Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 34(11): 15400-15416, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32959428

RESUMEN

MDS are characterized by anemia and transfusion requirements. Transfused patients frequently show iron overload that negatively affects hematopoiesis. Iron chelation therapy can be effective in these MDS cases, but the molecular consequences of this treatment need to be further investigated. That is why we studied the molecular features of iron effect and Deferasirox therapy on PI-PLCbeta1 inositide signaling, using hematopoietic cells and MDS samples. At baseline, MDS patients showing a positive response after iron chelation therapy displayed higher levels of PI-PLCbeta1/Cyclin D3/PKCalpha expression. During treatment, these responder patients, as well as hematopoietic cells treated with FeCl3 and Deferasirox, showed a specific reduction of PI-PLCbeta1/Cyclin D3/PKCalpha expression, indicating that this signaling pathway is targeted by Deferasirox. The treatment was also able to specifically decrease the production of ROS. This effect correlated with a reduction of IL-1A and IL-2, as well as Akt/mTOR phosphorylation. In contrast, cells exposed only to FeCl3 and cells from MDS patients refractory to Deferasirox showed a specific increase of ROS and PI-PLCbeta1/Cyclin D3/PKCalpha expression. All in all, our data show that PI-PLCbeta1 signaling is a target for iron-induced oxidative stress and suggest that baseline PI-PLCbeta1 quantification could predict iron chelation therapy response in MDS.


Asunto(s)
Ciclina D3/metabolismo , Sobrecarga de Hierro/complicaciones , Hierro/efectos adversos , Síndromes Mielodisplásicos/terapia , Estrés Oxidativo/efectos de los fármacos , Fosfolipasa C beta/metabolismo , Proteína Quinasa C-alfa/metabolismo , Anciano , Transfusión Sanguínea/estadística & datos numéricos , Ciclina D3/genética , Deferasirox/farmacología , Femenino , Regulación de la Expresión Génica , Humanos , Quelantes del Hierro/farmacología , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/patología , Fosfolipasa C beta/genética , Fosforilación , Proteína Quinasa C-alfa/genética , Transducción de Señal
2.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467674

RESUMEN

Erythropoiesis regulation is essential in normal physiology and pathology, particularly in myelodysplastic syndromes (MDS) and ß-thalassemia. Several signaling transduction processes, including those regulated by inositides, are implicated in erythropoiesis, and the latest MDS or ß-thalassemia preclinical and clinical studies are now based on their regulation. Among others, the main pathways involved are those regulated by transforming growth factor (TGF)-ß, which negatively regulates erythrocyte differentiation and maturation, and erythropoietin (EPO), which acts on the early-stage erythropoiesis. Also small mother against decapentaplegic (SMAD) signaling molecules play a role in pathology, and activin receptor ligand traps are being investigated for future clinical applications. Even inositide-dependent signaling, which is important in the regulation of cell proliferation and differentiation, is specifically associated with erythropoiesis, with phospholipase C (PLC) and phosphatidylinositol 3-kinase (PI3K) as key players that are becoming increasingly important as new promising therapeutic targets. Additionally, Roxadustat, a new erythropoiesis stimulating agent targeting hypoxia inducible factor (HIF), is under clinical development. Here, we review the role and function of the above-mentioned signaling pathways, and we describe the state of the art and new perspectives of erythropoiesis regulation in MDS and ß-thalassemia.


Asunto(s)
Eritropoyesis , Síndromes Mielodisplásicos/metabolismo , Transducción de Señal , Talasemia beta/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Ensayos Clínicos como Asunto , Eritropoyetina/metabolismo , Glicina/análogos & derivados , Glicina/farmacología , Hematínicos/uso terapéutico , Humanos , Factor 1 Inducible por Hipoxia/metabolismo , Isoquinolinas/farmacología , Ligandos , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Fosfolipasas de Tipo C/metabolismo
3.
Int J Mol Sci ; 21(7)2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32276377

RESUMEN

Phosphoinositides (PI) form just a minor portion of the total phospholipid content in cells but are significantly involved in cancer development and progression. In several cancer types, phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] play significant roles in regulating survival, proliferation, invasion, and growth of cancer cells. Phosphoinositide-specific phospholipase C (PLC) catalyze the generation of the essential second messengers diacylglycerol (DAG) and inositol 1,4,5 trisphosphate (InsP3) by hydrolyzing PtdIns(4,5)P2. DAG and InsP3 regulate Protein Kinase C (PKC) activation and the release of calcium ions (Ca2+) into the cytosol, respectively. This event leads to the control of several important biological processes implicated in cancer. PLCs have been extensively studied in cancer but their regulatory roles in the oncogenic process are not fully understood. This review aims to provide up-to-date knowledge on the involvement of PLCs in cancer. We focus specifically on PLCß, PLCγ, PLCδ, and PLCε isoforms due to the numerous evidence of their involvement in various cancer types.


Asunto(s)
Neoplasias/enzimología , Fosfatidilinositoles/metabolismo , Fosfoinositido Fosfolipasa C/metabolismo , Transducción de Señal , Animales , Diglicéridos/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/fisiopatología , Proteína Quinasa C/metabolismo
4.
J Minim Invasive Gynecol ; 26(7): 1340-1345, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30708116

RESUMEN

STUDY OBJECTIVE: To clarify the relationship of hypogastric nerves (HNs) with several pelvic anatomic landmarks and to assess any anatomic differences between the 2 sides of the pelvis, both in cadaveric and in vivo dissections. DESIGN: Prospective observational study. SETTING: An anatomic theater for cadaveric dissections and a university hospital for in vivo laparoscopy. PATIENTS: Five nulliparous female cadavers underwent laparotomic dissection; 10 nulliparous patients underwent laparoscopic surgery for rectosigmoid endometriosis without posterolateral parametrial infiltration. INTERVENTIONS: Measurements of the closest distance between HNs and ureters, the midsagittal plane, the midcervical plane, and uterosacral ligaments on both hemipelvises. A comparison of anatomic data of the 2 hemipelvises was conducted. MEASUREMENTS AND MAIN RESULTS: The right and left HNs were identified in all specimens, both on cadavers and in vivo dissections. A wide anatomic variability was reported. Regarding the differences between the 2 hemipelvises, we found that the right HN was significantly (p <.001) farther to the ureter (mean = 14.5 mm; range, 10-25 mm) than the left one (mean = 8.6 mm; range, 7-12 mm). The HN was closer to the midsagittal plane on the right side (mean = 14.6 mm; range, 12-17 mm) than on the left side (mean = 21.6 mm; range, 19-25 mm). The midcervical plane was found 2.7 mm (range, 2-4 mm) to the left of the midsagittal one. The right HN was found to be nonsignificantly closer to the midcervical plane and the uterosacral ligament on the right side than on the left side (p >.05). CONCLUSIONS: Despite a wide anatomic variability of position and appearance, the HNs are reproducibly identifiable using an "interfascial" technique and considering the ureters and uterosacral ligaments as anatomic landmarks.


Asunto(s)
Sistema Nervioso Autónomo/fisiología , Plexo Hipogástrico/anatomía & histología , Complicaciones Intraoperatorias/prevención & control , Tratamientos Conservadores del Órgano/métodos , Pelvis/cirugía , Adulto , Cadáver , Disección , Femenino , Humanos , Plexo Hipogástrico/lesiones , Laparoscopía/métodos , Pelvis/inervación , Estudios Prospectivos
5.
Int J Mol Sci ; 20(8)2019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-31022972

RESUMEN

Stem cells are undifferentiated cells that can give rise to several different cell types and can self-renew. Given their ability to differentiate into different lineages, stem cells retain huge therapeutic potential for regenerative medicine. Therefore, the understanding of the signaling pathways involved in stem cell pluripotency maintenance and differentiation has a paramount importance in order to understand these biological processes and to develop therapeutic strategies. In this review, we focus on phosphoinositide 3 kinase (PI3K) since its signaling pathway regulates many cellular processes, such as cell growth, proliferation, survival, and cellular transformation. Precisely, in human stem cells, the PI3K cascade is involved in different processes from pluripotency and induced pluripotent stem cell (iPSC) reprogramming to mesenchymal and oral mesenchymal differentiation, through different and interconnected mechanisms.


Asunto(s)
Diferenciación Celular , Reprogramación Celular , Células Madre Embrionarias Humanas/citología , Células Madre Pluripotentes Inducidas/citología , Células Madre Mesenquimatosas/citología , Fosfatidilinositol 3-Quinasa/metabolismo , Transducción de Señal , Células Madre Embrionarias Humanas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Mesenquimatosas/metabolismo
6.
Acta Neurochir (Wien) ; 160(12): 2349-2361, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30382359

RESUMEN

INTRODUCTION: Recently, an alternative endoscopic endonasal approach to Meckel's cave (MC) tumors has been proposed. To date, few studies have evaluated the results of this route. The aim of our study was to evaluate long-term surgical and clinical outcome associated with this technique in a cohort of patients with intrinsic MC tumors. METHODS: All patients with MC tumors treated at out institution by endoscopic endonasal approach (EEA) between 2002 and 2016 were included. Patients underwent brain MRI, CT angiography, and neurological evaluation before surgery. Complications were considered based on the surgical records. All examinations were repeated after 3 and 12 months, then annually. The median follow-up was of 44.1 months (range 16-210). RESULTS: The series included 8 patients (4 F): 5 neuromas, 1 meningioma, 1 chondrosarcoma, and 1 epidermoid cyst. The median age at treatment was 54.5 years (range 21-70). Three tumors presented with a posterior fossa extension. Radical removal of the MC portion of the tumor was achieved in 7 out of 8 cases. Two patients developed a permanent and transitory deficit of the sixth cranial nerve, respectively. No tumor recurrence was observed at follow-up. CONCLUSION: In this preliminary series, the EEA appeared an effective and safe approach to MC tumors. The technique could be advantageous to treat tumors located in the antero-medial aspects of MC displacing the trigeminal structures posteriorly and laterally. A favorable index of an adequate working space for this approach is represented by the ICA medialization, while tumor extension to the posterior fossa represents the main limitation to radical removal of this route.


Asunto(s)
Neoplasias Meníngeas/cirugía , Meningioma/cirugía , Cirugía Endoscópica por Orificios Naturales/métodos , Complicaciones Posoperatorias/epidemiología , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Cirugía Endoscópica por Orificios Naturales/efectos adversos , Nariz/cirugía
7.
J Cell Physiol ; 231(8): 1645-55, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26626942

RESUMEN

Phosphatidylinositol (PI) metabolism represents the core of a network of signaling pathways which modulate many cellular functions including cell proliferation, cell differentiation, apoptosis, and membrane trafficking. An array of kinases, phosphatases, and lipases acts on PI creating an important number of second messengers involved in different cellular processes. Although, commonly, PI signaling was described to take place at the plasma membrane, many evidences indicated the existence of a PI cycle residing in the nuclear compartment of eukaryotic cells. The discovery of this mechanism shed new light on many nuclear functions, such as gene transcription, DNA modifications, and RNA expression. As these two PI cycles take place independently of one another, understanding how nuclear lipid signaling functions and modulates nuclear output is fundamental in the study of many cellular processes. J. Cell. Physiol. 231: 1645-1655, 2016. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Núcleo Celular/enzimología , Fosfatidilinositoles/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Sistemas de Mensajero Secundario , Fosfolipasas de Tipo C/metabolismo , Animales , Puntos de Control del Ciclo Celular , Diferenciación Celular , Núcleo Celular/patología , Proliferación Celular , Humanos , Hidrólisis , Síndromes Mielodisplásicos/enzimología , Síndromes Mielodisplásicos/patología , Neoplasias/enzimología , Neoplasias/patología , Fosfatidilinositol 4,5-Difosfato/metabolismo , Transcripción Genética
8.
Acta Neurochir (Wien) ; 158(7): 1343-50, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27117907

RESUMEN

BACKGROUND: The endoscopic endonasal opening of the optic canal has been recently proposed for tumors with medial invasion of this canal, such as tuberculum sellae meningiomas. Injury of the ophthalmic artery represents a dramatic risk during this maneuver. Therefore, the aim of this study was to analyze the endoscopic endonasal anatomy of the precanalicular and canalicular portion of this vessel, discussing its clinical implication. METHODS: The course of the ophthalmic artery was analyzed through five endoscopic endonasal dissections, and 40 nonpathological consecutive MRAs were reviewed. RESULTS: The ophthalmic artery arises from the intradural portion of the supraclinoid internal carotid artery, in 93 % of cases about 1.9 mm (range: 1-3) posterior to the falciform ligament. At the entrance into the optic canal, the ophthalmic artery is located infero-medially to the optic nerve in 13 % of cases. In 50 % of these cases the artery moves infero-laterally along its course, remaining in a medial position in the others. In cases with an non medial entrance of the ophthalmic artery, it runs infero-lateral to the optic nerve for its entire canalicular portion, with just one exception. CONCLUSION: The endoscopic endonasal approach gives a direct, extensive and panoramic view of the course of the precanalicular and canalicular portion of the ophthalmic artery. Dedicated high-field neuroimaging studies are of paramount importance in preoperative planning to evaluate the anatomy of the ophthalmic artery, reducing the risk of jeopardizing the vessel, particularly for those uncommon cases with an infero-medial course of the artery.


Asunto(s)
Neoplasias Meníngeas/cirugía , Cirugía Endoscópica por Orificios Naturales/métodos , Procedimientos Neuroquirúrgicos/métodos , Arteria Oftálmica/cirugía , Cadáver , Endoscopía/métodos , Humanos , Meningioma/cirugía , Nariz/cirugía , Arteria Oftálmica/anatomía & histología , Nervio Óptico/cirugía
9.
Anat Sci Educ ; 17(4): 693-711, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38520153

RESUMEN

Anatomical education is pivotal for medical students, and innovative technologies like augmented reality (AR) are transforming the field. This study aimed to enhance the interactive features of the AEducAR prototype, an AR tool developed by the University of Bologna, and explore its impact on human anatomy learning process in 130 second-year medical students at the International School of Medicine and Surgery of the University of Bologna. An interdisciplinary team of anatomists, maxillofacial surgeons, biomedical engineers, and educational scientists collaborated to ensure a comprehensive understanding of the study's objectives. Students used the updated version of AEducAR, named AEducAR 2.0, to study three anatomical topics, specifically the orbit zone, facial bones, and mimic muscles. AEducAR 2.0 offered two learning activities: one explorative and one interactive. Following each activity, students took a test to assess learning outcomes. Students also completed an anonymous questionnaire to provide background information and offer their perceptions of the activity. Additionally, 10 students participated in interviews for further insights. The results demonstrated that AEducAR 2.0 effectively facilitated learning and students' engagement. Students totalized high scores in both quizzes and declared to have appreciated the interactive features that were implemented. Moreover, interviews shed light on the interesting topic of blended learning. In particular, the present study suggests that incorporating AR into medical education alongside traditional methods might prove advantageous for students' academic and future professional endeavors. In this light, this study contributes to the growing research emphasizing the potential role of AR in shaping the future of medical education.


Asunto(s)
Anatomía , Realidad Aumentada , Educación de Pregrado en Medicina , Evaluación Educacional , Aprendizaje , Estudiantes de Medicina , Femenino , Humanos , Masculino , Adulto Joven , Anatomía/educación , Instrucción por Computador/métodos , Curriculum , Educación de Pregrado en Medicina/métodos , Evaluación Educacional/estadística & datos numéricos , Estudios Interdisciplinarios , Estudiantes de Medicina/psicología , Estudiantes de Medicina/estadística & datos numéricos , Encuestas y Cuestionarios/estadística & datos numéricos
10.
FASEB J ; 26(1): 203-10, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21974932

RESUMEN

Type 2 diabetes is a heterogeneous disorder caused by concomitant impairment of insulin secretion by pancreatic ß cells and of insulin action in peripheral target tissues. Studies with inhibitors and agonists established a role for PLC in the regulation of insulin secretion but did not distinguish between effects due to nuclear or cytoplasmic PLC signaling pathways that act in a distinct fashion. We report that in MIN6 ß cells, PLCß1 localized in both nucleus and cytoplasm, PLCδ4 in the nucleus, and PLCγ1 in the cytoplasm. By silencing each isoform, we observed that they all affected glucose-induced insulin release both at basal and high glucose concentrations. To elucidate the molecular basis of PLC regulation, we focused on peroxisome proliferator-activated receptor-γ (PPARγ), a nuclear receptor transcription factor that regulates genes critical to ß-cell maintenance and functions. Silencing of PLCß1 and PLCδ4 resulted in a decrease in the PPARγ mRNA level. By means of a PPARγ-promoter-luciferase assay, the decrease could be attributed to a PLC action on the PPARγ-promoter region. The effect was specifically observed on silencing of the nuclear and not the cytoplasmic PLC. These findings highlight a novel pathway by which nuclear PLCs affect insulin secretion and identify PPARγ as a novel molecular target of nuclear PLCs.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , PPAR gamma/metabolismo , Fosfolipasa C beta/metabolismo , Fosfolipasa C delta/metabolismo , Fosfolipasa C gamma/metabolismo , Animales , Línea Celular Tumoral , Núcleo Celular/enzimología , Citoplasma/enzimología , Diabetes Mellitus Tipo 2/metabolismo , Silenciador del Gen , Glucosa/farmacocinética , Insulina/genética , Secreción de Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/enzimología , Insulinoma , Ratones , Fosfolipasa C beta/genética , Fosfolipasa C delta/genética , Fosfolipasa C gamma/genética , Sistemas de Mensajero Secundario/fisiología
11.
Artículo en Inglés | MEDLINE | ID: mdl-35162049

RESUMEN

Gross anatomy knowledge is an essential element for medical students in their education, and nowadays, cadaver-based instruction represents the main instructional tool able to provide three-dimensional (3D) and topographical comprehensions. The aim of the study was to develop and test a prototype of an innovative tool for medical education in human anatomy based on the combination of augmented reality (AR) technology and a tangible 3D printed model that can be explored and manipulated by trainees, thus favoring a three-dimensional and topographical learning approach. After development of the tool, called AEducaAR (Anatomical Education with Augmented Reality), it was tested and evaluated by 62 second-year degree medical students attending the human anatomy course at the International School of Medicine and Surgery of the University of Bologna. Students were divided into two groups: AEducaAR-based learning ("AEducaAR group") was compared to standard learning using human anatomy atlas ("Control group"). Both groups performed an objective test and an anonymous questionnaire. In the objective test, the results showed no significant difference between the two learning methods; instead, in the questionnaire, students showed enthusiasm and interest for the new tool and highlighted its training potentiality in open-ended comments. Therefore, the presented AEducaAR tool, once implemented, may contribute to enhancing students' motivation for learning, increasing long-term memory retention and 3D comprehension of anatomical structures. Moreover, this new tool might help medical students to approach to innovative medical devices and technologies useful in their future careers.


Asunto(s)
Realidad Aumentada , Estudiantes de Medicina , Cadáver , Evaluación Educacional , Humanos , Impresión Tridimensional
12.
Adv Biol Regul ; 83: 100838, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34819252

RESUMEN

Phosphoinositide-specific phospholipases C (PLCs) are a class of enzymes involved in several cell activities, such as cell cycle regulation, proliferation, differentiation and cytoskeletal dynamics. Among these enzymes, PLCγ1 is one of the most expressed PLCs in the brain, contributing to a complex network in the developing nervous system. Several studies have shown that PLCγ1 signaling imbalance is linked to several brain disorders, including glioblastoma, the most aggressive brain tumor in adults. Indeed, it has been demonstrated a link between PLCγ1 inhibition and the arrest of glioma cell motility of fetal rat brain aggregates and the impairment of cell invasion abilities following its down-regulation. This study aims to determine the pathological influence of PLCγ1 in glioblastoma, through a translational study which combines in silico data, data from glioblastoma patients' samples and data on engineered cell lines. We found out that PLCγ1 gene expression correlates with the pathological grade of gliomas, and it is higher in fifty patients' glioblastoma tissue samples compared to twenty healthy controls. Moreover, it was demonstrated that PLCγ1 silencing in U87-MG leads to a reduction in cell migration and invasion abilities. The opposite trend was observed following PLCγ1 overexpression, suggesting an interesting possible involvement of PLCγ1 in gliomas' aggressiveness.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , Humanos , Invasividad Neoplásica/genética , Ratas , Transducción de Señal
13.
Artículo en Inglés | MEDLINE | ID: mdl-35010658

RESUMEN

The University of Bologna School of Medicine in 2003 adopted a near-peer teaching (NPT) program with senior medical students teaching and assisting younger students in human anatomy laboratories. This study aimed to evaluate the effectiveness and outcomes of this program-unique on the Italian academic panorama-from the tutors' perspective. An anonymous online survey was administered to all those who acted as peer tutors in the period from 2003 to 2021; it evaluated tutors' perceptions regarding the influence of the tutoring experience on their skillset gains, academic performance, and professional career. Furthermore, tutors were asked to express their views on the value of cadaver dissection in medical education and professional development. The overall perception of the NPT program was overwhelmingly positive and the main reported benefits were improved long-term knowledge retention and academic performance, improved communication, team-working and time management skills, and enhanced self-confidence and motivation. Most tutors strongly believed that cadaver dissection was an invaluable learning tool in medical education, helped them to develop professionalism and human values, and positively influenced the caring of their future patients. Nearly all the participants highlighted the importance of voluntary body donation for medical education and research. The present results supported the thesis that tutors themselves benefited from the act of teaching peers; this impactful experience equipped them with a wide range of transferable skills that they could draw on as future educators and healthcare professionals.


Asunto(s)
Educación Médica , Estudiantes de Medicina , Adolescente , Humanos , Aprendizaje , Motivación , Grupo Paritario , Enseñanza
14.
Ann Anat ; 234: 151660, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33340651

RESUMEN

Human body dissection is fundamental in medical education, as it allows future physicians to learn about the body's morphology in three dimensions, to recognize anatomical variations and to develop and increase the essential qualities of respect, compassion and empathy for patients. It is equally important in clinical training as it allows surgeons to improve their manual dexterity and practical skills and to test innovative surgical techniques and devices. In Italy prior to 2020, body acquisition and use for study and research purposes were regulated by a generic set of old directives and national decrees which dealt only marginally with these issues. However, in 2013, a whole body donation program was officially set up at the Institute of Human Anatomy of the University of Bologna. Completely free and voluntary informed consent has always been regarded as a core prerequisite and, since its inception, the program exclusively accepted bequeathed bodies. On February 10, 2020, a specific law governing the disposition of post mortem human body and tissues for study, training and scientific research purposes was definitively enacted. The present work traces the University of Bologna's experience leading to the whole body donation program and the brand new dissecting room. It describes the program of Bologna as an example of "good practice" in body donation, aimed at ensuring education and clinical training by means of both traditional gross anatomy and innovative technology. Moreover, it analyzes the results achieved in terms of increased donor enrollment and improved teaching/training quality and the strengths of this program in light of the provisions enshrined in the new law.


Asunto(s)
Anatomía , Cuerpo Humano , Anatomía/educación , Cadáver , Disección , Humanos , Donantes de Tejidos , Universidades , Mundo Occidental
15.
FASEB J ; 23(3): 957-66, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19028838

RESUMEN

Inositide-specific phospholipase Cbeta1 (PLCbeta1) signaling in cell proliferation has been investigated thoroughly in the G(1) cell cycle phase. However, little is known about its involvement in G(2)/M progression. We used murine erythroleukemia cells to investigate the role of PLCbeta1 in G(2)/M cell cycle progression and screened a number of candidate intermediate players, particularly mitogen-activated protein kinase (MAPK) and protein kinase C (PKC), which can, potentially, transduce serum mitogenic stimulus and induce lamin B1 phosphorylation, leading to G(2)/M progression. We report that PLCbeta1 colocalizes and physically interacts with lamin B1. Studies of the effects of inhibitors and selective si-RNA mediated silencing showed a role of JNK, PKCalpha, PKCbetaI, and the beta1 isoform of PI-PLC in cell accumulation in G(2)/M [as observed by fluorescence-activated cell sorter (FACS)]. To shed light on the mechanism, we considered that the final signaling target was lamin B1 phosphorylation. When JNK, PKCalpha, or PLCbeta1 were silenced, lamin B1 exhibited a lower extent of phosphorylation, as compared to control. The salient features to emerge from these studies are a common pathway in which JNK is likely to represent a link between mitogenic stimulus and activation of PLCbeta1, and, foremost, the finding that the PLCbeta1-mediated pathway represents a functional nuclear inositide signaling in the G(2)/M transition.


Asunto(s)
División Celular/fisiología , Fase G2/fisiología , Lamina Tipo B/metabolismo , Fosfolipasa C beta/metabolismo , Animales , Línea Celular , Proliferación Celular , Activación Enzimática , Ratones , Fosforilación , Proteína Quinasa C/metabolismo
16.
Adv Biol Regul ; 71: 1-9, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30420274

RESUMEN

Adipose-derived stem cells (ADSCs) are multipotent mesenchymal stem cells that have the ability to differentiate into several cell types, including chondrocytes, osteoblasts, adipocytes, and neural cells. Given their easy accessibility and abundance, they became an attractive source of mesenchymal stem cells, as well as candidates for developing new treatments for reconstructive medicine and tissue engineering. Our study identifies a new signaling pathway that promotes ADSCs osteogenic differentiation and links the lipid signaling enzyme phospholipase C (PLC)-ß1 to the expression of the cell cycle protein cyclin E. During osteogenic differentiation, PLC-ß1 expression varies concomitantly with cyclin E expression and the two proteins interact. These findings contribute to clarify the pathways involved in osteogenic differentiation and provide evidence to develop therapeutic strategies for bone regeneration.


Asunto(s)
Tejido Adiposo/metabolismo , Diferenciación Celular , Ciclina E/metabolismo , Proteínas Oncogénicas/metabolismo , Osteogénesis , Fosfolipasa C beta/metabolismo , Células Madre/metabolismo , Tejido Adiposo/citología , Ciclina E/genética , Humanos , Proteínas Oncogénicas/genética , Fosfolipasa C beta/genética , Transducción de Señal , Células Madre/citología
17.
Front Biosci ; 13: 2452-63, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17981726

RESUMEN

Phosphoinositides (PI) are the most extensively studied lipids involved in cell signaling pathways. The bulk of PI is found in membranes where they are substrates for enzymes, such as kinases, phosphatases and phospholipases, which respond to the activation by cell-surface receptors. The outcome of the majority of signaling pathways involving lipid second messengers results in nuclear responses finally driving the cell into differentiation, proliferation or apoptosis. Some of these pathways are well established, such as that of PI-specific phospholipase C (PI-PLC), which cleaves phosphatidylinositol-4,5-bisphosphate (PIP2) into the two second messengers diacylglycerol (DAG) and inositol-1,4,5-trisphosphate (IP3). Two independent cycles of PI are present inside the cell. One is localized at the plasma membrane, while the most recently discovered PI cycle is found inside the nuclear compartment. The regulation of the nuclear PI pool is totally independent from the plasma membrane counterpart, suggesting that the nucleus constitutes a functionally distinct compartment of inositol lipids metabolism. In this report we will focus on the signal transduction-related metabolism of nuclear PI and review the most convincing evidence that the PI cycle is involved in differentiation programs in several cell systems.


Asunto(s)
Núcleo Celular/enzimología , Regulación Enzimológica de la Expresión Génica , Fosfolipasa C beta/fisiología , Animales , Ciclo Celular , Diferenciación Celular , Humanos , Leucemia Eritroblástica Aguda/metabolismo , Modelos Biológicos , Músculos/metabolismo , Fosfolipasa C beta/metabolismo , Isoformas de Proteínas , Transducción de Señal , Factores de Transcripción/metabolismo
18.
Adv Biol Regul ; 67: 1-6, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29102395

RESUMEN

Phosphatidylinositols (PIs) are responsible for several signaling pathways related to many cellular functions, such as cell cycle regulation at different check-points, cell proliferation, cell differentiation, membrane trafficking and gene expression. PI metabolism is not only present at the cytoplasmic level, but also at the nuclear one, where different signaling pathways affect essential nuclear mechanisms in eukaryotic cells. In this review we focus on nuclear inositide signaling in relation to cell cycle regulation. Many evidences underline the pivotal role of nuclear inositide signaling in cell cycle regulation and cell proliferation associated to different strategic physiopathological mechanisms in several cell systems and diseases.


Asunto(s)
Ciclo Celular/fisiología , Diferenciación Celular/fisiología , Núcleo Celular/metabolismo , Fosfatidilinositoles/metabolismo , Transducción de Señal/fisiología , Animales , Humanos
19.
Cell Signal ; 18(8): 1101-7, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16516442

RESUMEN

Lipid second messengers, particularly those derived from the polyphosphoinositide metabolism, play a pivotal role in multiple cell signaling networks. Phosphoinositide 3-kinase (PI3K) generate 3'-phosphorylated inositol lipids that are key players in a multitude of cell functions. One of the best characterized targets of PI3K lipid products is the serine/threonine protein kinase Akt (protein kinase B, PKB). Recent findings have implicated the PI3K/Akt pathway in tumorigenesis because it stimulates cell proliferation and suppresses apoptosis. However, it was thought that this signal transduction network would exert its carcinogenetic effects mainly by operating in the cytoplasm. Evidence accumulated over the past 15 years has highlighted the presence of an autonomous nuclear inositol lipid cycle, and strongly suggests that lipid molecules are important components of signaling pathways operating at the nuclear level. PI3K, its lipid product phosphatidylinositol (3,4,5) trisphosphate (PtdIns(3,4,5)P3), and Akt have been identified within the nucleus and recent data suggest that they counteract apoptosis also by operating in this cell compartment through a block of caspase-activated DNase and inhibition of chromatin condensation. In this review, we shall summarize the most updated and intriguing findings about nuclear PI3K/PtdIns(3,4,5)P3/Akt in relationship with tumorigenesis and suppression of apoptotic stimuli.


Asunto(s)
Apoptosis , Núcleo Celular/metabolismo , Neoplasias/patología , Fosfatidilinositoles/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Animales , Humanos , Neoplasias/metabolismo
20.
Prog Lipid Res ; 44(4): 185-206, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15896848

RESUMEN

During the past years, several independent laboratories have highlighted the presence of nuclear signaling pathways based on lipid hydrolysis, which are not a mere duplication of those occurring at the plasma membrane. Among the enzymes of the cycle, nuclear phosphoinositide-specific phospholipase C (PI-PLC) has been analyzed quite extensively. In this context, PI-PLCbeta1 appears to play a key role as a check point in the G1 phase of the cell cycle. It has also been shown that its activation and/or up-regulation is upon the control of type 1 insulin-like growth factor receptor (IGF-R) in both mouse fibroblast and myoblasts, suggesting that its signaling activity is essential for the normal behavior of the cell, at least in culture. The recent discovery of a possible involvement of the deletion of PI-PLCbeta1 gene in the progression of myelodysplastic syndrome (MDS) to acute myeloid leukemia (AML) in humans strengthens the contention that nuclear PI-PLC signaling is essential for physiological processes such as cell growth and differentiation. Even though PI-PLCbeta1 is present and does not translocate to eukaryotic nuclei, this organelle, even though only in some conditions contains also PI-PLCgamma1 which acts not only as a PI-PLC but also as guanine nucleotide exchange factor (GEF) for PI 3-kinase enhancer (PIKE) and is somehow linked to PI 3-kinase (PI3K) activity. Also members of PI-PLCdelta family are shuttling from the nucleus to the cytoplasm and return and are possibly involved in the control of cell growth. We must also take into account the presence in the nucleus of other phospholipases such as phospholipase A2 (PLA2) and phospholipase D (PLD), which also exert a signaling activity upon external stimuli. On the whole this review highlights the latest development in the PI-PLC cycle in the nucleus, which in terms of activation, regulation and down-stream targets differs substantially from that located at the plasma membrane.


Asunto(s)
Células Musculares/metabolismo , Transducción de Señal/fisiología , Fosfolipasas de Tipo C/metabolismo , Transporte Activo de Núcleo Celular , Animales , Diferenciación Celular , Activación Enzimática , Fibroblastos/metabolismo , Fase G1 , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA