Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell ; 183(5): 1202-1218.e25, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33142117

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) tumors have a nutrient-poor, desmoplastic, and highly innervated tumor microenvironment. Although neurons can release stimulatory factors to accelerate PDAC tumorigenesis, the metabolic contribution of peripheral axons has not been explored. We found that peripheral axons release serine (Ser) to support the growth of exogenous Ser (exSer)-dependent PDAC cells during Ser/Gly (glycine) deprivation. Ser deprivation resulted in ribosomal stalling on two of the six Ser codons, TCC and TCT, and allowed the selective translation and secretion of nerve growth factor (NGF) by PDAC cells to promote tumor innervation. Consistent with this, exSer-dependent PDAC tumors grew slower and displayed enhanced innervation in mice on a Ser/Gly-free diet. Blockade of compensatory neuronal innervation using LOXO-101, a Trk-NGF inhibitor, further decreased PDAC tumor growth. Our data indicate that axonal-cancer metabolic crosstalk is a critical adaptation to support PDAC growth in nutrient poor environments.


Asunto(s)
Neuronas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Biosíntesis de Proteínas , Serina/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Anciano , Animales , Axones/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular , Codón/genética , Femenino , Glicina/metabolismo , Humanos , Masculino , Ratones , Persona de Mediana Edad , Mitocondrias/metabolismo , Tejido Nervioso/patología , Consumo de Oxígeno , Neoplasias Pancreáticas/patología , Pirazoles , Pirimidinas , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/genética , Ratas
2.
Nature ; 597(7876): 420-425, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34471290

RESUMEN

Oxygen is critical for a multitude of metabolic processes that are essential for human life. Biological processes can be identified by treating cells with 18O2 or other isotopically labelled gases and systematically identifying biomolecules incorporating labeled atoms. Here we labelled cell lines of distinct tissue origins with 18O2 to identify the polar oxy-metabolome, defined as polar metabolites labelled with 18O under different physiological O2 tensions. The most highly 18O-labelled feature was 4-hydroxymandelate (4-HMA). We demonstrate that 4-HMA is produced by hydroxyphenylpyruvate dioxygenase-like (HPDL), a protein of previously unknown function in human cells. We identify 4-HMA as an intermediate involved in the biosynthesis of the coenzyme Q10 (CoQ10) headgroup in human cells. The connection of HPDL to CoQ10 biosynthesis provides crucial insights into the mechanisms underlying recently described neurological diseases related to HPDL deficiencies1-4 and cancers with HPDL overexpression5.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa/metabolismo , Ácidos Mandélicos/metabolismo , Metaboloma , Ubiquinona/análogos & derivados , Animales , Línea Celular , Femenino , Humanos , Ácidos Mandélicos/análisis , Ratones , Ratones Desnudos , Tirosina/metabolismo , Ubiquinona/biosíntesis
3.
Nature ; 581(7806): 100-105, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32376951

RESUMEN

Immune evasion is a major obstacle for cancer treatment. Common mechanisms of evasion include impaired antigen presentation caused by mutations or loss of heterozygosity of the major histocompatibility complex class I (MHC-I), which has been implicated in resistance to immune checkpoint blockade (ICB) therapy1-3. However, in pancreatic ductal adenocarcinoma (PDAC), which is resistant to most therapies including ICB4, mutations that cause loss of MHC-I are rarely found5 despite the frequent downregulation of MHC-I expression6-8. Here we show that, in PDAC, MHC-I molecules are selectively targeted for lysosomal degradation by an autophagy-dependent mechanism that involves the autophagy cargo receptor NBR1. PDAC cells display reduced expression of MHC-I at the cell surface and instead demonstrate predominant localization within autophagosomes and lysosomes. Notably, inhibition of autophagy restores surface levels of MHC-I and leads to improved antigen presentation, enhanced anti-tumour T cell responses and reduced tumour growth in syngeneic host mice. Accordingly, the anti-tumour effects of autophagy inhibition are reversed by depleting CD8+ T cells or reducing surface expression of MHC-I. Inhibition of autophagy, either genetically or pharmacologically with chloroquine, synergizes with dual ICB therapy (anti-PD1 and anti-CTLA4 antibodies), and leads to an enhanced anti-tumour immune response. Our findings demonstrate a role for enhanced autophagy or lysosome function in immune evasion by selective targeting of MHC-I molecules for degradation, and provide a rationale for the combination of autophagy inhibition and dual ICB therapy as a therapeutic strategy against PDAC.


Asunto(s)
Adenocarcinoma/inmunología , Autofagia/inmunología , Carcinoma Ductal Pancreático/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Neoplasias Pancreáticas/inmunología , Escape del Tumor/inmunología , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patología , Animales , Presentación de Antígeno/efectos de los fármacos , Presentación de Antígeno/inmunología , Autofagia/efectos de los fármacos , Autofagia/genética , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/inmunología , Línea Celular Tumoral , Cloroquina/farmacología , Femenino , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Masculino , Ratones , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Escape del Tumor/efectos de los fármacos
4.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33531365

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest forms of cancer and is highly refractory to current therapies. We had previously shown that PDAC can utilize its high levels of basal autophagy to support its metabolism and maintain tumor growth. Consistent with the importance of autophagy in PDAC, autophagy inhibition significantly enhances response of PDAC patients to chemotherapy in two randomized clinical trials. However, the specific metabolite(s) that autophagy provides to support PDAC growth is not yet known. In this study, we demonstrate that under nutrient-replete conditions, loss of autophagy in PDAC leads to a relatively restricted impairment of amino acid pools, with cysteine levels showing a significant drop. Additionally, we made the striking discovery that autophagy is critical for the proper membrane localization of the cystine transporter SLC7A11. Mechanistically, autophagy impairment results in the loss of SLC7A11 on the plasma membrane and increases its localization at the lysosome in an mTORC2-dependent manner. Our results demonstrate a critical link between autophagy and cysteine metabolism and provide mechanistic insights into how targeting autophagy can cause metabolic dysregulation in PDAC.


Asunto(s)
Adenocarcinoma/genética , Sistema de Transporte de Aminoácidos y+/genética , Carcinoma Ductal Pancreático/genética , Proliferación Celular/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , Autofagia/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Xenoinjertos , Homeostasis/genética , Humanos , Ratones , Especies Reactivas de Oxígeno/metabolismo
5.
Nature ; 536(7617): 479-83, 2016 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-27509858

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease characterized by an intense fibrotic stromal response and deregulated metabolism. The role of the stroma in PDAC biology is complex and it has been shown to play critical roles that differ depending on the biological context. The stromal reaction also impairs the vasculature, leading to a highly hypoxic, nutrient-poor environment. As such, these tumours must alter how they capture and use nutrients to support their metabolic needs. Here we show that stroma-associated pancreatic stellate cells (PSCs) are critical for PDAC metabolism through the secretion of non-essential amino acids (NEAA). Specifically, we uncover a previously undescribed role for alanine, which outcompetes glucose and glutamine-derived carbon in PDAC to fuel the tricarboxylic acid (TCA) cycle, and thus NEAA and lipid biosynthesis. This shift in fuel source decreases the tumour's dependence on glucose and serum-derived nutrients, which are limited in the pancreatic tumour microenvironment. Moreover, we demonstrate that alanine secretion by PSCs is dependent on PSC autophagy, a process that is stimulated by cancer cells. Thus, our results demonstrate a novel metabolic interaction between PSCs and cancer cells, in which PSC-derived alanine acts as an alternative carbon source. This finding highlights a previously unappreciated metabolic network within pancreatic tumours in which diverse fuel sources are used to promote growth in an austere tumour microenvironment.


Asunto(s)
Alanina/metabolismo , Autofagia , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Células Estrelladas Pancreáticas/citología , Células Estrelladas Pancreáticas/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , Vías Biosintéticas , Carbono/metabolismo , Carcinoma Ductal Pancreático/patología , Ciclo del Ácido Cítrico , Femenino , Glucosa/metabolismo , Xenoinjertos , Humanos , Ratones , Trasplante de Neoplasias , Neoplasias Pancreáticas/patología , Microambiente Tumoral/fisiología
6.
Haematologica ; 104(7): 1342-1354, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30630985

RESUMEN

Ncoa4 mediates autophagic degradation of ferritin, the cytosolic iron storage complex, to maintain intracellular iron homeostasis. Recent evidence also supports a role for Ncoa4 in systemic iron homeostasis and erythropoiesis. However, the specific contribution and temporal importance of Ncoa4-mediated ferritinophagy in regulating systemic iron homeostasis and erythropoiesis is unclear. Here, we show that Ncoa4 has a critical role in basal systemic iron homeostasis and both cell autonomous and non-autonomous roles in murine erythropoiesis. Using an inducible murine model of Ncoa4 knockout, acute systemic disruption of Ncoa4 impaired systemic iron homeostasis leading to tissue ferritin and iron accumulation, a decrease in serum iron, and anemia. Mice acutely depleted of Ncoa4 engaged the Hif2a-erythropoietin system to compensate for anemia. Mice with targeted deletion of Ncoa4 specifically in the erythroid compartment developed a pronounced anemia in the immediate postnatal stage, a mild hypochromic microcytic anemia at adult stages, and were more sensitive to hemolysis with higher requirements for the Hif2a-erythropoietin axis and extramedullary erythropoiesis during recovery. These studies demonstrate the importance of Ncoa4-mediated ferritinophagy as a regulator of systemic iron homeostasis and define the relative cell autonomous and non-autonomous contributions of Ncoa4 in supporting erythropoiesis in vivo.


Asunto(s)
Anemia/patología , Eritropoyesis , Homeostasis , Hierro/metabolismo , Coactivadores de Receptor Nuclear/fisiología , Anemia/metabolismo , Animales , Autofagia , Femenino , Hemólisis , Humanos , Células K562 , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Coactivadores de Receptor Nuclear/metabolismo
10.
Nano Lett ; 15(11): 7488-96, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26418302

RESUMEN

More than 50% of all cancer patients receive radiation therapy. The clinical delivery of curative radiation dose is strictly restricted by the proximal healthy tissues. We propose a dual-targeting strategy using vessel-targeted-radiosensitizing gold nanoparticles and conformal-image guided radiation therapy to specifically amplify damage in the tumor neoendothelium. The resulting tumor vascular disruption substantially improved the therapeutic outcome and subsidized the radiation/nanoparticle toxicity, extending its utility to intransigent or nonresectable tumors that barely respond to standard therapies.


Asunto(s)
Oro/efectos adversos , Nanopartículas del Metal/efectos adversos , Neoplasias/radioterapia , Neovascularización Patológica/tratamiento farmacológico , Línea Celular Tumoral , Endotelio/efectos de los fármacos , Endotelio/patología , Endotelio/efectos de la radiación , Oro/química , Humanos , Nanopartículas del Metal/administración & dosificación , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neovascularización Patológica/patología , Neovascularización Patológica/radioterapia , Tolerancia a Radiación/efectos de los fármacos , Radioterapia Guiada por Imagen
11.
Nat Cancer ; 5(1): 85-99, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37814010

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) cells use glutamine (Gln) to support proliferation and redox balance. Early attempts to inhibit Gln metabolism using glutaminase inhibitors resulted in rapid metabolic reprogramming and therapeutic resistance. Here, we demonstrated that treating PDAC cells with a Gln antagonist, 6-diazo-5-oxo-L-norleucine (DON), led to a metabolic crisis in vitro. In addition, we observed a profound decrease in tumor growth in several in vivo models using sirpiglenastat (DRP-104), a pro-drug version of DON that was designed to circumvent DON-associated toxicity. We found that extracellular signal-regulated kinase (ERK) signaling is increased as a compensatory mechanism. Combinatorial treatment with DRP-104 and trametinib led to a significant increase in survival in a syngeneic model of PDAC. These proof-of-concept studies suggested that broadly targeting Gln metabolism could provide a therapeutic avenue for PDAC. The combination with an ERK signaling pathway inhibitor could further improve the therapeutic outcome.


Asunto(s)
Antineoplásicos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Glutamina/metabolismo , Línea Celular Tumoral , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Antineoplásicos/farmacología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Inhibidores Enzimáticos/farmacología
12.
Science ; 377(6602): eabg9302, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35709248

RESUMEN

Mammalian cells autonomously activate hypoxia-inducible transcription factors (HIFs) to ensure survival in low-oxygen environments. We report here that injury-induced hypoxia is insufficient to trigger HIF1α in damaged epithelium. Instead, multimodal single-cell and spatial transcriptomics analyses and functional studies reveal that retinoic acid-related orphan receptor γt+ (RORγt+) γδ T cell-derived interleukin-17A (IL-17A) is necessary and sufficient to activate HIF1α. Protein kinase B (AKT) and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling proximal of IL-17 receptor C (IL-17RC) activates mammalian target of rapamycin (mTOR) and consequently HIF1α. The IL-17A-HIF1α axis drives glycolysis in wound front epithelia. Epithelial-specific loss of IL-17RC, HIF1α, or blockade of glycolysis derails repair. Our findings underscore the coupling of inflammatory, metabolic, and migratory programs to expedite epithelial healing and illuminate the immune cell-derived inputs in cellular adaptation to hypoxic stress during repair.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia , Hipoxia , Interleucina-17 , Receptores de Interleucina-17 , Cicatrización de Heridas , Animales , Epitelio/lesiones , Epitelio/metabolismo , Perfilación de la Expresión Génica , Humanos , Hipoxia/inmunología , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Interleucina-17/metabolismo , Ratones , Transducción de Señal , Análisis de la Célula Individual , Linfocitos T/inmunología , Cicatrización de Heridas/inmunología
13.
Cancer Discov ; 12(9): 2180-2197, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-35771492

RESUMEN

Pancreatic ductal adenocarcinomas (PDAC) depend on autophagy for survival; however, the metabolic substrates that autophagy provides to drive PDAC progression are unclear. Ferritin, the cellular iron storage complex, is targeted for lysosomal degradation (ferritinophagy) by the selective autophagy adaptor NCOA4, resulting in release of iron for cellular utilization. Using patient-derived and murine models of PDAC, we demonstrate that ferritinophagy is upregulated in PDAC to sustain iron availability, thereby promoting tumor progression. Quantitative proteomics reveals that ferritinophagy fuels iron-sulfur cluster protein synthesis to support mitochondrial homeostasis. Targeting NCOA4 leads to tumor growth delay and prolonged survival but with the development of compensatory iron acquisition pathways. Finally, enhanced ferritinophagy accelerates PDAC tumorigenesis, and an elevated ferritinophagy expression signature predicts for poor prognosis in patients with PDAC. Together, our data reveal that the maintenance of iron homeostasis is a critical function of PDAC autophagy, and we define NCOA4-mediated ferritinophagy as a therapeutic target in PDAC. SIGNIFICANCE: Autophagy and iron metabolism are metabolic dependencies in PDAC. However, targeted therapies for these pathways are lacking. We identify NCOA4-mediated selective autophagy of ferritin ("ferritinophagy") as upregulated in PDAC. Ferritinophagy supports PDAC iron metabolism and thereby tumor progression and represents a new therapeutic target in PDAC. See related commentary by Jain and Amaravadi, p. 2023. See related article by Ravichandran et al., p. 2198. This article is highlighted in the In This Issue feature, p. 2007.


Asunto(s)
Carcinoma Ductal Pancreático , Proteínas Hierro-Azufre , Neoplasias Pancreáticas , Animales , Autofagia/efectos de los fármacos , Autofagia/genética , Disponibilidad Biológica , Carcinoma Ductal Pancreático/genética , Ferritinas/genética , Ferritinas/metabolismo , Humanos , Hierro/metabolismo , Hierro/farmacología , Proteínas Hierro-Azufre/metabolismo , Ratones , Coactivadores de Receptor Nuclear/genética , Coactivadores de Receptor Nuclear/metabolismo , Neoplasias Pancreáticas/genética , Azufre/metabolismo , Factores de Transcripción/metabolismo , Neoplasias Pancreáticas
14.
Cell Metab ; 33(1): 199-210.e8, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33152323

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) is a deadly cancer characterized by complex metabolic adaptations that promote survival in a severely hypoxic and nutrient-limited tumor microenvironment (TME). Modeling microenvironmental influences in cell culture has been challenging, and technical limitations have hampered the comprehensive study of tumor-specific metabolism in vivo. To systematically interrogate metabolic vulnerabilities in PDA, we employed parallel CRISPR-Cas9 screens using in vivo and in vitro systems. This work revealed striking overlap of in vivo metabolic dependencies with those in vitro. Moreover, we identified that intercellular nutrient sharing can mask dependencies in pooled screens, highlighting a limitation of this approach to study tumor metabolism. Furthermore, metabolic dependencies were similar between 2D and 3D culture, although 3D culture may better model vulnerabilities that influence certain oncogenic signaling pathways. Lastly, our work demonstrates the power of genetic screening approaches to define in vivo metabolic dependencies and pathways that may have therapeutic utility.


Asunto(s)
Sistemas CRISPR-Cas/genética , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Proliferación Celular , Humanos , Ratones , Ratones Endogámicos C57BL , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Células Tumorales Cultivadas , Microambiente Tumoral/genética
15.
PLoS One ; 15(7): e0236245, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32706818

RESUMEN

We have previously demonstrated that endothelial targeting of gold nanoparticles followed by external beam irradiation can cause specific tumor vascular disruption in mouse models of cancer. The induced vascular damage may lead to changes in tumor physiology, including tumor hypoxia, thereby compromising future therapeutic interventions. In this study, we investigate the dynamic changes in tumor hypoxia mediated by targeted gold nanoparticles and clinical radiation therapy (RT). By using noninvasive whole-body fluorescence imaging, tumor hypoxia was measured at baseline, on day 2 and day 13, post-tumor vascular disruption. A 2.5-fold increase (P<0.05) in tumor hypoxia was measured two days after combined therapy, resolving by day 13. In addition, the combination of vascular-targeted gold nanoparticles and radiation therapy resulted in a significant (P<0.05) suppression of tumor growth. This is the first study to demonstrate the tumor hypoxic physiological response and recovery after delivery of vascular-targeted gold nanoparticles followed by clinical radiation therapy in a human non-small cell lung cancer athymic Foxn1nu mouse model.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Nanopartículas del Metal/uso terapéutico , Hipoxia Tumoral , Células A549 , Animales , Carcinoma de Pulmón de Células no Pequeñas/irrigación sanguínea , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Oro/uso terapéutico , Humanos , Neoplasias Pulmonares/irrigación sanguínea , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/radioterapia , Ratones , Ratones Desnudos , Imagen Óptica/métodos , Hipoxia Tumoral/efectos de los fármacos , Hipoxia Tumoral/efectos de la radiación , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Biochim Biophys Acta Rev Cancer ; 1870(1): 67-75, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29702208

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) is an aggressive cancer that is highly refractory to the current standards of care. The difficulty in treating this disease is due to a number of different factors, including altered metabolism. In PDA, the metabolic rewiring favors anabolic reactions which supply the cancer cell with necessary cellular building blocks for unconstrained growth. Furthermore, PDA cells display high levels of basal autophagy and macropinocytosis. KRAS is the driving oncogene in PDA and many of the metabolic changes are downstream of its activation. Together, these unique pathways for nutrient utilization and acquisition result in metabolic plasticity enabling cells to rapidly adapt to nutrient and oxygen fluctuations. This remarkable adaptability has been implicated as a cause of the intense therapeutic resistance. In this review, we discuss metabolic pathways in PDA tumors and highlight how they contribute to the pathogenesis and treatment of the disease.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Autofagia , Hipoxia de la Célula , Progresión de la Enfermedad , Humanos , Nutrientes , Neoplasias Pancreáticas/terapia , Especies Reactivas de Oxígeno/metabolismo
17.
Nat Commun ; 8: 15965, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28671190

RESUMEN

Pancreatic ductal adenocarcinoma is a notoriously difficult-to-treat cancer and patients are in need of novel therapies. We have shown previously that these tumours have altered metabolic requirements, making them highly reliant on a number of adaptations including a non-canonical glutamine (Gln) metabolic pathway and that inhibition of downstream components of Gln metabolism leads to a decrease in tumour growth. Here we test whether recently developed inhibitors of glutaminase (GLS), which mediates an early step in Gln metabolism, represent a viable therapeutic strategy. We show that despite marked early effects on in vitro proliferation caused by GLS inhibition, pancreatic cancer cells have adaptive metabolic networks that sustain proliferation in vitro and in vivo. We use an integrated metabolomic and proteomic platform to understand this adaptive response and thereby design rational combinatorial approaches. We demonstrate that pancreatic cancer metabolism is adaptive and that targeting Gln metabolism in combination with these adaptive responses may yield clinical benefits for patients.


Asunto(s)
Glutamina/metabolismo , Redes y Vías Metabólicas , Neoplasias Pancreáticas/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Femenino , Glutaminasa/genética , Glutaminasa/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/fisiopatología , Proteómica , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias Pancreáticas
18.
Sci Rep ; 6: 34040, 2016 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-27658637

RESUMEN

As nanoparticle solutions move towards human clinical trials in radiation therapy, the influence of key clinical beam parameters on therapeutic efficacy must be considered. In this study, we have investigated the clinical radiation therapy delivery variables that may significantly affect nanoparticle-mediated radiation dose amplification. We found a benefit for situations which increased the proportion of low energy photons in the incident beam. Most notably, "unflattened" photon beams from a clinical linear accelerator results in improved outcomes relative to conventional "flat" beams. This is measured by significant DNA damage, tumor growth suppression, and overall improvement in survival in a pancreatic tumor model. These results, obtained in a clinical setting, clearly demonstrate the influence and importance of radiation therapy parameters that will impact clinical radiation dose amplification with nanoparticles.

19.
Elife ; 42015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26436293

RESUMEN

NCOA4 is a selective cargo receptor for the autophagic turnover of ferritin, a process critical for regulation of intracellular iron bioavailability. However, how ferritinophagy flux is controlled and the roles of NCOA4 in iron-dependent processes are poorly understood. Through analysis of the NCOA4-FTH1 interaction, we demonstrate that direct association via a key surface arginine in FTH1 and a C-terminal element in NCOA4 is required for delivery of ferritin to the lysosome via autophagosomes. Moreover, NCOA4 abundance is under dual control via autophagy and the ubiquitin proteasome system. Ubiquitin-dependent NCOA4 turnover is promoted by excess iron and involves an iron-dependent interaction between NCOA4 and the HERC2 ubiquitin ligase. In zebrafish and cultured cells, NCOA4 plays an essential role in erythroid differentiation. This work reveals the molecular nature of the NCOA4-ferritin complex and explains how intracellular iron levels modulate NCOA4-mediated ferritinophagy in cells and in an iron-dependent physiological setting.


Asunto(s)
Eritropoyesis , Ferritinas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Hierro/metabolismo , Coactivadores de Receptor Nuclear/metabolismo , Animales , Autofagia , Línea Celular , Humanos , Lisosomas/metabolismo , Oxidorreductasas , Fagosomas/metabolismo , Proteolisis , Ubiquitina-Proteína Ligasas , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA