Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Methods ; 218: 158-166, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37611837

RESUMEN

Proteins are expressed from genes via sequential biological processes of transcription, mRNA processing, export and translation, and play their roles in maintaining cellular functions via interactions with proteins, DNAs or RNAs. Thus, it is important to study the protein interactions during biological processes in living cells towards understanding their mechanisms-of-action in real time. Methodologies have been developed over the years to study protein interactions in vivo. One state-of-the-art approach is formaldehyde crosslinking-based immuno- or chemi-precipitation to analyze selective as well as genome/proteome-wide interactions in living cells. It is a popular and widely used methodology for cellular analysis of the protein-protein and protein-nucleic acid interactions. Here, we describe this approach to analyze protein-protein/nucleic acid interactions in vivo.


Asunto(s)
Cromatina , Ácidos Nucleicos , Cromatina/genética , ARN/genética , Proteoma , Inmunoprecipitación
3.
Biochemistry ; 56(46): 6083-6086, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29023102

RESUMEN

The evolutionarily conserved RNA polymerase II-associated factor 1 (Paf1) from yeast to humans regulates transcription and associated processes, and thus, malfunctions and/or misregulations of Paf1 are associated with cellular pathologies. Indeed, Paf1 (also known as PD2 or pancreatic differentiation 2) is found to be upregulated in poorly differentiated cancer cells, and such upregulation is involved in cellular transformation or oncogenesis. However, the basis for Paf1 upregulation in these cells remains largely unknown. In light of this, we have tested here the idea that the ubiquitin-proteasome system (UPS) regulates the cellular abundance of Paf1. In this direction, we analyzed the role of UPS in regulation of Paf1's abundance in yeast. We find that Paf1 undergoes ubiquitylation and is degraded by the 26S proteasome in yeast, thus deciphering UPS regulation of an evolutionarily conserved factor, Paf1, involved in various cellular processes at the crossroads of the cancer networks. Likewise, Paf1 undergoes proteasomal degradation in well-differentiated, but not poorly differentiated, pancreatic cancer cells, hence pointing to the UPS in upregulation of Paf1 in poorly differentiated cancers. Collectively, our results reveal UPS regulation of Paf1 and suggest downregulation of UPS in elevating Paf1's abundance in poorly differentiated cancers.


Asunto(s)
Carcinogénesis/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias Pancreáticas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Carcinogénesis/patología , Línea Celular Tumoral , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Humanos , Neoplasias Pancreáticas/patología , Proteolisis , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción , Ubiquitinación
4.
RNA ; 20(2): 133-42, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24327750

RESUMEN

Mdm30, an F-box protein in yeast, has been recently shown to promote mRNA export. However, it remains unknown how Mdm30 facilitates mRNA export. Here, we show that Mdm30 targets the Sub2 component of the TREX (Transcription/Export) complex for ubiquitylation and subsequent proteasomal degradation. Such a targeted degradation of Sub2 enhances the recruitment of the mRNA export adaptor, Yra1, to the active genes to promote mRNA export. Together, these results elucidate that Mdm30 promotes mRNA export by lowering Sub2's stability and consequently enhancing Yra1 recruitment, thus illuminating new regulatory mechanisms of mRNA export by Mdm30.


Asunto(s)
Proteínas F-Box/metabolismo , Transporte de ARN , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/metabolismo , Alcohol Deshidrogenasa/metabolismo , Proteínas F-Box/genética , Técnicas de Inactivación de Genes , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica , Proteolisis , Empalme del ARN , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética , Ubiquitinación
5.
Nucleic Acids Res ; 42(15): 9892-907, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25114048

RESUMEN

Rrd1p (resistance to rapamycin deletion 1) has been previously implicated in controlling transcription of rapamycin-regulated genes in response to rapamycin treatment. Intriguingly, we show here that Rrd1p associates with the coding sequence of a galactose-inducible and rapamycin non-responsive GAL1 gene, and promotes the association of RNA polymerase II with GAL1 in the absence of rapamycin treatment following transcriptional induction. Consistently, nucleosomal disassembly at GAL1 is impaired in the absence of Rrd1p, and GAL1 transcription is reduced in the Δrrd1 strain. Likewise, Rrd1p associates with the coding sequences of other rapamycin non-responsive and inducible GAL genes to promote their transcription in the absence of rapamycin treatment. Similarly, inducible, but rapamycin-responsive, non-GAL genes such as CTT1, STL1 and CUP1 are also regulated by Rrd1p. However, transcription of these inducible GAL and non-GAL genes is not altered in the absence of Rrd1p when the steady-state is reached after long transcriptional induction. Consistently, transcription of the constitutively active genes is not changed in the Δrrd1 strain. Taken together, our results demonstrate a new function of Rrd1p in stimulation of initial rounds of transcription, but not steady-state/constitutive transcription, of both rapamycin-responsive and non-responsive genes independently of rapamycin treatment.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Isomerasa de Peptidilprolil/metabolismo , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirolimus/farmacología , Activación Transcripcional , Galactoquinasa/genética , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/genética , Transactivadores/genética , Iniciación de la Transcripción Genética , Transcripción Genética
6.
J Biol Chem ; 288(2): 793-806, 2013 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-23188830

RESUMEN

Rad14p is a DNA damage recognition factor in nucleotide excision repair. Intriguingly, we show here that Rad14p associates with the promoter of a galactose-inducible GAL1 gene after transcriptional induction in the absence of DNA lesion. Such an association of Rad14p facilitates the recruitment of TBP, TFIIH, and RNA polymerase II to the GAL1 promoter. Furthermore, the association of RNA polymerase II with the GAL1 promoter is significantly decreased in the absence of Rad14p, when the coding sequence was deleted. These results support the role of Rad14p in transcriptional initiation. Consistently, the level of GAL1 mRNA is significantly decreased in the absence of Rad14p. Similar results are also obtained at other galactose-inducible GAL genes such as GAL7 and GAL10. Likewise, Rad14p promotes transcription of other non-GAL genes such as CUP1, CTT1, and STL1 after transcriptional induction. However, the effect of Rad14p on the steady-state levels of transcription of GAL genes or constitutively active genes such as ADH1, PGK1, PYK1, and RPS5 is not observed. Thus, Rad14p promotes initial transcription but does not appear to regulate the steady-state level. Collectively, our results unveil a new role of Rad14p in stimulating transcription in addition to its well-known function in nucleotide excision repair.


Asunto(s)
Daño del ADN , Enzimas Reparadoras del ADN/fisiología , Reparación del ADN/fisiología , Regulación Fúngica de la Expresión Génica/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Transcripción Genética/genética , Secuencia de Bases , Inmunoprecipitación de Cromatina , Cartilla de ADN , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas
7.
J Biol Chem ; 288(14): 9619-9633, 2013 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-23417674

RESUMEN

H2B ubiquitylation is carried out by Bre1p, an E3 ligase, along with an E2 conjugase, Rad6p. H2B ubiquitylation has been previously implicated in promoting the association of RNA polymerase II with the coding sequence of the active GAL1 gene, and hence transcriptional elongation. Intriguingly, we find here that the association of RNA polymerase II with the active GAL1 coding sequence is not decreased in Δbre1, although it is required for H2B ubiquitylation. In contrast, the loss of Rad6p significantly impairs the association of RNA polymerase II with GAL1. Likewise, the point mutation of lysine 123 (ubiquitylation site) to arginine of H2B (H2B-K123R) also lowers the association of RNA polymerase II with GAL1, consistent with the role of H2B ubiquitylation in promoting RNA polymerase II association. Surprisingly, unlike the Δrad6 and H2B-K123R strains, complete deletion of BRE1 does not impair the association of RNA polymerase II with GAL1. However, deletion of the RING domain of Bre1p (that is essential for H2B ubiquitylation) impairs RNA polymerase II association with GAL1. These results imply that a non-RING domain of Bre1p counteracts the stimulatory role of the RING domain in regulating the association of RNA polymerase II with GAL1, and hence RNA polymerase II occupancy is not impaired in Δbre1. Consistently, GAL1 transcription is impaired in the absence of the RING domain of Bre1p, but not in Δbre1. Similar results are also obtained at other genes. Collectively, our results implicate both the stimulatory and repressive roles of Bre1p in regulation of RNA polymerase II association with active genes (and hence transcription) in vivo.


Asunto(s)
Histonas/química , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/enzimología , Ubiquitina-Proteína Ligasas/química , Ubiquitina/química , Inmunoprecipitación de Cromatina , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Mutación , Proteínas Nucleares/metabolismo , Sistemas de Lectura Abierta , Plásmidos/metabolismo , Mutación Puntual , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Ubiquitina-Proteína Ligasas/metabolismo
8.
Nucleic Acids Res ; 40(5): 1969-83, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22086954

RESUMEN

Previous studies have implicated SAGA (Spt-Ada-Gcn5-acetyltransferase) and TFIID (Transcription factor-IID)-dependent mechanisms of transcriptional activation in yeast. SAGA-dependent transcriptional activation is further regulated by the 19S proteasome subcomplex. However, the role of the 19S proteasome subcomplex in transcriptional activation of the TFIID-dependent genes has not been elucidated. Therefore, we have performed a series of chromatin immunoprecipitation, mutational and transcriptional analyses at the TFIID-dependent ribosomal protein genes such as RPS5, RPL2B and RPS11B. We find that the 19S proteasome subcomplex is recruited to the promoters of these ribosomal protein genes, and promotes the association of NuA4 (Nucleosome acetyltransferase of histone H4) co-activator, but not activator Rap1p (repressor-activator protein 1). These observations support that the 19S proteasome subcomplex enhances the targeting of co-activator at the TFIID-dependent promoter. Such an enhanced targeting of NuA4 HAT (histone acetyltransferase) promotes the recruitment of the TFIID complex for transcriptional initiation. Collectively, our data demonstrate that the 19S proteasome subcomplex enhances the targeting of NuA4 HAT to activator Rap1p at the promoters of ribosomal protein genes to facilitate the recruitment of TFIID for transcriptional stimulation, hence providing a new role of the 19S proteasome subcomplex in establishing a specific regulatory network at the TFIID-dependent promoter for productive transcriptional initiation in vivo.


Asunto(s)
Histona Acetiltransferasas/metabolismo , Regiones Promotoras Genéticas , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Ribosómicas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIID/metabolismo , Activación Transcripcional , Proteínas de Saccharomyces cerevisiae/genética , Complejo Shelterina , Proteínas de Unión a Telómeros/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
9.
Nucleic Acids Res ; 40(8): 3348-63, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22199252

RESUMEN

Recently, we have demonstrated a predominant association of Rad26p with the coding sequences but not promoters of several GAL genes following transcriptional induction. Here, we show that the occupancy of histone H2A-H2B dimer at the coding sequences of these genes is not altered following transcriptional induction in the absence of Rad26p. A histone H2A-H2B dimer-enriched chromatin in Δrad26 is correlated to decreased association of RNA polymerase II with the active coding sequences (and hence transcription). However, the reduced association of RNA polymerase II with the active coding sequence in the absence of Rad26p is not due to the defect in formation of transcription complex at the promoter. Thus, Rad26p regulates the occupancy of histone H2A-H2B dimer, which is correlated to the association of elongating RNA polymerase II with active GAL genes. Similar results are also found at other inducible non-GAL genes. Collectively, our results define a new role of Rad26p in orchestrating chromatin structure and hence transcription in vivo.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Transcripción Genética , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Cromatina/química , Dimerización , Galactoquinasa/genética , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Proteínas de Transporte de Membrana/genética , Estructura Terciaria de Proteína , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transactivadores/genética , Factores de Transcripción/genética , Factores de Transcripción/fisiología
10.
Gene ; 894: 148004, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-37977317

RESUMEN

Paf1 (Polymerase-associated factor 1) complex (Paf1C) is evolutionarily conserved from yeast to humans, and facilitates transcription elongation as well as co-transcriptional histone covalent modifications and mRNA 3'-end processing. Thus, Paf1C is a key player in regulation of eukaryotic gene expression. Paf1C consists of Paf1, Cdc73, Ctr9, Leo1 and Rtf1 in both yeast and humans, but it has an additional component, Ski8, in humans. The abundances of these components regulate the assembly of Paf1C and/or its functions, thus implying the mechanisms involved in regulating the abundances of the Paf1C components in altered gene expression and hence cellular pathologies. Towards finding the mechanisms associated with the abundances of the Paf1C components, we analyzed here whether the Paf1C components are regulated via targeted ubiquitylation and 26S proteasomal degradation. We find that the Paf1C components except Paf1 do not undergo the 26S proteasomal degradation in both yeast and humans. Paf1 is found to be regulated by the ubiquitin-proteasome system (UPS) in yeast and humans. Alteration of such regulation changes Paf1's abundance, leading to aberrant gene expression. Intriguingly, while the Rtf1 component of Paf1C does not undergo the 26S proteasomal degradation, it is found to be ubiquitylated, suggesting that Rtf1 ubiquitylation could be engaged in Paf1C assembly and/or functions. Collectively, our results reveal distinct UPS regulation of the Paf1C components, Paf1 and Rtf1, in a proteolysis-dependent and -independent manners, respectively, with functional implications.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Proteínas de Saccharomyces cerevisiae , Humanos , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al ARN/metabolismo
11.
J Biol Chem ; 287(43): 36414-22, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-22910905

RESUMEN

Previous studies have demonstrated transcription-coupled nucleotide/base excision repair. We report here for the first time that DNA double-strand break (DSB) repair is also coupled to transcription. We generated a yeast strain by introducing a homing (Ho) endonuclease cut site followed by a nucleotide sequence for multiple Myc epitopes at the 3' end of the coding sequence of a highly active gene, ADH1. This yeast strain also contains the Ho cut site at the nearly silent or poorly active mating type α (MATα) locus and expresses Ho endonuclease under the galactose-inducible GAL1 promoter. Using this strain, DSBs were generated at the ADH1 and MATα loci in galactose-containing growth medium that induced HO expression. Subsequently, yeast cells were transferred to dextrose-containing growth medium to stop HO expression, and the DSB repair was monitored at the ADH1 and MATα loci by PCR, using the primer pairs flanking the Ho cut sites. Our results revealed a faster DSB repair at the highly active ADH1 than that at the nearly silent MATα locus, hence implicating a transcription-coupled DSB repair at the active gene in vivo. Subsequently, we extended this study to another gene, PHO5 (carrying the Ho cut site at its coding sequence), under transcriptionally active and inactive growth conditions. We found a fast DSB repair at the active PHO5 gene in comparison to its inactive state. Collectively, our results demonstrate a preferential DSB repair at the active gene, thus supporting transcription-coupled DSB repair in living cells.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , ADN de Hongos/metabolismo , Saccharomyces cerevisiae/metabolismo , Fosfatasa Ácida/genética , Fosfatasa Ácida/metabolismo , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , ADN de Hongos/genética , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Sitios Genéticos/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Biochim Biophys Acta ; 1825(1): 64-76, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22037302

RESUMEN

The 26S proteasome complex engages in an ATP-dependent proteolytic degradation of a variety of oncoproteins, transcription factors, cell cycle specific cyclins, cyclin-dependent kinase inhibitors, ornithine decarboxylase, and other key regulatory cellular proteins. Thus, the proteasome regulates either directly or indirectly many important cellular processes. Altered regulation of these cellular events is linked to the development of cancer. Therefore, the proteasome has become an attractive target for the treatment of numerous cancers. Several proteasome inhibitors that target the proteolytic active sites of the 26S proteasome complex have been developed and tested for anti-tumor activities. These proteasome inhibitors have displayed impressive anti-tumor functions by inducing apoptosis in different tumor types. Further, the proteasome inhibitors have been shown to induce cell cycle arrest, and inhibit angiogenesis, cell-cell adhesion, cell migration, immune and inflammatory responses, and DNA repair response. A number of proteasome inhibitors are now in clinical trials to treat multiple myeloma and solid tumors. Many other proteasome inhibitors with different efficiencies are being developed and tested for anti-tumor activities. Several proteasome inhibitors currently in clinical trials have shown significantly improved anti-tumor activities when combined with other drugs such as histone deacetylase (HDAC) inhibitors, Akt (protein kinase B) inhibitors, DNA damaging agents, Hsp90 (heat shock protein 90) inhibitors, and lenalidomide. The proteasome inhibitor bortezomib is now in the clinic to treat multiple myeloma and mantle cell lymphoma. Here, we discuss the 26S proteasome complex in carcinogenesis and different proteasome inhibitors with their potential therapeutic applications in treatment of numerous cancers.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Inhibidores de Proteasas/uso terapéutico , Inhibidores de Proteasoma , Transformación Celular Neoplásica , Ensayos Clínicos como Asunto , Humanos , Terapia Molecular Dirigida , Complejo de la Endopetidasa Proteasomal
13.
Nucleic Acids Res ; 39(6): 2188-209, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21075799

RESUMEN

The cap-binding complex (CBC) binds to the cap structure of mRNA to protect it from exonucleases as well as to regulate downstream post-transcriptional events, translational initiation and nonsense-mediated mRNA decay. However, its role in regulation of the upstream transcriptional events such as initiation or elongation remains unknown. Here, using a formaldehyde-based in vivo cross-linking and chromatin immunoprecipitation assay in conjunction with transcriptional, mutational and co-immunoprecipitational analyses, we show that CBC is recruited to the body of yeast gene, and then stimulates the formation of pre-initiation complex (PIC) at several yeast promoters through its interaction with Mot1p (modifier of transcription). Mot1p is recruited to these promoters, and enhances the PIC formation. We find that CBC promotes the recruitment of Mot1p which subsequently stimulates PIC formation at these promoters. Furthermore, the formation of PIC is essential for recruitment of CBC. Thus, our study presents an interesting observation that an mRNA binding factor exhibits a reciprocal synergistic effect on formation of PIC (and hence transcriptional initiation) at the promoter, revealing a new pathway of eukaryotic gene regulation in vivo.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Regulación Fúngica de la Expresión Génica , Complejo Proteico Nuclear de Unión a la Caperuza/metabolismo , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Transcripción Genética , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/metabolismo , Galactoquinasa/genética , Caperuzas de ARN/metabolismo , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
14.
Biochim Biophys Acta Gene Regul Mech ; 1866(4): 194981, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37657588

RESUMEN

SAGA (Spt-Ada-Gcn5-Acetyltransferase), an evolutionarily conserved transcriptional co-activator among eukaryotes, is a large multi-subunit protein complex with two distinct enzymatic activities, namely HAT (Histone acetyltransferase) and DUB (De-ubiquitinase), and is targeted to the promoter by the gene-specific activator proteins for histone covalent modifications and PIC (Pre-initiation complex) formation in enhancing transcription (or gene activation). Targeting of SAGA to the gene promoter is further facilitated by the 19S RP (Regulatory particle) of the 26S proteasome (that is involved in targeted degradation of protein via ubiquitylation) in a proteolysis-independent manner. Moreover, SAGA is also recently found to be regulated by the 26S proteasome in a proteolysis-dependent manner via the ubiquitylation of its Sgf73/ataxin-7 component that is required for SAGA's integrity and DUB activity (and hence transcription), and is linked to various diseases including neurodegenerative disorders and cancer. Thus, SAGA itself and its targeting to the active gene are regulated by the UPS (Ubiquitin-proteasome system) with implications in diseases.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional , Ubiquitina/metabolismo , Ubiquitinación
15.
Methods Mol Biol ; 2701: 209-227, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37574485

RESUMEN

Isolation of a protein/complex is important for its biochemical and structural characterization with mechanistic insights. TAP (tandem affinity purification) strategy allows rapid isolation of cellular proteins/complexes with a high level of purity. This methodology involves an immuno-affinity-based purification followed by a conformation-based isolation to obtain a highly homogeneous protein/complex. Here, we describe the TAP-mediated isolation of endogenous FACT (facilitates chromatin transcription; a heterodimer), an essential histone chaperone associated with BER (base excision repair). However, it is not clearly understood how FACT regulates BER. Such knowledge would advance our understanding of BER with implications in disease pathogenesis, since BER is an evolutionarily conserved process that is linked to various diseases including ageing, neurodegenerative disorders, and cancers. Using isolated FACT by TAP methodology, one can study the mechanisms of action of FACT in BER. Further, isolated FACT can be used for studies in other DNA transactions such as transcription and replication, as FACT is involved in these processes. Furthermore, TAP-mediated isolation strategy can be combined with mass spectrometry to identify the protein interaction partners of FACT.


Asunto(s)
Proteínas de Unión al ADN , Espectrometría de Masas , Purificación por Afinidad en Tándem , Purificación por Afinidad en Tándem/métodos , Espectrometría de Masas/métodos , Cromatina , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/aislamiento & purificación , Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad , Factores de Elongación Transcripcional
16.
Genetics ; 224(3)2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37075097

RESUMEN

Ataxin-7 maintains the integrity of Spt-Ada-Gcn5-Acetyltransferase (SAGA), an evolutionarily conserved coactivator in stimulating preinitiation complex (PIC) formation for transcription initiation, and thus, its upregulation or downregulation is associated with various diseases. However, it remains unknown how ataxin-7 is regulated that could provide new insights into disease pathogenesis and therapeutic interventions. Here, we show that ataxin-7's yeast homologue, Sgf73, undergoes ubiquitylation and proteasomal degradation. Impairment of such regulation increases Sgf73's abundance, which enhances recruitment of TATA box-binding protein (TBP) (that nucleates PIC formation) to the promoter but impairs transcription elongation. Further, decreased Sgf73 level reduces PIC formation and transcription. Thus, Sgf73 is fine-tuned by ubiquitin-proteasome system (UPS) in orchestrating transcription. Likewise, ataxin-7 undergoes ubiquitylation and proteasomal degradation, alteration of which changes ataxin-7's abundance that is associated with altered transcription and cellular pathologies/diseases. Collectively, our results unveil a novel UPS regulation of Sgf73/ataxin-7 for normal cellular health and implicate alteration of such regulation in diseases.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Ubiquitina , Ataxina-7/genética , Ataxina-7/metabolismo , Ubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Histona Acetiltransferasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Biochemistry ; 51(30): 5873-5, 2012 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-22794311

RESUMEN

We have recently demonstrated the formation of an atypical histone H2A-H2B dimer-enriched chromatin at the coding sequence of the active gene in the absence of Rad26p in vivo. However, the mechanisms for such a surprising observation remain unknown. Here, using a ChIP assay, we demonstrate that Rad26p promotes the eviction of histone H2A-H2B dimer and prevents the reassociation of the dimer with naked DNA in the wake of elongating RNA polymerase II at the coding sequence of the active GAL1 gene. Thus, the absence of Rad26p leads to the generation of an atypical histone H2A-H2B dimer-enriched chromatin at the active coding sequence in vivo.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas Bacterianas/fisiología , Reparación del ADN/genética , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/fisiología , Factores de Elongación Transcripcional/genética , Proteínas Bacterianas/genética , Cromatina/genética , Cromatina/metabolismo , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN de Hongos/fisiología , Histonas/antagonistas & inhibidores , Histonas/genética , Multimerización de Proteína , Factores de Transcripción/genética , Factores de Elongación Transcripcional/metabolismo
18.
Biochemistry ; 51(2): 706-14, 2012 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-22224423

RESUMEN

Although Sgf29p has been biochemically implicated as a component of SAGA (Spt-Ada-Gcn5 acetyltransferase), its precise mechanism of action in transcription is not clearly understood in vivo. Here, using a formaldehyde-based in vivo cross-linking and chromatin immunoprecipitation (ChIP) assay in conjunction with transcriptional and mutational analyses, we show that Sgf29p along with other SAGA components is recruited to the upstream activating sequence (UAS) of a SAGA-regulated gene, GAL1, in an activation domain-dependent manner. However, Sgf29p does not alter the recruitment of Spt20p that maintains the overall structural and functional integrity of SAGA. The recruitment of other SAGA components such as TAF10p, TAF12p, and Ubp8p to the GAL1 UAS is also not altered in the absence of Sgf29p. Interestingly, we find that the recruitment of TBP (TATA box binding protein that nucleates the assembly of general transcription factors to form the preinitiation complex for transcriptional initiation) to the core promoter of GAL1 is weakened in Δsgf29. Likewise, Sgf29p also enhances the recruitment of TBP to other SAGA-regulated promoters. Such weakening of recruitment of TBP to these promoters subsequently decreases the level of transcription. Taken together, these results support the idea that SAGA-associated Sgf29p facilitates the recruitment of TBP (and hence transcription) without altering the global structural integrity of SAGA in vivo.


Asunto(s)
Histona Acetiltransferasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteína de Unión a TATA-Box/metabolismo , Acetilación , Inmunoprecipitación de Cromatina , Análisis Mutacional de ADN , Histona Acetiltransferasas/química , Histona Acetiltransferasas/genética , Histonas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética
19.
Biochim Biophys Acta ; 1809(2): 97-108, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20800707

RESUMEN

A growing number of human diseases are linked to abnormal gene expression which is largely controlled at the level of transcriptional initiation. The gene-specific activator promotes the initiation of transcription through its interaction with one or more components of the transcriptional initiation machinery, hence leading to stimulated transcriptional initiation or activation. However, all activator proteins do not target the same component(s) of the transcriptional initiation machinery. Rather, they can have different target specificities, and thus, can lead to distinct mechanisms of transcriptional activation. Two such distinct mechanisms of transcriptional activation in yeast are mediated by the SAGA (Spt-Ada-Gcn5-Acetyltransferase) and TFIID (Transcription factor IID) complexes, and are termed as "SAGA-dependent" and "TFIID-dependent" transcriptional activation, respectively. SAGA is the target of the activator in case of SAGA-dependent transcriptional activation, while the targeting of TFIID by the activator leads to TFIID-dependent transcriptional activation. Both the SAGA and TFIID complexes are highly conserved from yeast to human, and play crucial roles in gene activation among eukaryotes. The regulatory mechanisms of eukaryotic transcriptional activation by SAGA and TFIID are discussed here. This article is part of a Special Issue entitled The 26S Proteasome: When degradation is just not enough!


Asunto(s)
Eucariontes/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transactivadores/metabolismo , Factor de Transcripción TFIID/metabolismo , Transcripción Genética , Activación Transcripcional/genética , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo
20.
Nucleic Acids Res ; 38(5): 1461-77, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20007604

RESUMEN

Rad26p, a yeast homologue of human Cockayne syndrome B with an ATPase activity, plays a pivotal role in stimulating DNA repair at the coding sequences of active genes. On the other hand, DNA repair at inactive genes or silent areas of the genome is not regulated by Rad26p. However, how Rad26p recognizes DNA lesions at the actively transcribing genes to facilitate DNA repair is not clearly understood in vivo. Here, we show that Rad26p associates with the coding sequences of genes in a transcription-dependent manner, but independently of DNA lesions induced by 4-nitroquinoline-1-oxide in Saccharomyces cerevisiae. Further, histone H3 lysine 36 methylation that occurs at the active coding sequence stimulates the recruitment of Rad26p. Intriguingly, we find that Rad26p is recruited to the site of DNA lesion in an elongating RNA polymerase II-dependent manner. However, Rad26p does not recognize DNA lesions in the absence of active transcription. Together, these results provide an important insight as to how Rad26p is delivered to the damage sites at the active, but not inactive, genes to stimulate repair in vivo, shedding much light on the early steps of transcription-coupled repair in living eukaryotic cells.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Daño del ADN , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transcripción Genética , Sitios de Unión , Histonas/química , Histonas/metabolismo , Metilación , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA