Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Biochemistry (Mosc) ; 89(Suppl 1): S90-S111, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38621746

RESUMEN

Reactive halogen species (RHS) are highly reactive compounds that are normally required for regulation of immune response, inflammatory reactions, enzyme function, etc. At the same time, hyperproduction of highly reactive compounds leads to the development of various socially significant diseases - asthma, pulmonary hypertension, oncological and neurodegenerative diseases, retinopathy, and many others. The main sources of (pseudo)hypohalous acids are enzymes from the family of heme peroxidases - myeloperoxidase, lactoperoxidase, eosinophil peroxidase, and thyroid peroxidase. Main targets of these compounds are proteins and peptides, primarily methionine and cysteine residues. Due to the short lifetime, detection of RHS can be difficult. The most common approach is detection of myeloperoxidase, which is thought to reflect the amount of RHS produced, but these methods are indirect, and the results are often contradictory. The most promising approaches seem to be those that provide direct registration of highly reactive compounds themselves or products of their interaction with components of living cells, such as fluorescent dyes. However, even such methods have a number of limitations and can often be applied mainly for in vitro studies with cell culture. Detection of reactive halogen species in living organisms in real time is a particularly acute issue. The present review is devoted to RHS, their characteristics, chemical properties, peculiarities of interaction with components of living cells, and methods of their detection in living systems. Special attention is paid to the genetically encoded tools, which have been introduced recently and allow avoiding a number of difficulties when working with living systems.


Asunto(s)
Halógenos , Peroxidasas , Peroxidasas/metabolismo , Halógenos/metabolismo , Peroxidasa/metabolismo , Peroxidasa del Eosinófilo , Antioxidantes
2.
Proc Natl Acad Sci U S A ; 116(11): 4940-4945, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30796188

RESUMEN

Genes coding for small peptides have been frequently misannotated as long noncoding RNA (lncRNA) genes. Here we have demonstrated that one such transcript is translated into a 56-amino-acid-long peptide conserved in chordates, corroborating the work published while this manuscript was under review. The Mtln peptide could be detected in mitochondria of mouse cell lines and tissues. In line with its mitochondrial localization, lack of the Mtln decreases the activity of mitochondrial respiratory chain complex I. Unlike the integral components and assembly factors of NADH:ubiquinone oxidoreductase, Mtln does not alter its enzymatic activity directly. Interaction of Mtln with NADH-dependent cytochrome b5 reductase stimulates complex I functioning most likely by providing a favorable lipid composition of the membrane. Study of Mtln illuminates the importance of small peptides, whose genes might frequently be misannotated as lncRNAs, for the control of vitally important cellular processes.


Asunto(s)
Metabolismo de los Lípidos , Mitocondrias/metabolismo , Péptidos/metabolismo , ARN Largo no Codificante/metabolismo , Secuencia de Aminoácidos , Animales , Respiración de la Célula , Citosol/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Ratones , NAD/metabolismo , Células 3T3 NIH , Consumo de Oxígeno , Fosfolípidos/metabolismo , ARN Largo no Codificante/genética , Triglicéridos/metabolismo
3.
Int J Mol Sci ; 22(1)2020 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-33375682

RESUMEN

Genetically-encoded fluorescent sensors have been actively developed over the last few decades and used in live imaging and drug screening. Real-time monitoring of drug action in a specific cellular compartment, organ, or tissue type; the ability to screen at the single-cell resolution; and the elimination of false-positive results caused by low drug bioavailability that is not detected by in vitro testing methods are a few of the obvious benefits of using genetically-encoded fluorescent sensors in drug screening. In combination with high-throughput screening (HTS), some genetically-encoded fluorescent sensors may provide high reproducibility and robustness to assays. We provide a brief overview of successful, perspective, and hopeful attempts at using genetically encoded fluorescent sensors in HTS of modulators of ion channels, Ca2+ homeostasis, GPCR activity, and for screening cytotoxic, anticancer, and anti-parasitic compounds. We discuss the advantages of sensors in whole organism drug screening models and the perspectives of the combination of human disease modeling by CRISPR techniques with genetically encoded fluorescent sensors for drug screening.


Asunto(s)
Técnicas Biosensibles , Evaluación Preclínica de Medicamentos , Pruebas Genéticas , Antineoplásicos/efectos adversos , Antineoplásicos/farmacología , Biomarcadores , Señalización del Calcio/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Ensayos de Selección de Medicamentos Antitumorales , Metabolismo Energético/efectos de los fármacos , Pruebas Genéticas/métodos , Ensayos Analíticos de Alto Rendimiento , Humanos , Receptores Acoplados a Proteínas G , Transducción de Señal/efectos de los fármacos
4.
Int J Mol Sci ; 21(21)2020 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-33142884

RESUMEN

Redox reactions are of high fundamental and practical interest since they are involved in both normal physiology and the pathogenesis of various diseases. However, this area of research has always been a relatively problematic field in the context of analytical approaches, mostly because of the unstable nature of the compounds that are measured. Genetically encoded sensors allow for the registration of highly reactive molecules in real-time mode and, therefore, they began a new era in redox biology. Their strongest points manifest most brightly in in vivo experiments and pave the way for the non-invasive investigation of biochemical pathways that proceed in organisms from different systematic groups. In the first part of the review, we briefly describe the redox sensors that were used in vivo as well as summarize the model systems to which they were applied. Next, we thoroughly discuss the biological results obtained in these studies in regard to animals, plants, as well as unicellular eukaryotes and prokaryotes. We hope that this work reflects the amazing power of this technology and can serve as a useful guide for biologists and chemists who work in the field of redox processes.


Asunto(s)
Técnicas Biosensibles/métodos , Proteínas Luminiscentes/genética , Imagen Molecular/métodos , Animales , Glutatión/metabolismo , Humanos , Proteínas Luminiscentes/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
5.
Int J Mol Sci ; 20(17)2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31461959

RESUMEN

Genetically encoded biosensors based on fluorescent proteins (FPs) are a reliable tool for studying the various biological processes in living systems. The circular permutation of single FPs led to the development of an extensive class of biosensors that allow the monitoring of many intracellular events. In circularly permuted FPs (cpFPs), the original N- and C-termini are fused using a peptide linker, while new termini are formed near the chromophore. Such a structure imparts greater mobility to the FP than that of the native variant, allowing greater lability of the spectral characteristics. One of the common principles of creating genetically encoded biosensors is based on the integration of a cpFP into a flexible region of a sensory domain or between two interacting domains, which are selected according to certain characteristics. Conformational rearrangements of the sensory domain associated with ligand interaction or changes in the cellular parameter are transferred to the cpFP, changing the chromophore environment. In this review, we highlight the basic principles of such sensors, the history of their creation, and a complete classification of the available biosensors.


Asunto(s)
Técnicas Biosensibles/métodos , Proteínas Fluorescentes Verdes/química , Absorción de Radiación , Animales , Genes Reporteros , Proteínas Fluorescentes Verdes/clasificación , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
Int J Mol Sci ; 20(13)2019 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-31252566

RESUMEN

Hydrogen peroxide (H2O2) plays an important role in modulating cell signaling and homeostasis in live organisms. The HyPer family of genetically encoded indicators allows the visualization of H2O2 dynamics in live cells within a limited field of view. The visualization of H2O2 within a whole organism with a single cell resolution would benefit from a slowly reducible fluorescent indicator that integrates the H2O2 concentration over desired time scales. This would enable post hoc optical readouts in chemically fixed samples. Herein, we report the development and characterization of NeonOxIrr, a genetically encoded green fluorescent indicator, which rapidly increases fluorescence brightness upon reaction with H2O2, but has a low reduction rate. NeonOxIrr is composed of circularly permutated mNeonGreen fluorescent protein fused to the truncated OxyR transcription factor isolated from E. coli. When compared in vitro to a standard in the field, HyPer3 indicator, NeonOxIrr showed 5.9-fold higher brightness, 15-fold faster oxidation rate, 5.9-fold faster chromophore maturation, similar intensiometric contrast (2.8-fold), 2-fold lower photostability, and significantly higher pH stability both in reduced (pKa of 5.9 vs. ≥7.6) and oxidized states (pKa of 5.9 vs.≥ 7.9). When expressed in the cytosol of HEK293T cells, NeonOxIrr demonstrated a 2.3-fold dynamic range in response to H2O2 and a 44 min reduction half-time, which were 1.4-fold lower and 7.6-fold longer than those for HyPer3. We also demonstrated and characterized the NeonOxIrr response to H2O2 when the sensor was targeted to the matrix and intermembrane space of the mitochondria, nucleus, cell membranes, peroxisomes, Golgi complex, and endoplasmic reticulum of HEK293T cells. NeonOxIrr could reveal endogenous reactive oxygen species (ROS) production in HeLa cells induced with staurosporine but not with thapsigargin or epidermal growth factor. In contrast to HyPer3, NeonOxIrr could visualize optogenetically produced ROS in HEK293T cells. In neuronal cultures, NeonOxIrr preserved its high 3.2-fold dynamic range to H2O2 and slow 198 min reduction half-time. We also demonstrated in HeLa cells that NeonOxIrr preserves a 1.7-fold ex vivo dynamic range to H2O2 upon alkylation with N-ethylmaleimide followed by paraformaldehyde fixation. The same alkylation-fixation procedure in the presence of NP-40 detergent allowed ex vivo detection of H2O2 with 1.5-fold contrast in neuronal cultures and in the cortex of the mouse brain. The slowly reducible H2O2 indicator NeonOxIrr can be used for both the in vivo and ex vivo visualization of ROS. Expanding the family of fixable indicators may be a promising strategy to visualize biological processes at a single cell resolution within an entire organism.


Asunto(s)
Técnicas Biosensibles/métodos , Proteínas Fluorescentes Verdes/genética , Peróxido de Hidrógeno/metabolismo , Animales , Encéfalo/metabolismo , Células Cultivadas , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Humanos , Peróxido de Hidrógeno/análisis , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente/métodos , Neuronas/metabolismo , Oxidación-Reducción
7.
J Neurosci Res ; 95(11): 2244-2252, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28631845

RESUMEN

Succinylation of proteins is widespread, modifies both the charge and size of the molecules, and can alter their function. For example, liver mitochondrial proteins have 1,190 unique succinylation sites representing multiple metabolic pathways. Succinylation is sensitive to both increases and decreases of the NAD+ -dependent desuccinylase, SIRT5. Although the succinyl group for succinylation is derived from metabolism, the effects of systematic variation of metabolism on mitochondrial succinylation are not known. Changes in succinylation of mitochondrial proteins following variations in metabolism were compared against the mitochondrial redox state as estimated by the mitochondrial NAD+ /NADH ratio using fluorescent probes. The ratio was decreased by reduced glycolysis and/or glutathione depletion (iodoacetic acid; 2-deoxyglucose), depressed tricarboxylic acid cycle activity (carboxyethyl ester of succinyl phosphonate), and impairment of electron transport (antimycin) or ATP synthase (oligomycin), while uncouplers of oxidative phosphorylation (carbonyl cyanide m-chlorophenyl hydrazine or tyrphostin) increased the NAD+ /NADH ratio. All of the conditions decreased succinylation. In contrast, reducing the oxygen from 20% to 2.4% increased succinylation. The results demonstrate that succinylation varies with metabolic states, is not correlated to the mitochondrial NAD+ /NADH ratio, and may help coordinate the response to metabolic challenge.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Ácido Succínico/metabolismo , Animales , Línea Celular Tumoral , Desoxiglucosa/farmacología , Ratones , NAD/metabolismo , Organofosfonatos/metabolismo , Oxidación-Reducción/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Succinatos/metabolismo
8.
Biochim Biophys Acta ; 1840(3): 951-7, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24286672

RESUMEN

BACKGROUND: The ratio of NAD(+)/NADH is a key indicator that reflects the overall redox state of the cells. Until recently, there were no methods for real time NAD(+)/NADH monitoring in living cells. Genetically encoded fluorescent probes for NAD(+)/NADH are fundamentally new approach for studying the NAD(+)/NADH dynamics. METHODS: We developed a genetically encoded probe for the nicotinamide adenine dinucleotide, NAD(H), redox state changes by inserting circularly permuted YFP into redox sensor T-REX from Thermus aquaticus. We characterized the sensor in vitro using spectrofluorometry and in cultured mammalian cells using confocal fluorescent microscopy. RESULTS: The sensor, named RexYFP, reports changes in the NAD(+)/NADH ratio in different compartments of living cells. Using RexYFP, we were able to track changes in NAD(+)/NADH in cytoplasm and mitochondrial matrix of cells under a variety of conditions. The affinity of the probe enables comparison of NAD(+)/NADH in compartments with low (cytoplasm) and high (mitochondria) NADH concentration. We developed a method of eliminating pH-driven artifacts by normalizing the signal to the signal of the pH sensor with the same chromophore. CONCLUSION: RexYFP is suitable for detecting the NAD(H) redox state in different cellular compartments. GENERAL SIGNIFICANCE: RexYFP has several advantages over existing NAD(+)/NADH sensors such as smallest size and optimal affinity for different compartments. Our results show that normalizing the signal of the sensor to the pH changes is a good strategy for overcoming pH-induced artifacts in imaging.


Asunto(s)
Proteínas Bacterianas/genética , Colorantes Fluorescentes , Proteínas Luminiscentes/genética , NAD/análisis , Citoplasma/química , Células HEK293 , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Mitocondrias/química , Oxidación-Reducción
9.
Free Radic Biol Med ; 217: 68-115, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38508405

RESUMEN

The objective of the current review is to summarize the current state of optical methods in redox biology. It consists of two parts, the first is dedicated to genetically encoded fluorescent indicators and the second to Raman spectroscopy. In the first part, we provide a detailed classification of the currently available redox biosensors based on their target analytes. We thoroughly discuss the main architecture types of these proteins, the underlying engineering strategies for their development, the biochemical properties of existing tools and their advantages and disadvantages from a practical point of view. Particular attention is paid to fluorescence lifetime imaging microscopy as a possible readout technique, since it is less prone to certain artifacts than traditional intensiometric measurements. In the second part, the characteristic Raman peaks of the most important redox intermediates are listed, and examples of how this knowledge can be implemented in biological studies are given. This part covers such fields as estimation of the redox states and concentrations of Fe-S clusters, cytochromes, other heme-containing proteins, oxidative derivatives of thiols, lipids, and nucleotides. Finally, we touch on the issue of multiparameter imaging, in which biosensors are combined with other visualization methods for simultaneous assessment of several cellular parameters.


Asunto(s)
Técnicas Biosensibles , Espectrometría Raman , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/metabolismo , Técnicas Biosensibles/métodos , Oxidación-Reducción , Biología
10.
Free Radic Biol Med ; 211: 145-157, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38043869

RESUMEN

It is generally accepted that oxidative stress plays a key role in the development of ischemia-reperfusion injury in ischemic heart disease. However, the mechanisms how reactive oxygen species trigger cellular damage are not fully understood. Our study investigates redox state and highly reactive substances within neonatal and adult cardiomyocytes under hypoxia conditions. We have found that hypoxia induced an increase in H2O2 production in adult cardiomyocytes, while neonatal cardiomyocytes experienced a decrease in H2O2 levels. This finding correlates with our observation of the difference between the electron transport chain (ETC) properties and mitochondria amount in adult and neonatal cells. We demonstrated that in adult cardiomyocytes hypoxia caused the significant increase in the ETC loading with electrons compared to normoxia. On the contrary, in neonatal cardiomyocytes ETC loading with electrons was similar under both normoxic and hypoxic conditions that could be due to ETC non-functional state and the absence of the electrons transfer to O2 under normoxia. In addition to the variations in H2O2 production, we also noted consistent pH dynamics under hypoxic conditions. Notably, the pH levels exhibited a similar decrease in both cell types, thus, acidosis is a more universal cellular response to hypoxia. We also demonstrated that the amount of mitochondria and the levels of cardiac isoforms of troponin I, troponin T, myoglobin and GAPDH were significantly higher in adult cardiomyocytes compared to neonatal ones. Remarkably, we found out that under hypoxia, the levels of cardiac isoforms of troponin T, myoglobin, and GAPDH were elevated in adult cardiomyocytes, while their level in neonatal cells remained unchanged. Obtained data contribute to the understanding of the mechanisms of neonatal cardiomyocytes' resistance to hypoxia and the ability to maintain the metabolic homeostasis in contrast to adult ones.


Asunto(s)
Peróxido de Hidrógeno , Miocitos Cardíacos , Ratas , Animales , Miocitos Cardíacos/metabolismo , Peróxido de Hidrógeno/metabolismo , Mioglobina , Troponina T/metabolismo , Hipoxia de la Célula , Hipoxia/metabolismo , Oxidación-Reducción , Isoformas de Proteínas/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-39086238

RESUMEN

The lack of oxygen (O2) causes changes in the cell functioning. Modeling hypoxic conditions in vitro is challenging given that different cell types exhibit different sensitivities to tissue O2 levels. We present an effective in vivo platform for assessing various tissue and organ parameters in Danio rerio larvae under acute hypoxic conditions. Our system allows simultaneous positioning of multiple individuals within a chamber where O2 level in the water can be precisely and promptly regulated, all while conducting microscopy. We applied this approach in combination with a genetically encoded pH-biosensor SypHer3s and a highly H2O2-sensitive Hyper7 biosensor. Hypoxia causes H2O2 production in areas of brain, heart and skeletal muscles, exclusively in the mitochondrial matrix; it is noteworthy that H2O2 does not penetrate into the cytosol and is neutralized in the matrix upon reoxygenation. Hypoxia causes pronounced tissue acidosis, expressed by a decrease in pH by 0.4-0.6 units everywhere. Using imaging photoplethysmography, we measured in D.rerio fry real-time heart rate decrease under conditions of hypoxia and subsequent reoxygenation. Our observations in this experimental system lead to the hypothesis that mitochondria are the only source of H2O2 in cells of D.rerio under hypoxia.

12.
Free Radic Biol Med ; 208: 153-164, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37543166

RESUMEN

Diabetes is one of the significant risk factors for ischemic stroke. Hyperglycemia exacerbates the pathogenesis of stroke, leading to more extensive cerebral damage and, as a result, to more severe consequences. However, the mechanism whereby the hyperglycemic status in diabetes affects biochemical processes during the development of ischemic injury is still not fully understood. In the present work, we record for the first time the real-time dynamics of H2O2 in the matrix of neuronal mitochondria in vitro in culture and in vivo in the brain tissues of rats during development of ischemic stroke under conditions of hyperglycemia and normal glucose levels. To accomplish this, we used a highly sensitive HyPer7 biosensor and a fiber-optic interface technology. We demonstrated that a high glycemic status does not affect the generation of H2O2 in the tissues of the ischemic core, while significantly exacerbating the consequences of pathogenesis. For the first time using Raman microspectroscopy approach, we have shown how a sharp increase in the blood glucose level increases the relative amount of reduced cytochromes in the mitochondrial electron transport chain in neurons under normal conditions in awake mice.


Asunto(s)
Isquemia Encefálica , Diabetes Mellitus , Hiperglucemia , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratas , Ratones , Animales , Peróxido de Hidrógeno , Accidente Cerebrovascular/patología , Hiperglucemia/patología , Isquemia Encefálica/patología
13.
FEBS J ; 289(18): 5382-5395, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34173331

RESUMEN

Cell metabolism heavily relies on the redox reactions that inevitably generate reactive oxygen species (ROS). It is now well established that ROS fluctuations near basal levels coordinate numerous physiological processes in living organisms, thus exhibiting regulatory functions. Hydrogen peroxide, the most long-lived ROS, is a key contributor to ROS-dependent signal transduction in the cell. H2 O2 is known to impact various targets in the cell; therefore, the question of how H2 O2 modulates physiological processes in a highly specific manner is central in redox biology. To resolve this question, novel genetic tools have recently been created for detecting H2 O2 and emulating its generation in living organisms with unmatched spatiotemporal resolution. Here, we review H2 O2 -sensitive genetically encoded fluorescent sensors and opto- and chemogenetic tools for controlled H2 O2 generation.


Asunto(s)
Peróxido de Hidrógeno , Transducción de Señal , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Oxidación-Reducción , Especies Reactivas de Oxígeno , Transducción de Señal/genética
14.
Nat Commun ; 13(1): 171, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013284

RESUMEN

The lack of tools to monitor the dynamics of (pseudo)hypohalous acids in live cells and tissues hinders a better understanding of inflammatory processes. Here we present a fluorescent genetically encoded biosensor, Hypocrates, for the visualization of (pseudo)hypohalous acids and their derivatives. Hypocrates consists of a circularly permuted yellow fluorescent protein integrated into the structure of the transcription repressor NemR from Escherichia coli. We show that Hypocrates is ratiometric, reversible, and responds to its analytes in the 106 M-1s-1 range. Solving the Hypocrates X-ray structure provided insights into its sensing mechanism, allowing determination of the spatial organization in this circularly permuted fluorescent protein-based redox probe. We exemplify its applicability by imaging hypohalous stress in bacteria phagocytosed by primary neutrophils. Finally, we demonstrate that Hypocrates can be utilized in combination with HyPerRed for the simultaneous visualization of (pseudo)hypohalous acids and hydrogen peroxide dynamics in a zebrafish tail fin injury model.


Asunto(s)
Aletas de Animales/diagnóstico por imagen , Proteínas Bacterianas/genética , Técnicas Biosensibles/métodos , Colorantes Fluorescentes/química , Ácido Hipocloroso/análisis , Proteínas Luminiscentes/genética , Aletas de Animales/lesiones , Aletas de Animales/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Técnicas Biosensibles/instrumentación , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genes Reporteros , Peróxido de Hidrógeno/química , Ácido Hipocloroso/síntesis química , Ácido Hipocloroso/metabolismo , Proteínas Luminiscentes/metabolismo , Neutrófilos/citología , Neutrófilos/inmunología , Oxidación-Reducción , Fagocitosis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra
15.
J Biophotonics ; 15(10): e202200050, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35654757

RESUMEN

We present an experimental framework and methodology for in vivo studies on rat stroke models that enable a real-time fiber-optic recording of stroke-induced hydrogen peroxide and pH transients in ischemia-affected brain areas. Arrays of reconnectable implantable fiber probes combined with advanced optogenetic fluorescent protein sensors are shown to enable a quantitative multisite time-resolved study of oxidative-stress and acidosis buildup dynamics as the key markers, correlates and possible drivers of ischemic stroke. The fiber probes designed for this work provide a wavelength-multiplex forward-propagation channel for a spatially localized, dual-pathway excitation of genetically encoded fluorescence-protein sensors along with a back-propagation channel for the fluorescence return from optically driven fluorescence sensors. We show that the spectral analysis of the fiber-probe-collected fluorescence return provides means for a high-fidelity autofluorescence background subtraction, thus enhancing the sensitivity of real-time detection of stroke-induced transients and significantly reducing measurement uncertainties in in vivo acute-stroke studies as inherently statistical experiments operating with outcomes of multiply repeated measurements on large populations of individually variable animal stroke models.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Tecnología de Fibra Óptica/métodos , Peróxido de Hidrógeno , Optogenética , Ratas
16.
Bioorg Med Chem ; 19(3): 1079-84, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-20692175

RESUMEN

Hydrogen peroxide is an important second messenger controlling intracellular signaling cascades by selective oxidation of redox active thiolates in proteins. Changes in intracellular [H(2)O(2)] can be tracked in real time using HyPer, a ratiometric genetically encoded fluorescent probe. Although HyPer is sensitive and selective for H(2)O(2) due to the properties of its sensing domain derived from the Escherichia coli OxyR protein, many applications may benefit from an improvement of the indicator's dynamic range. We here report HyPer-2, a probe that fills this demand. Upon saturating [H(2)O(2)] exposure, HyPer-2 undergoes an up to sixfold increase of the ratio F500/F420 versus a threefold change in HyPer. HyPer-2 was generated by a single point mutation A406V from HyPer corresponding to A233V in wtOxyR. This mutation was previously shown to destabilize interface between monomers in OxyR dimers. However, in HyPer-2, the A233V mutation stabilizes the dimer and expands the dynamic range of the probe.


Asunto(s)
Proteínas de Escherichia coli/genética , Colorantes Fluorescentes , Peróxido de Hidrógeno/análisis , Proteínas Represoras/genética , Células 3T3 , Animales , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Colorantes Fluorescentes/metabolismo , Células HeLa , Humanos , Peróxido de Hidrógeno/metabolismo , Ratones , Microscopía Confocal , Mutación , Oxidación-Reducción , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Transducción de Señal , Factores de Tiempo , Transfección
17.
J Biophotonics ; 14(3): e202000301, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33205577

RESUMEN

We present experiments on cell cultures and brain slices that demonstrate two-photon optogenetic pH sensing and pH-resolved brain imaging using a laser driver whose spectrum is carefully tailored to provide the maximum contrast of a ratiometric two-photon fluorescence readout from a high-brightness genetically encoded yellow-fluorescent-protein-based sensor, SypHer3s. Two spectrally isolated components of this laser field are set to induce two-photon-excited fluorescence (2PEF) by driving SypHer3s through one of two excitation pathways-via either the protonated or deprotonated states of its chromophore. With the spectrum of the laser field accurately adjusted for a maximum contrast of these two 2PEF signals, the ratio of their intensities is shown to provide a remarkably broad dynamic range for pH measurements, enabling high-contrast optogenetic deep-brain pH sensing and pH-resolved 2PEF imaging within a vast class of biological systems, ranging from cell cultures to the living brain.


Asunto(s)
Optogenética , Fotones , Encéfalo/diagnóstico por imagen , Concentración de Iones de Hidrógeno , Neuroimagen
18.
Redox Biol ; 48: 102178, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34773835

RESUMEN

Ischemic cerebral stroke is one of the leading causes of death and disability in humans. However, molecular processes underlying the development of this pathology remain poorly understood. There are major gaps in our understanding of metabolic changes that occur in the brain tissue during the early stages of ischemia and reperfusion. In particular, it is generally accepted that both ischemia (I) and reperfusion (R) generate reactive oxygen species (ROS) that cause oxidative stress which is one of the main drivers of the pathology, although ROS generation during I/R was never demonstrated in vivo due to the lack of suitable methods. In the present study, we record for the first time the dynamics of intracellular pH and H2O2 during I/R in cultured neurons and during experimental stroke in rats using the latest generation of genetically encoded biosensors SypHer3s and HyPer7. We detect a buildup of powerful acidosis in the brain tissue that overlaps with the ischemic core from the first seconds of pathogenesis. At the same time, no significant H2O2 generation was found in the acute phase of ischemia/reperfusion. HyPer7 oxidation in the brain was detected only 24 h later. Comparison of in vivo experiments with studies on cultured neurons under I/R demonstrates that the dynamics of metabolic processes in these models significantly differ, suggesting that a cell culture is a poor predictor of metabolic events in vivo.

19.
Antioxidants (Basel) ; 9(6)2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32545356

RESUMEN

Hypoxia is characterized by low oxygen content in the tissues. The central nervous system (CNS) is highly vulnerable to a lack of oxygen. Prolonged hypoxia leads to the death of brain cells, which underlies the development of many pathological conditions. Despite the relevance of the topic, different approaches used to study the molecular mechanisms of hypoxia have many limitations. One promising lead is the use of various genetically encoded tools that allow for the observation of intracellular parameters in living systems. In the first part of this review, we provide the classification of oxygen/hypoxia reporters as well as describe other genetically encoded reporters for various metabolic and redox parameters that could be implemented in hypoxia studies. In the second part, we discuss the advantages and disadvantages of the primary hypoxia model systems and highlight inspiring examples of research in which these experimental settings were combined with genetically encoded reporters.

20.
J Biophotonics ; 13(3): e201900243, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31568649

RESUMEN

We demonstrate an accurate quantitative characterization of absolute two- and three-photon absorption (2PA and 3PA) action cross sections of a genetically encodable fluorescent marker Sypher3s. Both 2PA and 3PA action cross sections of this marker are found to be remarkably high, enabling high-brightness, cell-specific two- and three-photon fluorescence brain imaging. Brain imaging experiments on sliced samples of rat's cortical areas are presented to demonstrate these imaging modalities. The 2PA action cross section of Sypher3s is shown to be highly sensitive to the level of pH, enabling pH measurements via a ratiometric readout of the two-photon fluorescence with two laser excitation wavelengths, thus paving the way toward fast optical pH sensing in deep-tissue experiments.


Asunto(s)
Microscopía de Fluorescencia por Excitación Multifotónica , Fotones , Animales , Encéfalo/diagnóstico por imagen , Neuroimagen , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA