Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Proteome Res ; 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38520676

RESUMEN

Metabolomics is an emerging and powerful bioanalytical method supporting clinical investigations. Serum and plasma are commonly used without rational prioritization. Serum is collected after blood coagulation, a complex biochemical process involving active platelet metabolism. This may affect the metabolome and increase the variance, as platelet counts and function may vary substantially in individuals. A multiomics approach systematically investigating the suitability of serum and plasma for clinical studies demonstrated that metabolites correlated well (n = 461, R2 = 0.991), whereas lipid mediators (n = 83, R2 = 0.906) and proteins (n = 322, R2 = 0.860) differed substantially between specimen. Independently, analysis of platelet releasates identified most biomolecules significantly enriched in serum compared to plasma. A prospective, randomized, controlled parallel group metabolomics trial with acetylsalicylic acid administered for 7 days demonstrated that the apparent drug effects significantly differ depending on the analyzed specimen. Only serum analyses of healthy individuals suggested a significant downregulation of TXB2 and 12-HETE, which were specifically formed during coagulation in vitro. Plasma analyses reliably identified acetylsalicylic acid effects on metabolites and lipids occurring in vivo such as an increase in serotonin, 15-deoxy-PGJ2 and sphingosine-1-phosphate and a decrease in polyunsaturated fatty acids. The present data suggest that plasma should be preferred above serum for clinical metabolomics studies as the serum metabolome may be substantially confounded by platelets.

2.
Mol Cell Proteomics ; 21(2): 100190, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34958949

RESUMEN

Hypoxia-induced intrauterine growth restriction increases the risk for cardiovascular, renal, and other chronic diseases in adults, representing thus a major public health problem. Still, not much is known about the fetal mechanisms that predispose these individuals to disease. Using a previously validated mouse model of fetal hypoxia and bottom-up proteomics, we characterize the response of the fetal kidney to chronic hypoxic stress. Fetal kidneys exhibit a dichotomous response to chronic hypoxia, comprising on the one hand cellular adaptations that promote survival (glycolysis, autophagy, and reduced DNA and protein synthesis), but on the other processes that induce a senescence-like phenotype (infiltration of inflammatory cells, DNA damage, and reduced proliferation). Importantly, chronic hypoxia also reduces the expression of the antiaging proteins klotho and Sirt6, a mechanism that is evolutionary conserved between mice and humans. Taken together, we uncover that predetermined aging during fetal development is a key event in chronic hypoxia, establishing a solid foundation for Barker's hypothesis of fetal programming of adult diseases. This phenotype is associated with a characteristic biomarker profile in tissue and serum samples, exploitable for detecting and targeting accelerated aging in chronic hypoxic human diseases.


Asunto(s)
Hipoxia Fetal , Sirtuinas , Envejecimiento , Animales , Desarrollo Fetal , Hipoxia , Ratones , Fenotipo
3.
EMBO J ; 38(15): e95874, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31267558

RESUMEN

MAPK inhibitors (MAPKi) show outstanding clinical response rates in melanoma patients harbouring BRAF mutations, but resistance is common. The ability of melanoma cells to switch from melanocytic to mesenchymal phenotypes appears to be associated with therapeutic resistance. High-throughput, subcellular proteome analyses and RNAseq on two panels of primary melanoma cells that were either sensitive or resistant to MAPKi revealed that only 15 proteins were sufficient to distinguish between these phenotypes. The two proteins with the highest discriminatory power were PTRF and IGFBP7, which were both highly upregulated in the mesenchymal-resistant cells. Proteomic analysis of CRISPR/Cas-derived PTRF knockouts revealed targets involved in lysosomal activation, endocytosis, pH regulation, EMT, TGFß signalling and cell migration and adhesion, as well as a significantly reduced invasive index and ability to form spheres in 3D culture. Overexpression of PTRF led to MAPKi resistance, increased cell adhesion and sphere formation. In addition, immunohistochemistry of patient samples showed that PTRF expression levels were a significant biomarker of poor progression-free survival, and IGFBP7 levels in patient sera were shown to be higher after relapse.


Asunto(s)
Resistencia a Antineoplásicos , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Melanoma/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteómica/métodos , Proteínas de Unión al ARN/metabolismo , Adulto , Anciano , Carbamatos/farmacología , Adhesión Celular , Línea Celular Tumoral , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Masculino , Melanoma/tratamiento farmacológico , Melanoma/genética , Persona de Mediana Edad , Mapas de Interacción de Proteínas , Análisis de Secuencia de ARN , Sulfonamidas/farmacología , Análisis de Supervivencia , Regulación hacia Arriba , Vemurafenib/farmacología
4.
Chemistry ; 29(4): e202202648, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36222279

RESUMEN

A series of six highly lipophilic Cp-substituted molybdenocenes bearing different bioactive chelating ligands was synthesized and characterized by NMR spectroscopy, mass spectrometry and X-ray crystallography. In vitro experiments showed a greatly increased cytotoxic potency when compared to the non-Cp-substituted counterparts. In vivo experiments performed with the dichlorido precursor, (Ph2 C-Cp)2 MoCl2 and the in vitro most active complex, containing the thioflavone ligand, showed an inhibition of tumour growth. Proteomic studies on the same two compounds demonstrated a significant regulation of tubulin-associated and mitochondrial inner membrane proteins for both compounds and a strong metabolic effect of the thioflavone containing complex.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Ratones , Estructura Molecular , Proteómica , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Quelantes/química , Cristalografía por Rayos X , Ligandos , Línea Celular Tumoral
5.
Arch Toxicol ; 97(6): 1659-1675, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37117602

RESUMEN

Intestinal cells are continuously exposed to food constituents while adapting to peristaltic movement and fluid shear stress. Oleic acid (OA) and palmitic acid (PA) are among the most prevalent fatty acids with respect to dietary lipids. Despite the central importance of dietary lipids for a balanced diet, awareness about potential detrimental effects related to excessive consumption is increasing; this includes toxicity, metabolic deregulation, and, particularly for cancer cells, a benefit from the uptake of fatty acids related to promotion of metastasis. Expanding on this, we started elucidating the effects of OA and PA (25-500 µM) on non-transformed human intestinal epithelial cells (HCEC-1CT) in comparison to colon carcinoma cells (HCT116), with regard to the mechanosensory apparatus. Hence, intestinal cells' motility is on the one side essential to ensure adaption to peristaltic movement and barrier function, but also to enable metastatic progression. Incubation with both OA and PA (≥ 25 µM) significantly decreased membrane fluidity of HCT116 cells, whereas the effect on HCEC-1CT was more limited. Application of rhodamine-labelled PA demonstrated that the fatty acid is incorporated into the plasma membrane of HCT116, which could not be observed in the non-tumorigenic cell line. Down-streaming into the intracellular compartment, a pronounced rearrangement of actin cytoskeleton was evident in both cell lines (OA and PA; 25 and 100 µM). This was accompanied by a variation of translocation efficiency of the mechanosensitive co-transcription factor YAP1, albeit with a stronger effect seen for PA and the cancer cells. Untargeted proteomic analysis confirmed that exposure to OA and PA could alter the response capacity of HCT116 cells to fluid shear stress. Taken together, OA and PA were able to functionally modulate the mechanosensory apparatus of intestinal cells, implying a novel role for dietary fatty acids in the regulation of intestinal pathophysiology.


Asunto(s)
Mecanotransducción Celular , Ácido Palmítico , Humanos , Ácido Palmítico/toxicidad , Ácido Palmítico/metabolismo , Proteómica , Ácidos Grasos , Ácido Oléico/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(2): 1097-1106, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31843923

RESUMEN

The molecular mechanisms by which animals integrate external stimuli with internal energy balance to regulate major developmental and reproductive events still remain enigmatic. We investigated this aspect in the marine bristleworm, Platynereis dumerilii, a species where sexual maturation is tightly regulated by both metabolic state and lunar cycle. Our specific focus was on ligands and receptors of the gonadotropin-releasing hormone (GnRH) superfamily. Members of this superfamily are key in triggering sexual maturation in vertebrates but also regulate reproductive processes and energy homeostasis in invertebrates. Here we show that 3 of the 4 gnrh-like (gnrhl) preprohormone genes are expressed in specific and distinct neuronal clusters in the Platynereis brain. Moreover, ligand-receptor interaction analyses reveal a single Platynereis corazonin receptor (CrzR) to be activated by CRZ1/GnRHL1, CRZ2/GnRHL2, and GnRHL3 (previously classified as AKH1), whereas 2 AKH-type hormone receptors (GnRHR1/AKHR1 and GnRHR2/AKHR2) respond only to a single ligand (GnRH2/GnRHL4). Crz1/gnrhl1 exhibits a particularly strong up-regulation in sexually mature animals, after feeding, and in specific lunar phases. Homozygous crz1/gnrhl1 knockout animals exhibit a significant delay in maturation, reduced growth, and attenuated regeneration. Through a combination of proteomics and gene expression analysis, we identify enzymes involved in carbohydrate metabolism as transcriptional targets of CRZ1/GnRHL1 signaling. Our data suggest that Platynereis CRZ1/GnRHL1 coordinates glycoprotein turnover and energy homeostasis with growth and sexual maturation, integrating both metabolic and developmental demands with the worm's monthly cycle.


Asunto(s)
Hormona Liberadora de Gonadotropina/metabolismo , Homeostasis , Proteínas de Insectos/metabolismo , Luna , Neuropéptidos/metabolismo , Poliquetos/fisiología , Maduración Sexual/fisiología , Transducción de Señal/fisiología , Animales , Encéfalo , Proteínas de Unión al ADN/genética , Técnicas de Silenciamiento del Gen , Hormona Liberadora de Gonadotropina/genética , Hormonas de Insectos/genética , Hormonas de Insectos/metabolismo , Proteínas de Insectos/genética , Invertebrados/genética , Neuropéptidos/genética , Filogenia , Poliquetos/genética , Poliquetos/crecimiento & desarrollo , Receptores de Neuropéptido , Receptores de Péptidos/genética , Transducción de Señal/genética , Factores de Transcripción
7.
J Biol Chem ; 296: 100487, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33676898

RESUMEN

Numerous observations indicate that red blood cells (RBCs) affect T-cell activation and proliferation. We have studied effects of packed RBCs (PRBCs) on T-cell receptor (TCR) signaling and the molecular mechanisms whereby (P)RBCs modulate T-cell activation. In line with previous reports, PRBCs attenuated the expression of T-cell activation markers CD25 and CD69 upon costimulation via CD3/CD28. In addition, T-cell proliferation and cytokine expression were markedly reduced when T-cells were stimulated in the presence of PRBCs. Inhibitory activity of PRBCs required direct cell-cell contact and intact PRBCs. The production of activation-induced cellular reactive oxygen species, which act as second messengers in T-cells, was completely abrogated to levels of unstimulated T-cells in the presence of PRBCs. Phosphorylation of the TCR-related zeta chain and thus proximal TCR signal transduction was unaffected by PRBCs, ruling out mechanisms based on secreted factors and steric interaction restrictions. In large part, downstream signaling events requiring reactive oxygen species for full functionality were affected, as confirmed by an untargeted MS-based phosphoproteomics approach. PRBCs inhibited T-cell activation more efficiently than treatment with 1 mM of the antioxidant N-acetyl cysteine. Taken together, our data imply that inflammation-related radical reactions are modulated by PRBCs. These immunomodulating effects may be responsible for clinical observations associated with transfusion of PRBCs.


Asunto(s)
Antígenos CD/inmunología , Antígenos de Diferenciación de Linfocitos T/inmunología , Eritrocitos/inmunología , Subunidad alfa del Receptor de Interleucina-2/inmunología , Lectinas Tipo C/inmunología , Especies Reactivas de Oxígeno/metabolismo , Linfocitos T/inmunología , Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos T/metabolismo , Proliferación Celular/fisiología , Células Cultivadas , Eritrocitos/metabolismo , Humanos , Inmunomodulación , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Lectinas Tipo C/metabolismo , Leucocitos Mononucleares , Activación de Linfocitos , Fosforilación , Transducción de Señal , Linfocitos T/metabolismo
8.
Haematologica ; 107(9): 2121-2132, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34818873

RESUMEN

Von Willebrand factor (VWF) and factor VIII (FVIII) circulate in a noncovalent complex in blood and promote primary hemostasis and clotting, respectively. A new VWF A1-domain binding aptamer, BT200, demonstrated good subcutaneous bioavailability and a long half-life in non-human primates. This first-in-human, randomized, placebo-controlled, doubleblind trial tested the hypothesis that BT200 is well tolerated and has favorable pharmacokinetic and pharmacodynamic effects in 112 volunteers. Participants received one of the following: a single ascending dose of BT200 (0.18-48 mg) subcutaneously, an intravenous dose, BT200 with concomitant desmopressin or multiple doses. Pharmacokinetics were characterized, and the pharmacodynamic effects were measured by VWF levels, FVIII clotting activity, ristocetin-induced aggregation, platelet function under high shear rates, and thrombin generation. The mean half-lives ranged from 7-12 days and subcutaneous bioavailability increased dose-dependently exceeding 55% for doses of 6-48 mg. By blocking free A1 domains, BT200 dose-dependently decreased ristocetin-induced aggregation, and prolonged collagen-adenosine diphosphate and shear-induced platelet plug formation times. However, BT200 also increased VWF antigen and FVIII levels 4-fold (P<0.001), without increasing VWF propeptide levels, indicating decreased VWF/FVIII clearance. This, in turn, increased thrombin generation and accelerated clotting. Desmopressin-induced VWF/FVIII release had additive effects on a background of BT200. Tolerability and safety were generally good, but exaggerated pharmacology was seen at saturating doses. This trial identified a novel mechanism of action for BT200: BT200 dose-dependently increases VWF/FVIII by prolonging half-life at doses well below those which inhibit VWF-mediated platelet function. This novel property can be exploited therapeutically to enhance hemostasis in congenital bleeding disorders.


Asunto(s)
Enfermedades de von Willebrand , Factor de von Willebrand , Desamino Arginina Vasopresina , Factor VIII , Humanos , Ristocetina/farmacología , Trombina , Factor de von Willebrand/metabolismo
9.
Neurocrit Care ; 36(2): 434-440, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34342833

RESUMEN

BACKGROUND: Continuous advances in resuscitation care have increased survival, but the rate of favorable neurological outcome remains low. We have shown the usefulness of proteomics in identifying novel biomarkers to predict neurological outcome. Neurofilament light chain (NfL), a marker of axonal damage, has since emerged as a promising single marker. The aim of this study was to assess the predictive value of NfL in comparison with and in addition to our established model. METHODS: NfL was measured in plasma samples drawn at 48 h after cardiac arrest using single-molecule assays. Neurological function was recorded on the cerebral performance category (CPC) scale at discharge from the intensive care unit and after 6 months. The ability to predict a dichotomized outcome (CPC 1-2 vs. 3-5) was assessed with receiver operating characteristic (ROC) curves. RESULTS: Seventy patients were included in this analysis, of whom 21 (30%) showed a favorable outcome (CPC 1-2), compared with 49 (70%) with an unfavorable outcome (CPC 3-5) at discharge. NfL increased from CPC 1 to 5 (16.5 pg/ml to 641 pg/ml, p < 0.001). The addition of NfL to the existing model improved it significantly (Wald test, p < 0.001), and the combination of NfL with a multimarker model showed high areas under the ROC curve (89.7% [95% confidence interval 81.7-97.7] at discharge and 93.7% [88.2-99.2] at 6 months) that were significantly greater than each model alone. CONCLUSIONS: The combination of NfL with other plasma and clinical markers is superior to that of either model alone and achieves high areas under the ROC curve in this relatively small sample.


Asunto(s)
Paro Cardíaco , Filamentos Intermedios , Biomarcadores , Paro Cardíaco/terapia , Humanos , Filamentos Intermedios/química , Pronóstico , Proteómica , Curva ROC
10.
Angew Chem Int Ed Engl ; 61(43): e202209136, 2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36004624

RESUMEN

Target identification remains a critical challenge in inorganic drug discovery to deconvolute potential polypharmacology. Herein, we describe an improved approach to prioritize candidate protein targets based on a combination of dose-dependent chemoproteomics and treatment effects in living cancer cells for the rhenium tricarbonyl compound TRIP. Chemoproteomics revealed 89 distinct dose-dependent targets with concentrations of competitive saturation between 0.1 and 32 µM despite the broad proteotoxic effects of TRIP. Target-response networks revealed two highly probable targets of which the Fe-S cluster biogenesis factor NUBP2 was competitively saturated by free TRIP at nanomolar concentrations. Importantly, TRIP treatment led to a down-regulation of Fe-S cluster containing proteins and upregulated ferritin. Fe-S cluster depletion was further verified by assessing mitochondrial bioenergetics. Consequently, TRIP emerges as a first-in-class modulator of the scaffold protein NUBP2, which disturbs Fe-S cluster biogenesis at sub-cytotoxic concentrations in ovarian cancer cells.


Asunto(s)
Proteínas Hierro-Azufre , Neoplasias Ováricas , Renio , Humanos , Femenino , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Ferritinas/metabolismo
11.
Mol Cell Proteomics ; 18(5): 936-953, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30792264

RESUMEN

Multiple Myeloma (MM) is an incurable plasma cell malignancy primarily localized within the bone marrow (BM). It develops from a premalignant stage, monoclonal gammopathy of undetermined significance (MGUS), often via an intermediate stage, smoldering MM (SMM). The mechanisms of MM progression have not yet been fully understood, all the more because patients with MGUS and SMM already carry similar initial mutations as found in MM cells. Over the last years, increased importance has been attributed to the tumor microenvironment and its role in the pathophysiology of the disease. Adaptations of MM cells to hypoxic conditions in the BM have been shown to contribute significantly to MM progression, independently from the genetic predispositions of the tumor cells. Searching for consequences of hypoxia-induced adaptations in primary human MM cells, CD138-positive plasma cells freshly isolated from BM of patients with different disease stages, comprising MGUS, SMM, and MM, were analyzed by proteome profiling, which resulted in the identification of 6218 proteins. Results have been made fully accessible via ProteomeXchange with identifier PXD010600. Data previously obtained from normal primary B cells were included for comparative purposes. A principle component analysis revealed three clusters, differentiating B cells as well as MM cells corresponding to less and more advanced disease stages. Comparing these three clusters pointed to the alteration of pathways indicating adaptations to hypoxic stress in MM cells on disease progression. Protein regulations indicating immune evasion strategies of MM cells were determined, supported by immunohistochemical staining, as well as transcription factors involved in MM development and progression. Protein regulatory networks related to metabolic adaptations of the cells became apparent. Results were strengthened by targeted analyses of a selected panel of metabolites in MM cells and MM-associated fibroblasts. Based on our data, new opportunities may arise for developing therapeutic strategies targeting myeloma disease progression.


Asunto(s)
Adaptación Fisiológica , Apoptosis , Evasión Inmune , Mieloma Múltiple/inmunología , Mieloma Múltiple/metabolismo , Hipoxia Tumoral , Regulación hacia Abajo , Retículo Endoplásmico/metabolismo , Humanos , Mieloma Múltiple/patología , Proteínas de Neoplasias/metabolismo , Proteoma/metabolismo , Proteómica , Factores de Transcripción/metabolismo , Células Tumorales Cultivadas , Regulación hacia Arriba
12.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34884768

RESUMEN

Fetal cartilage fully regenerates following injury, while in adult mammals cartilage injury leads to osteoarthritis (OA). Thus, in this study, we compared the in vivo injury response of fetal and adult ovine articular cartilage histologically and proteomically to identify key factors of fetal regeneration. In addition, we compared the secretome of fetal ovine mesenchymal stem cells (MSCs) in vitro with injured fetal cartilage to identify potential MSC-derived therapeutic factors. Cartilage injury caused massive cellular changes in the synovial membrane, with macrophages dominating the fetal, and neutrophils the adult, synovial cellular infiltrate. Correspondingly, proteomics revealed differential regulation of pro- and anti-inflammatory mediators and growth-factors between adult and fetal joints. Neutrophil-related proteins and acute phase proteins were the two major upregulated protein groups in adult compared to fetal cartilage following injury. In contrast, several immunomodulating proteins and growth factors were expressed significantly higher in the fetus than the adult. Comparison of the in vitro MSCs proteome with the in vivo fetal regenerative signature revealed shared upregulation of 17 proteins, suggesting their therapeutic potential. Biomimicry of the fetal paracrine signature to reprogram macrophages and modulate inflammation could be an important future research direction for developing novel therapeutics.


Asunto(s)
Cartílago Articular/crecimiento & desarrollo , Cartílago Articular/lesiones , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Osteoartritis/patología , Regeneración/fisiología , Proteínas de Fase Aguda/metabolismo , Animales , Células Cultivadas , Feto/fisiología , Macrófagos/citología , Células Madre Mesenquimatosas/metabolismo , Neutrófilos/citología , Ovinos , Membrana Sinovial/citología , Membrana Sinovial/lesiones , Membrana Sinovial/metabolismo
13.
Int J Mol Sci ; 22(11)2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34070692

RESUMEN

Tendinopathies are painful, disabling conditions that afflict 25% of the adult human population. Filling an unmet need for realistic large-animal models, we here present an ovine model of tendon injury for the comparative study of adult scarring repair and fetal regeneration. Complete regeneration of the fetal tendon within 28 days is demonstrated, while adult tendon defects remained macroscopically and histologically evident five months post-injury. In addition to a comprehensive histological assessment, proteome analyses of secretomes were performed. Confirming histological data, a specific and pronounced inflammation accompanied by activation of neutrophils in adult tendon defects was observed, corroborated by the significant up-regulation of pro-inflammatory factors, neutrophil attracting chemokines, the release of potentially tissue-damaging antimicrobial and extracellular matrix-degrading enzymes, and a response to oxidative stress. In contrast, secreted proteins of injured fetal tendons included proteins initiating the resolution of inflammation or promoting functional extracellular matrix production. These results demonstrate the power and relevance of our novel ovine fetal tendon regeneration model, which thus promises to accelerate research in the field. First insights from the model already support our molecular understanding of successful fetal tendon healing processes and may guide improved therapeutic strategies.


Asunto(s)
Matriz Extracelular/metabolismo , Activación Neutrófila , Neutrófilos/metabolismo , Regeneración , Tendinopatía/metabolismo , Tendones/fisiología , Animales , Matriz Extracelular/patología , Femenino , Feto , Humanos , Ovinos , Tendinopatía/patología
14.
Mol Cell Proteomics ; 17(2): 290-303, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29196338

RESUMEN

B cell chronic lymphocytic leukemia (B-CLL), the most common type of leukemia in adults, is still essentially incurable despite the development of novel therapeutic strategies. This reflects the incomplete understanding of the pathophysiology of this disease. A comprehensive proteome analysis of primary human B-CLL cells and B cells from younger as well as elderly healthy donors was performed. For comparison, the chronic B cell leukemia cell line JVM-13 was also included. A principal component analysis comprising 6,945 proteins separated these four groups, placing B cells of aged-matched controls between those of young donors and B-CLL patients, while identifying JVM-13 as poorly related cells. Mass spectrometric proteomics data have been made fully accessible via ProteomeXchange with identifier PXD006570-PXD006572, PXD006576, PXD006578, and PXD006589-PXD006591. Remarkably, B cells from aged controls displayed significant regulation of proteins related to stress management in mitochondria and ROS stress such as DLAT, FIS1, and NDUFAB1, and DNA repair, including RAD9A, MGMT, and XPA. ROS levels were indeed found significantly increased in B cells but not in T cells or monocytes from aged individuals. These alterations may be relevant for tumorigenesis and were observed similarly in B-CLL cells. In B-CLL cells, some remarkable unique features like the loss of tumor suppressor molecules PNN and JARID2, the stress-related serotonin transporter SLC6A4, and high expression of ZNF207, CCDC88A, PIGR and ID3, otherwise associated with stem cell phenotype, were determined. Alterations of metabolic enzymes were another outstanding feature in comparison to normal B cells, indicating increased beta-oxidation of fatty acids and increased consumption of glutamine. Targeted metabolomics assays corroborated these results. The present findings identify a potential proteome signature for immune senescence in addition to previously unrecognized features of B-CLL cells and suggest that aging may be accompanied by cellular reprogramming functionally relevant for predisposing B cells to transform to B-CLL cells.


Asunto(s)
Envejecimiento/metabolismo , Leucemia Linfocítica Crónica de Células B/metabolismo , Proteínas de Neoplasias/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Linfocitos B/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Masculino , Metabolómica , Persona de Mediana Edad , Proteómica
15.
Clin Proteomics ; 15: 13, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29541007

RESUMEN

BACKGROUND: MAP kinase inhibitor (MAPKi) therapy for BRAF mutated melanoma is characterized by high response rates but development of drug resistance within a median progression-free survival (PFS) of 9-12 months. Understanding mechanisms of resistance and identifying effective therapeutic alternatives is one of the most important scientific challenges in melanoma. Using proteomics, we want to specifically gain insight into the pathophysiological process of cerebral metastases. METHODS: Cerebral metastases from melanoma patients were initially analyzed by a LC-MS shotgun approach performed on a QExactive HF hybrid quadrupole-orbitrap mass spectrometer. For further validation steps after bioinformatics analysis, a targeted LC-QQQ-MS approach, as well as Western blot, immunohistochemistry and immunocytochemistry was performed. RESULTS: In this pilot study, we were able to identify 5977 proteins by LC-MS analysis (data are available via ProteomeXchange with identifier PXD007592). Based on PFS, samples were classified into good responders (PFS ≥ 6 months) and poor responders (PFS [Formula: see text] 3 months). By evaluating these proteomic profiles according to gene ontology (GO) terms, KEGG pathways and gene set enrichment analysis (GSEA), we could characterize differences between the two distinct groups. We detected an EMT feature (up-regulation of N-cadherin) as classifier between the two groups, V-type proton ATPases, cell adhesion proteins and several transporter and exchanger proteins to be significantly up-regulated in poor responding patients, whereas good responders showed an immune activation, among other features. We identified class-discriminating proteins based on nearest shrunken centroids, validated and quantified this signature by a targeted approach and could correlate parts of this signature with resistance using the CPL/MUW proteome database and survival of patients by TCGA analysis. We further validated an EMT-like signature as a major discriminator between good and poor responders on primary melanoma cells derived from cerebral metastases. Higher immune activity is demonstrated in patients with good response to MAPKi by immunohistochemical staining of biopsy samples of cerebral melanoma metastases. CONCLUSIONS: Employing proteomic analysis, we confirmed known extra-cerebral resistance mechanisms in the cerebral metastases and further discovered possible brain specific mechanisms of drug efflux, which might serve as treatment targets or as predictive markers for these kinds of metastasis.

16.
Analyst ; 143(18): 4484-4494, 2018 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-30156584

RESUMEN

Steroids are key players in a high variety of physiological processes and are typically analyzed for the diagnosis of hormonal disorders. Due to their chemical and structural similarity many of these metabolites cannot be separated by conventional techniques such as liquid chromatography. Herein, we present an analysis strategy based on two dimensional gas chromatography (GC×GC) coupled to time-of-flight mass spectrometry (TOF MS) which demonstrates superior separation power and enables comprehensive screening of steroids. We show absolute quantitation of 40 steroids in human urine over three orders of magnitude with limits of detection ≤50 nM and the tentative identification of additional 30 steroids based on accurate mass, isotopic pattern analysis and spectral similarity matching to known steroids. The method displays excellent inter- and intra-day stability, repeatability and recovery and was validated for clinical routine analysis. Additionally, we demonstrate the potential of the approach for untargeted analysis of urinary steroids in mouse and rat.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Esteroides/orina , Urinálisis/métodos , Animales , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley
17.
Mol Cell Proteomics ; 15(6): 1982-97, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27025457

RESUMEN

In order to systematically analyze proteins fulfilling effector functionalities during inflammation, here we present a comprehensive proteome study of inflammatory activated primary human endothelial cells and fibroblasts. Cells were stimulated with interleukin 1-ß and fractionated in order to obtain secreted, cytoplasmic and nuclear protein fractions. Proteins were submitted to a data-dependent bottom up analytical platform using a QExactive orbitrap and the MaxQuant software for protein identification and label-free quantification. Results were further combined with similarly generated data previously obtained from the analysis of inflammatory activated peripheral blood mononuclear cells. Applying a false discovery rate of less than 0.01 at both, peptide and protein level, a total of 8370 protein groups assembled from 117,599 peptides was identified; mass spectrometry data have been made fully accessible via ProteomeXchange with identifier PXD003406 to PXD003417.Comparative proteome analysis allowed us to determine common and cell type-specific inflammation signatures comprising novel candidate marker molecules and related expression patterns of transcription factors. Cardinal features of inflammation such as interleukin 1-ß processing and the interferon response differed substantially between the investigated cells. Furthermore, cells also exerted similar inflammation-related tasks; however, by making use of different sets of proteins. Hallmarks of inflammation thus emerged, including angiogenesis, extracellular matrix reorganization, adaptive and innate immune responses, oxidative stress response, cell proliferation and differentiation, cell adhesion and migration in addition to monosaccharide metabolic processes, representing both, common and cell type-specific responsibilities of cells during inflammation.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Inflamación/metabolismo , Interleucina-1beta/farmacología , Proteoma/efectos de los fármacos , Fraccionamiento Celular , Células Cultivadas , Células Endoteliales/citología , Células Endoteliales/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inflamación/inducido químicamente , Espectrometría de Masas/métodos , Proteómica/métodos
18.
Anal Chem ; 89(3): 1945-1954, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28208246

RESUMEN

During inflammation, proteins and lipids act in a concerted fashion, calling for combined analyses. Fibroblasts are powerful mediators of chronic inflammation. However, little is known about eicosanoid formation by human fibroblasts. The aim of this study was to analyze the formation of the most relevant inflammation mediators including proteins and lipids in human fibroblasts upon inflammatory stimulation and subsequent treatment with dexamethasone, a powerful antiphlogistic drug. Label-free quantification was applied for proteome profiling, while an in-house established data-dependent analysis method based on high-resolution mass spectrometry was applied for eicosadomics. Furthermore, a set of 188 metabolites was determined by targeted analysis. The secretion of 40 proteins including cytokines, proteases, and other inflammation agonists as well as 14 proinflammatory and nine anti-inflammatory eicosanoids was found significantly induced, while several acylcarnithins and sphingomyelins were found significantly downregulated upon inflammatory stimulation. Treatment with dexamethasone downregulated most cytokines and proteases, abrogated the formation of pro- but also anti-inflammatory eicosanoids, and restored normal levels of acylcarnithins but not of sphingomyelins. In addition, the chemokines CXCL1, CXCL5, CXCL6, and complement C3, known to contribute to chronic inflammation, were not counter-regulated by dexamethasone. Similar findings were obtained with human mesenchymal stem cells, and results were confirmed by targeted analysis with multiple reaction monitoring. Comparative proteome profiling regarding other cells demonstrated cell-type-specific synthesis of, among others, eicosanoid-forming enzymes as well as relevant transcription factors, allowing us to better understand cell-type-specific regulation of inflammation mediators and shedding new light on the role of fibroblasts in chronic inflammation.


Asunto(s)
Eicosanoides/metabolismo , Fibroblastos/metabolismo , Inflamación/metabolismo , Metabolómica , Proteoma , Antiinflamatorios/farmacología , Células Cultivadas , Quimiocinas/metabolismo , Cromatografía Liquida/métodos , Enfermedad Crónica , Citocinas/metabolismo , Dexametasona/farmacología , Fibroblastos/efectos de los fármacos , Humanos , Inflamación/sangre , Inflamación/patología , Mediadores de Inflamación/metabolismo , Leucocitos Mononucleares/metabolismo , Espectrometría de Masas/métodos
19.
Clin Proteomics ; 14: 33, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29176937

RESUMEN

BACKGROUND: Cancer associated fibroblasts are activated in the tumor microenvironment and contribute to tumor progression, angiogenesis, extracellular matrix remodeling, and inflammation. METHODS: To identify proteins characteristic for fibroblasts in colorectal cancer we used liquid chromatography-tandem mass spectrometry to derive protein abundance from whole-tissue homogenates of human colorectal cancer/normal mucosa pairs. Alterations of protein levels were determined by two-sided t test with greater than threefold difference and an FDR of < 0.05. Public available datasets were used to predict proteins of stromal origin and link protein with mRNA regulation. Immunohistochemistry confirmed the localization of selected proteins. RESULTS: We identified a set of 24 proteins associated with inflammation, matrix organization, TGFß receptor signaling and angiogenesis mainly originating from the stroma. Most prominent were increased abundance of SerpinB5 in the parenchyme and latent transforming growth factor ß-binding protein, thrombospondin-B2, and secreted protein acidic-and-cysteine-rich in the stroma. Extracellular matrix remodeling involved collagens type VIII, XII, XIV, and VI as well as lysyl-oxidase-2. In silico analysis of mRNA levels demonstrated altered expression in the tumor and the adjacent normal tissue as compared to mucosa of healthy individuals indicating that inflammatory activation affected the surrounding tissue. Immunohistochemistry of 26 tumor specimen confirmed upregulation of SerpinB5, thrombospondin B2 and secreted protein acidic-and-cysteine-rich. CONCLUSIONS: This study demonstrates the feasibility of detecting tumor- and compartment-specific protein-signatures that are functionally meaningful by proteomic profiling of whole-tissue extracts together with mining of RNA expression datasets. The results provide the basis for further exploration of inflammation-related stromal markers in larger patient cohorts and experimental models.

20.
Chemistry ; 23(8): 1881-1890, 2017 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-28071820

RESUMEN

Response profiling using shotgun proteomics for establishing global metallodrug mechanisms of action in two colon carcinoma cell lines, HCT116 and SW480, has been applied and evaluated with the clinically approved arsenic trioxide. Surprisingly, the complete established mechanism of action of arsenic trioxide was observed by protein regulations in SW480, but not HCT116 cells. Comparing the basal protein expression in the two cell lines revealed an 80 % convergence of protein identification, but with significant expression differences, which in turn seem to affect the extent of protein regulation. A clear-cut redox response was observed in SW480 cells upon treatment with arsenic, but hardly in HCT116 cells. Response profiling was then used to investigate four anti-cancer metallodrugs (KP46, KP772, KP1339 and KP1537). Proteome alterations were mapped to selected functional groups, including DNA repair, endocytosis, protection from oxidative stress, protection from endoplasmatic reticulum (ER) stress, cell adhesion and mitochondrial function. The present data suggest that knowledge of the mechanism of action of anti-cancer metallodrugs and improved patient stratification strategies are imperative for the design of clinical studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA