Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Philos Trans A Math Phys Eng Sci ; 377(2139): 20180005, 2019 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-30966926

RESUMEN

Thermal and mechanical models of magma reservoir growth need to be reconciled with deformation patterns and structural relationships observed at active magma systems. Geophysical observations provide a series of short time-scale snap-shots (100-102 years) of the long-term growth of magmatic bodies (103-106 years). In this paper, we first review evidence for the growth of magmatic systems along structural features and the associated deformation patterns. We then define three distinct growth stages, (1) aligned melt pockets, (2) coalesced reservoirs, (3) highly evolved systems, which can be distinguished using short-term surface observations. We use two-dimensional thermal models to provide first-order constraints on the time scales and conditions associated with coalescence of individual magma bodies into large-scale reservoirs. We find that closely spaced intrusions (less than 1 km apart) can develop combined viscoelastic shells over time scales of 10s kyr and form laterally extensive mush systems over time scales of 10-100 kyr. The highest temperatures and melt fractions occur during a period of thermal relaxation after melt injection has ceased, suggesting that caldera-forming eruptions may preferentially occur long after the main intrusive activity. The coalescence of eruptible melt-rich chambers only occurs for the highest melt supply rates and deepest systems. Thus, these models indicate that, in most cases, conductive heat transfer alone is not sufficient for a full coalescence of magma chambers and that other processes involving mechanical ruptures and mush mobilization are necessary; individual melt lenses can remain isolated for long periods within growing mush systems, and will only mix during eruption or other catastrophic events. The long-term history of the magmatic system is therefore critical in determining rheological structure and hence short-term behaviour. This framework for the development of magmatic systems in the continental crust provides a mechanical basis for the interpretation of unrest at the world's largest volcanoes. This article is part of the Theo Murphy meeting issue 'Magma reservoir architecture and dynamics'.

2.
Nature ; 442(7100): 291-4, 2006 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-16855588

RESUMEN

Seafloor spreading centres show a regular along-axis segmentation thought to be produced by a segmented magma supply in the passively upwelling mantle. On the other hand, continental rifts are segmented by large offset normal faults, and many lack magmatism. It is unclear how, when and where the ubiquitous segmented melt zones are emplaced during the continental rupture process. Between 14 September and 4 October 2005, 163 earthquakes (magnitudes greater than 3.9) and a volcanic eruption occurred within the approximately 60-km-long Dabbahu magmatic segment of the Afar rift, a nascent seafloor spreading centre in stretched continental lithosphere. Here we present a three-dimensional deformation field for the Dabbahu rifting episode derived from satellite radar data, which shows that the entire segment ruptured, making it the largest to have occurred on land in the era of satellite geodesy. Simple elastic modelling shows that the magmatic segment opened by up to 8 m, yet seismic rupture can account for only 8 per cent of the observed deformation. Magma was injected along a dyke between depths of 2 and 9 km, corresponding to a total intrusion volume of approximately 2.5 km3. Much of the magma appears to have originated from shallow chambers beneath Dabbahu and Gabho volcanoes at the northern end of the segment, where an explosive fissural eruption occurred on 26 September 2005. Although comparable in magnitude to the ten year (1975-84) Krafla events in Iceland, seismic data suggest that most of the Dabbahu dyke intrusion occurred in less than a week. Thus, magma intrusion via dyking, rather than segmented normal faulting, maintains and probably initiated the along-axis segmentation along this sector of the Nubia-Arabia plate boundary.

3.
Bull Volcanol ; 84(12): 100, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36345313

RESUMEN

Radar (SAR) satellites systematically acquire imagery that can be used for volcano monitoring, characterising magmatic systems and potentially forecasting eruptions on a global scale. However, exploiting the large dataset is limited by the need for manual inspection, meaning timely dissemination of information is challenging. Here we automatically process ~ 600,000 images of > 1000 volcanoes acquired by the Sentinel-1 satellite in a 5-year period (2015-2020) and use the dataset to demonstrate the applicability and limitations of machine learning for detecting deformation signals. Of the 16 volcanoes flagged most often, 5 experienced eruptions, 6 showed slow deformation, 2 had non-volcanic deformation and 3 had atmospheric artefacts. The detection threshold for the whole dataset is 5.9 cm, equivalent to a rate of 1.2 cm/year over the 5-year study period. We then use the large testing dataset to explore the effects of atmospheric conditions, land cover and signal characteristics on detectability and find that the performance of the machine learning algorithm is primarily limited by the quality of the available data, with poor coherence and slow signals being particularly challenging. The expanding dataset of systematically acquired, processed and flagged images will enable the quantitative analysis of volcanic monitoring signals on an unprecedented scale, but tailored processing will be needed for routine monitoring applications. Supplementary Information: The online version contains supplementary material available at 10.1007/s00445-022-01608-x.

4.
Nat Commun ; 12(1): 6881, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34824232

RESUMEN

Over the past two decades, multidisciplinary studies have unearthed a rich history of volcanic activity and unrest in the densely-populated East African Rift System, providing new insights into the influence of rift dynamics on magmatism, the characteristics of the volcanic plumbing systems and the foundation for hazard assessments. The raised awareness of volcanic hazards is driving a shift from crisis response to reducing disaster risks, but a lack of institutional and human capacity in sub-Saharan Africa means baseline data are sparse and mitigating geohazards remains challenging.

5.
Nat Commun ; 10(1): 748, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30765693

RESUMEN

Forecasting explosive eruptions relies on using monitoring data to interpret the patterns and timescales of magma transport and mixing. In September 2017, a distal seismic swarm triggered the evacuation of around 140,000 people from Agung volcano, Bali. From satellite imagery and 3D numerical models, we show that seismicity was associated with a deep, sub-vertical magma intrusion between Agung and its neighbour Batur. This, combined with observations of the 1963 eruption which caused more than thousand fatalities, suggests a vertically and laterally interconnected system experiencing recurring magma mixing. The geometry of the 2017 dyke is consistent with transport from a deep mafic source to a shallow andesitic reservoir controlled by stresses induced by the topographic load, but not the regional tectonics. The ongoing interactions between Agung and Batur have important implications for interpretation of distal seismicity, the links between closely spaced arc volcanoes, and the potential for cascading hazards.

6.
Nat Commun ; 7: 13744, 2016 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-28000791

RESUMEN

Observations of volcanoes from space are a critical component of volcano monitoring, but we lack quantitative integrated models to interpret them. The atmospheric sulfur yields of eruptions are variable and not well correlated with eruption magnitude and for many eruptions the volume of erupted material is much greater than the subsurface volume change inferred from ground displacements. Up to now, these observations have been treated independently, but they are fundamentally linked. If magmas are vapour-saturated before eruption, bubbles cause the magma to become more compressible, resulting in muted ground displacements. The bubbles contain the sulfur-bearing vapour injected into the atmosphere during eruptions. Here we present a model that allows the inferred volume change of the reservoir and the sulfur mass loading to be predicted as a function of reservoir depth and the magma's oxidation state and volatile content, which is consistent with the array of natural data.

7.
Nat Commun ; 7: 13192, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27754479

RESUMEN

The Ethiopian Rift Valley hosts the longest record of human co-existence with volcanoes on Earth, however, current understanding of the magnitude and timing of large explosive eruptions in this region is poor. Detailed records of volcanism are essential for interpreting the palaeoenvironments occupied by our hominin ancestors; and also for evaluating the volcanic hazards posed to the 10 million people currently living within this active rift zone. Here we use new geochronological evidence to suggest that a 200 km-long segment of rift experienced a major pulse of explosive volcanic activity between 320 and 170 ka. During this period, at least four distinct volcanic centres underwent large-volume (>10 km3) caldera-forming eruptions, and eruptive fluxes were elevated five times above the average eruption rate for the past 700 ka. We propose that such pulses of episodic silicic volcanism would have drastically remodelled landscapes and ecosystems occupied by early hominin populations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA