level of three differentially expressed target genes (NAC78, CNBL4, and ND1) in Leaf100 and Root200 samples. This study provides the first selection of stable reference genes for C. procera under salinity. Our results emphasize the need for caution when evaluating the stability RGs under different amplitude of variable factors.


Asunto(s)
Calotropis , Regulación Neoplásica de la Expresión Génica , Genes de Plantas , Presión Osmótica , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Calotropis/genética , Calotropis/metabolismo , Estándares de Referencia
4.
Curr Protein Pept Sci ; 20(4): 368-395, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30387391

RESUMEN

The plasma membrane forms a permeable barrier that separates the cytoplasm from the external environment, defining the physical and chemical limits in each cell in all organisms. The movement of molecules and ions into and out of cells is controlled by the plasma membrane as a critical process for cell stability and survival, maintaining essential differences between the composition of the extracellular fluid and the cytosol. In this process aquaporins (AQPs) figure as important actors, comprising highly conserved membrane proteins that carry water, glycerol and other hydrophilic molecules through biomembranes, including the cell wall and membranes of cytoplasmic organelles. While mammals have 15 types of AQPs described so far (displaying 18 paralogs), a single plant species can present more than 120 isoforms, providing transport of different types of solutes. Such aquaporins may be present in the whole plant or can be associated with different tissues or situations, including biotic and especially abiotic stresses, such as drought, salinity or tolerance to soils rich in heavy metals, for instance. The present review addresses several aspects of plant aquaporins, from their structure, classification, and function, to in silico methodologies for their analysis and identification in transcriptomes and genomes. Aspects of evolution and diversification of AQPs (with a focus on plants) are approached for the first time with the aid of the LCA (Last Common Ancestor) analysis. Finally, the main practical applications involving the use of AQPs are discussed, including patents and future perspectives involving this important protein family.


Asunto(s)
Acuaporinas , Proteínas de Plantas , Plantas/química , Acuaporinas/genética , Acuaporinas/metabolismo , Biotecnología , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Genet Mol Biol ; 35(1 (suppl)): 260-71, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22802711

RESUMEN

Plants have the ability to recognize and respond to a multitude of pathogens, resulting in a massive reprogramming of the plant to activate defense responses including Resistance (R) and Pathogenesis-Related (PR) genes. Abiotic stresses can also activate PR genes and enhance pathogen resistance, representing valuable genes for breeding purposes. The present work offers an overview of soybean R and PR genes present in the GENOSOJA (Brazilian Soybean Genome Consortium) platform, regarding their structure, abundance, evolution and role in the plant-pathogen metabolic pathway, as compared with Medicago and Arabidopsis. Searches revealed 3,065 R candidates (756 in Soybean, 1,142 in Medicago and 1,167 in Arabidopsis), and PR candidates matching to 1,261 sequences (310, 585 and 366 for the three species, respectively). The identified transcripts were also evaluated regarding their expression pattern in 65 libraries, showing prevalence in seeds and developing tissues. Upon consulting the SuperSAGE libraries, 1,072 R and 481 PR tags were identified in association with the different libraries. Multiple alignments were generated for Xa21 and PR-2 genes, allowing inferences about their evolution. The results revealed interesting insights regarding the variability and complexity of defense genes in soybean, as compared with Medicago and Arabidopsis.

6.
Genet Mol Biol ; 35(1 (suppl)): 315-21, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22802716

RESUMEN

Plants experience various environmental stresses, but tolerance to these adverse conditions is a very complex phenomenon. The present research aimed to evaluate a set of genes involved in osmotic response, comparing soybean and medicago with the well-described Arabidopsis thaliana model plant. Based on 103 Arabidopsis proteins from 27 categories of osmotic stress response, comparative analyses against Genosoja and Medicago truncatula databases allowed the identification of 1,088 soybean and 1,210 Medicago sequences. The analysis showed a high number of sequences and high diversity, comprising genes from all categories in both organisms. Genes with unknown function were among the most representative, followed by transcription factors, ion transport proteins, water channel, plant defense, protein degradation, cellular structure, organization & biogenesis and senescence. An analysis of sequences with unknown function allowed the annotation of 174 soybean and 217 Medicago sequences, most of them concerning transcription factors. However, for about 30% of the sequences no function could be attributed using in silico procedures. The establishment of a gene set involved in osmotic stress responses in soybean and barrel medic will help to better understand the survival mechanisms for this type of stress condition in legumes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA