Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Cancer ; 146(2): 373-387, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31211412

RESUMEN

Loss of 5-hydroxymethylcytosine (5hmC) has been associated with mutations of the ten-eleven translocation (TET) enzymes in several types of cancer. However, tumors with wild-type TET genes can also display low 5hmC levels, suggesting that other mechanisms involved in gene regulation might be implicated in the decline of this epigenetic mark. Here we show that DNA hypermethylation and loss of DNA hydroxymethylation, as well as a marked reduction of activating histone marks in the TET3 gene, impair TET3 expression and lead to a genome-wide reduction in 5hmC levels in glioma samples and cancer cell lines. Epigenetic drugs increased expression of TET3 in glioblastoma cells and ectopic overexpression of TET3 impaired in vitro cell growth and markedly reduced tumor formation in immunodeficient mice models. TET3 overexpression partially restored the genome-wide patterns of 5hmC characteristic of control brain samples in glioblastoma cell lines, while elevated TET3 mRNA levels were correlated with better prognosis in glioma samples. Our results suggest that epigenetic repression of TET3 might promote glioblastoma tumorigenesis through the genome-wide alteration of 5hmC.


Asunto(s)
Neoplasias Encefálicas/genética , Carcinogénesis/genética , Dioxigenasas/genética , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animales , Biopsia , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Metilación de ADN , Regulación hacia Abajo , Glioblastoma/mortalidad , Glioblastoma/patología , Código de Histonas/genética , Humanos , Ratones , Pronóstico , ARN Mensajero/metabolismo , Análisis de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto
2.
J Thromb Haemost ; 21(9): 2528-2544, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37085035

RESUMEN

BACKGROUND: Germline mutations in the ETV6 transcription factor gene are responsible for familial thrombocytopenia and leukemia predisposition syndrome. Although previous studies have shown that ETV6 plays an important role in megakaryocyte (MK) maturation and platelet formation, the mechanisms by which ETV6 dysfunction promotes thrombocytopenia remain unclear. OBJECTIVES: To decipher the transcriptional mechanisms and gene regulatory network linking ETV6 germline mutations and thrombocytopenia. METHODS: Presuming that ETV6 mutations result in selective effects at a particular cell stage, we applied single-cell RNA sequencing to understand gene expression changes during megakaryopoiesis in peripheral CD34+ cells from healthy controls and patients with ETV6-related thrombocytopenia. RESULTS: Analysis of gene expression and regulon activity revealed distinct clusters partitioned into 7 major cell stages: hematopoietic stem/progenitor cells, common-myeloid progenitors (CMPs), MK-primed CMPs, granulocyte-monocyte progenitors, MK-erythroid progenitors (MEPs), progenitor MKs/mature MKs, and platelet-like particles. We observed a differentiation trajectory in which MEPs developed directly from hematopoietic stem/progenitor cells and bypassed the CMP stage. ETV6 deficiency led to the development of aberrant cells as early as the MEP stage, which intensified at the progenitor MK/mature MK stage, with a highly deregulated core "ribosome biogenesis" pathway. Indeed, increased translation levels have been documented in patient CD34+-derived MKs with overexpression of ribosomal protein S6 and phosphorylated ribosomal protein S6 in both CD34+-derived MKs and platelets. Treatment of patient MKs with the ribosomal biogenesis inhibitor CX-5461 resulted in an increase in platelet-like particles. CONCLUSION: These findings provide novel insight into both megakaryopoiesis and the link among ETV6, translation, and platelet production.


Asunto(s)
Megacariocitos , Trombocitopenia , Humanos , Diferenciación Celular , Megacariocitos/metabolismo , Proteína S6 Ribosómica/metabolismo , Análisis de la Célula Individual , Trombocitopenia/genética , Trombocitopenia/metabolismo , Trombopoyesis/genética , Antígenos CD34 , Proteína ETS de Variante de Translocación 6
3.
J Thromb Haemost ; 19(9): 2287-2301, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34060193

RESUMEN

BACKGROUND: GATA1 is an essential transcription factor for both polyploidization and megakaryocyte (MK) differentiation. The polyploidization defect observed in GATA1 variant carriers is not well understood. OBJECTIVE: To extensively phenotype two pedigrees displaying different variants in the GATA1 gene and determine if GATA1 controls MYH10 expression levels, a key modulator of MK polyploidization. METHOD: A total of 146 unrelated propositi with constitutional thrombocytopenia were screened on a multigene panel. We described the genotype-phenotype correlation in GATA1 variant carriers and investigated the effect of these novel variants on MYH10 transcription using luciferase constructs. RESULTS: The clinical profile associated with the p.L268M variant localized in the C terminal zinc finger was unusual in that the patient displayed bleeding and severe platelet aggregation defects without early-onset thrombocytopenia. p.N206I localized in the N terminal zinc finger was associated, on the other hand, with severe thrombocytopenia (15G/L) in early life. High MYH10 levels were evidenced in platelets of GATA1 variant carriers. Analysis of MKs anti-GATA1 chromatin immunoprecipitation-sequencing data revealed two GATA1 binding sites, located in the 3' untranslated region and in intron 8 of the MYH10 gene. Luciferase reporter assays showed their respective role in the regulation of MYH10 gene expression. Both GATA1 variants significantly alter intron 8 driven MYH10 transcription. CONCLUSION: The discovery of an association between MYH10 and GATA1 is a novel one. Overall, this study suggests that impaired MYH10 silencing via an intronic regulatory element is the most likely cause of GATA1-related polyploidization defect.


Asunto(s)
Factor de Transcripción GATA1 , Megacariocitos , Cadenas Pesadas de Miosina/genética , Miosina Tipo IIB no Muscular/genética , Trombocitopenia , Plaquetas , Factor de Transcripción GATA1/genética , Silenciador del Gen , Humanos , Trombocitopenia/genética , Trombopoyesis/genética , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA