RESUMEN
The lacunocanalicular network (LCN) is an intricate arrangement of cavities (lacunae) and channels (canaliculi), which permeates the mineralized bone matrix. In its porosity, the LCN accommodates the cell network of osteocytes. These two nested networks are attributed a variety of essential functions including transport, signaling, and mechanosensitivity due to load-induced fluid flow through the LCN. For a more quantitative assessment of the networks' function, the three-dimensional architecture has to be known. For this reason, we aimed (i) to quantitatively characterize spatial heterogeneities of the LCN in whole mouse tibial cross-sections of BALB/c mice and (ii) to analyze differences in LCN architecture by comparison with another commonly used inbred mouse strain, the C57BL/6 mouse. Both tibiae of five BALB/c mice (female, 26-week-old) were stained using rhodamine 6G and whole tibiae cross-sections were imaged using confocal laser scanning microscopy. Using image analysis, the LCN was quantified in terms of density and connectivity and lacunar parameters, such as lacunar degree, volume, and shape. In the same tibial cross-sections, the calcium content was measured using quantitative backscattered electron imaging (qBEI). A structural analysis of the LCN properties showed that spatially denser parts of the LCN are mainly due to a higher density of branching points in the network. While a high intra-individual variability of network density was detected within the cortex, the inter-individual variability between different mice was low. In comparison to C57BL/6J mice, BALB/c mice showed a distinct lower canalicular density. This reduced network was already detectable on a local network level with fewer canaliculi emanating from lacunae. Spatial correlation with qBEI images demonstrated that bone modeling resulted in disruptions in the network architecture. The spatial heterogeneity and differences in density of the LCN likely affects the fluid flow within the network and therefore bone's mechanoresponse to loading.
RESUMEN
PURPOSE: To measure the dislocation forces in relation to haptic material, flange size and needle used. SETTING: Hanusch Hospital, Vienna, Austria. DESIGN: Laboratory Investigation. METHODS, MAIN OUTCOME MEASURES: 30 G (gauge) thin wall and 27 G standard needles were used for a 2 mm tangential scleral tunnel in combination with different PVDF (polyvinylidene fluoride) and PMMA (polymethylmethacrylate haptics). Flanges were created by heating 1 mm of the haptic end, non-forceps assisted in PVDF and forceps assisted in PMMA haptics. The dislocation force was measured in non-preserved cadaver sclera using a tensiometer device. RESULTS: PVDF flanges achieved were of a mushroom-like shape and PMMA flanges were of a conic shape. For 30 G needle tunnels the dislocation forces for PVDF and PMMA haptic flanges were 1.58 ± 0.68 N (n = 10) and 0.70 ± 0.14 N (n = 9) (p = 0.003) respectively. For 27 G needle tunnels the dislocation forces for PVDF and PMMA haptic flanges were 0.31 ± 0.35 N (n = 3) and 0.0 N (n = 4), respectively. The flange size correlated with the occurring dislocation force in experiments with 30 G needle tunnels (r = 0.92), when flanges were bigger than 384 micrometres. CONCLUSIONS: The highest dislocation forces were found for PVDF haptic flanges and their characteristic mushroom-like shape for 30 G thin wall needle scleral tunnels. Forceps assisted flange creation in PMMA haptics did not compensate the disadvantage of PMMA haptics with their characteristic conic shape flange.
Asunto(s)
Polímeros de Fluorocarbono , Tecnología Háptica , Lentes Intraoculares , Polivinilos , Humanos , Polimetil Metacrilato , Esclerótica/cirugíaRESUMEN
Autoimmune polyendocrine syndrome type-1 (APS1) is characterized by autoimmune manifestations affecting different organs from early childhood on. Immunological abnormalities, the resulting endocrinopathies, and their treatments may compromise bone health. For the first time in APS1, we analyzed transiliac bone biopsy samples by bone histomorphometry and quantitative backscattered electron imaging in three adult patients (female P1, 38 years; male P2, 47 years; male P3, 25 years). All had biallelic mutations in the autoimmune regulator gene and in addition to endocrinopathies, also significant bone fragility. Histomorphometry showed bone volume in the lower normal range for P1 (BV/TV, - 0.98 SD) and P3 (- 1.34 SD), mainly due to reduced trabecular thickness (TbTh, - 3.63 and - 2.87 SD). In P1, osteoid surface was low (OS/BS, - 0.96 SD); active osteoblasts and double labeling were seen only on cortical bone. P3 showed a largely increased bone turnover rate (BFR/BV, + 4.53 SD) and increased mineralization lag time (Mlt, + 3.40 SD). Increased osteoid surface (OS/BS, + 2.03 and + 4.71 SD for P2 and P3) together with a large proportion of lowly mineralized bone area (Trab CaLow, + 2.22 and + 9.81 SD for P2 and P3) and focal mineralization defects were consistent with abnormal mineralization. In all patients, the density and area of osteocyte lacunae in cortical and trabecular bone were similar to healthy adults. The bone tissue characteristics were variable and included decreased trabecular thickness, increased amount of osteoid, and abnormal mineralization which are likely to contribute to bone fragility in patients with APS1.
Asunto(s)
Densidad Ósea , Poliendocrinopatías Autoinmunes , Adulto , Humanos , Masculino , Preescolar , Femenino , Poliendocrinopatías Autoinmunes/genética , Huesos , Hueso Cortical , Matriz ÓseaRESUMEN
Osteopetrosis is a heterogeneous group of rare hereditary diseases characterized by increased bone mass of poor quality. Autosomal-dominant osteopetrosis type II (ADOII) is most often caused by mutation of the CLCN7 gene leading to impaired bone resorption. Autosomal recessive osteopetrosis (ARO) is a more severe form and is frequently accompanied by additional morbidities. We report an adult male presenting with classical clinical and radiological features of ADOII. Genetic analyses showed no amino-acid-converting mutation in CLCN7 but an apparent haploinsufficiency and suppression of CLCN7 mRNA levels in peripheral blood mononuclear cells. Next generation sequencing revealed low-frequency intronic homozygous variations in CLCN7, suggesting recessive inheritance. In silico analysis of an intronic duplication c.595-120_595-86dup revealed additional binding sites for Serine- and Arginine-rich Splicing Factors (SRSF), which is predicted to impair CLCN7 expression. Quantitative backscattered electron imaging and histomorphometric analyses revealed bone tissue and material abnormalities. Giant osteoclasts were present and additionally to lamellar bone, and abundant woven bone and mineralized cartilage were observed, together with increased frequency and thickness of cement lines. Bone mineralization density distribution (BMDD) analysis revealed markedly increased average mineral content of the dense bone (CaMean T-score + 10.1) and frequency of bone with highest mineral content (CaHigh T-score + 19.6), suggesting continued mineral accumulation and lack of bone remodelling. Osteocyte lacunae sections (OLS) characteristics were unremarkable except for an unusually circular shape. Together, our findings suggest that the reduced expression of CLCN7 mRNA in osteoclasts, and possibly also osteocytes, causes poorly remodelled bone with abnormal bone matrix with high mineral content. This together with the lack of adequate bone repair mechanisms makes the material brittle and prone to fracture. While the skeletal phenotype and medical history were suggestive of ADOII, genetic analysis revealed that this is a possible mild case of ARO due to deep intronic mutation.
Asunto(s)
Canales de Cloruro , Osteopetrosis , Canales de Cloruro/genética , Homocigoto , Humanos , Leucocitos Mononucleares/metabolismo , Masculino , Mutación , Osteopetrosis/diagnóstico , Osteopetrosis/genética , Osteopetrosis/metabolismo , Fenotipo , ARN MensajeroRESUMEN
OBJECTIVES: Patients with type-2 diabetes mellitus (T2DM) have increased risk for bone fractures which points towards impaired bone quality. METHODS: We measured bone mineralization density distribution (BMDD) and osteocyte lacunae section (OLS) characteristics based on quantitative backscattered electron images of transiliac biopsy samples from n=26 premenopausal women with T2DM. Outcomes were compared to those from reference cohorts as well as between T2DM subgroups defined by clinical characteristics. RESULTS: Comparison to references did not reveal any differences in BMDD (all p>0.05) but a lowered OLS-density in cancellous bone in T2DM (-14.9%, p<0.001). Neither BMDD nor OLS-characteristics differed in T2DM subgroups defined by HbA1c (<7% versus >7%). The average degree of bone mineralization (CaMean) was higher (0.44 wt%Ca in T2DM, 0.30 wt%Ca in reference) and consistently the calcium concentration between the tetracycline double labels (CaYoung) was higher (0.76 wt%Ca, all p<0.001) in cancellous versus cortical bone. CONCLUSIONS: Our findings suggest that bone matrix mineralization was neither affected by the presence nor by the glycemic control of T2DM in our study cohort. The intra-individual differences between cancellous and cortical bone mineralization gave evidence for differences in the time course of the early mineralization process in these compartments in general.
Asunto(s)
Diabetes Mellitus Tipo 2 , Densidad Ósea , Huesos , Calcificación Fisiológica , Femenino , Humanos , PremenopausiaRESUMEN
Quantitative backscattered electron imaging is an established method to map mineral content distributions in bone and to determine the bone mineralization density distribution (BMDD). The method we applied was initially validated for a scanning electron microscope (SEM) equipped with a tungsten hairpin cathode (thermionic electron emission) under strongly defined settings of SEM parameters. For several reasons, it would be interesting to migrate the technique to a SEM with a field emission electron source (FE-SEM), which, however, would require to work with different SEM parameter settings as have been validated for DSM 962. The FE-SEM has a much better spatial resolution based on an electron source size in the order of several 100 nanometers, corresponding to an about [Formula: see text] to [Formula: see text] times smaller source area compared to thermionic sources. In the present work, we compare BMDD between these two types of instruments in order to further validate the methodology. We show that a transition to higher pixel resolution (1.76, 0.88, and 0.57 µm) results in shifts of the BMDD peak and BMDD width to higher values. Further the inter-device reproducibility of the mean calcium content shows a difference of up to 1 wt% Ca, while the technical variance of each device can be reduced to [Formula: see text] wt% Ca. Bearing in mind that shifts in calcium levels due to diseases, e.g., high turnover osteoporosis, are often in the range of 1 wt% Ca, both the bone samples of the patients as well as the control samples have to be measured on the same SEM device. Therefore, we also constructed new reference BMDD curves for adults to be used for FE-SEM data comparison.
Asunto(s)
Huesos , Electrones , Adulto , Densidad Ósea , Calcificación Fisiológica , Humanos , Reproducibilidad de los ResultadosRESUMEN
Proteus syndrome is a rare genetic disorder, which is characterized by progressive, segmental, or patchy overgrowth of diverse tissues of all germ layers, including the skeleton. Here, we present a 9-year-old girl with a somatic-activating mutation (c.49G > A; p.Glu17Lys) in AKT1 gene in a mosaic status typical for Proteus syndrome. She presented with hemihypertrophy of the right lower limb and a "moccasin" lesion among others. A transiliac bone biopsy was analyzed for bone histology/histomorphometry as well as bone mineralization density distribution (BMDD) and osteocyte lacunae sections (OLS) characteristics based on quantitative backscattered electron imaging. Bone histomorphometry revealed highly increased mineralizing surface (Z-score + 2.3) and mineral apposition rate (Z-score + 19.3), no osteoclasts (Z-score - 2.1), and an increased amount of primary bone in the external cortex. BMDD abnormalities included a decreased mode calcium concentration in cancellous bone (Z-score - 1.7) and an increased percentage of highly mineralized cortical bone area (Z-score + 2.4) compared to reference. OLS characteristics showed several differences compared to reference data; among them, there were the highly increased OLS-porosity, OLS-area, and OLS-perimeter on the external cortex (Z-scores + 6.8, + 4.4 and 5.4, respectively). Our findings suggest that increased bone formation reduced matrix mineralization in cancellous bone while the enhanced amount of primary bone in the external cortex increased the portion of highly mineralized cortical bone and caused OLS-characteristics abnormalities. Our results indicate further that remodeling of primary bone might be disturbed or delayed in agreement with the decreased number of osteoclasts observed in this child with Proteus syndrome.
Asunto(s)
Síndrome de Proteo , Biopsia , Densidad Ósea , Huesos , Niño , Femenino , Humanos , Fenotipo , Síndrome de Proteo/genéticaRESUMEN
Osteocytes are terminally differentiated osteoblasts embedded within the bone matrix and key orchestrators of bone metabolism. However, they are generally not characterized by conventional bone histomorphometry because of their location and the limited resolution of light microscopy. OI is characterized by disturbed bone homeostasis, matrix abnormalities and elevated bone matrix mineralization density. To gain further insights into osteocyte characteristics and bone metabolism in OI, we evaluated 2D osteocyte lacunae sections (OLS) based on quantitative backscattered electron imaging in transiliac bone biopsy samples from children with OI type I (n = 19) and age-matched controls (n = 24). The OLS characteristics were related to previously obtained, re-visited histomorphometric parameters. Moreover, we present pediatric bone mineralization density distribution reference data in OI type I (n = 19) and controls (n = 50) obtained with a field emission scanning electron microscope. Compared to controls, OI has highly increased OLS density in cortical and trabecular bone (+50.66%, +61.73%; both p < 0.001), whereas OLS area is slightly decreased in trabecular bone (-10.28%; p = 0.015). Correlation analyses show a low to moderate, positive association of OLS density with surface-based bone formation parameters and negative association with indices of osteoblast function. In conclusion, hyperosteocytosis of the hypermineralized OI bone matrix associates with abnormal bone cell metabolism and might further impact the mechanical competence of the bone tissue.
Asunto(s)
Osteocitos/metabolismo , Osteogénesis Imperfecta/metabolismo , Osteogénesis Imperfecta/patología , Densidad Ósea/fisiología , Desarrollo Óseo/fisiología , Matriz Ósea/patología , Huesos/metabolismo , Niño , Preescolar , Femenino , Humanos , Masculino , Osteoblastos/patología , Osteocitos/patología , Osteocitos/fisiología , Osteogénesis/fisiologíaRESUMEN
Transiliac bone biopsy samples are used to evaluate histology and bone cell activity in unclear pathological conditions. However, much additional information can be obtained from such bone samples. Using the example of osteogenesis imperfecta (OI), the current article describes how biopsy samples can be further used to study bone material characteristics including the degree of matrix mineralization, organic matrix properties, mineral particle size and bone nanoporosity. OI is a heritable collagen-related disorder that is phenotypically and genetically extremely heterogeneous. One essential finding was that OI bone is hypermineralized independently of clinical severity. Moreover, mineral particles in OI bone are of normal size or even smaller, but more densely packed than normally. Another recent finding was that in some forms of OI, collagen orientation is highly disorganized, indicating that the collagen-mineral particle network is profoundly altered in OI. These findings have contributed to the understanding of impaired bone strength in OI.
Asunto(s)
Osteogénesis Imperfecta , Biopsia , Densidad Ósea , Huesos , Humanos , Osteocitos , Osteogénesis Imperfecta/diagnósticoRESUMEN
X-linked hypophosphatemia (XLH) caused by PHEX mutations results in elevated serum FGF23 levels, renal phosphate wasting and low 1,25-dihydroxyvitamin D. The glycophosphoprotein osteopontin, a potent inhibitor of mineralization normally degraded by PHEX, accumulates within the bone matrix. Conventional therapy consisting of supplementation with phosphate and vitamin D analogs is burdensome and the effects on bone material poorly characterized. We analyzed transiliac bone biopsies from four adult patients, two of them severely affected due to no diagnosis and no treatment until adulthood. We used light microscopy, qBEI and FTIRI to study histology, histomorphometry, bone mineralization density distribution, properties of the organic matrix and size of hypomineralized periosteocytic lesions. Non-treatment resulted in severe osteomalacia, twice the amount of mineralized trabecular volume, multiple osteon-like perforations, continuity of lamellae from mineralized to unmineralized areas and distinctive patches of woven bone. Periosteocytic lesions were larger than in treated patients. The latter had nearly normal osteoid thicknesses, although surface was still elevated. The median calcium content of the matrix was always within normal range, although the percentage of lowly mineralized bone areas was highly increased in non-treated patients, resulting in a marked heterogeneity in mineralization. Divalent collagen cross-links were evident independently of the mineral content of the matrix. Broad osteoid seams lacked measurable pyridinoline, a mature trivalent cross-link and exhibited considerable acidic lipid content, typically found in matrix vesicles. Based on our results, we propose a model that possibly integrates the relationship between the observed mineralization disturbances, FGF23 secretion and the known osteopontin accumulation in XLH.
Asunto(s)
Huesos/diagnóstico por imagen , Raquitismo Hipofosfatémico Familiar/diagnóstico por imagen , Raquitismo Hipofosfatémico Familiar/patología , Adulto , Densidad Ósea , Matriz Ósea/diagnóstico por imagen , Matriz Ósea/patología , Huesos/patología , Calcitriol/uso terapéutico , Raquitismo Hipofosfatémico Familiar/tratamiento farmacológico , Raquitismo Hipofosfatémico Familiar/genética , Factor-23 de Crecimiento de Fibroblastos , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Humanos , Masculino , Endopeptidasa Neutra Reguladora de Fosfato PHEX/genética , Fosfatos/administración & dosificación , Fosfatos/uso terapéutico , Estudios Retrospectivos , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
In five separate families, we identified nine individuals affected by a previously unidentified syndrome characterized by growth retardation, spine malformation, facial dysmorphisms, and developmental delays. Using homozygosity mapping, array CGH, and exome sequencing, we uncovered bi-allelic loss-of-function CDK10 mutations segregating with this disease. CDK10 is a protein kinase that partners with cyclin M to phosphorylate substrates such as ETS2 and PKN2 in order to modulate cellular growth. To validate and model the pathogenicity of these CDK10 germline mutations, we generated conditional-knockout mice. Homozygous Cdk10-knockout mice died postnatally with severe growth retardation, skeletal defects, and kidney and lung abnormalities, symptoms that partly resemble the disease's effect in humans. Fibroblasts derived from affected individuals and Cdk10-knockout mouse embryonic fibroblasts (MEFs) proliferated normally; however, Cdk10-knockout MEFs developed longer cilia. Comparative transcriptomic analysis of mutant and wild-type mouse organs revealed lipid metabolic changes consistent with growth impairment and altered ciliogenesis in the absence of CDK10. Our results document the CDK10 loss-of-function phenotype and point to a function for CDK10 in transducing signals received at the primary cilia to sustain embryonic and postnatal development.
Asunto(s)
Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/fisiología , Discapacidades del Desarrollo/genética , Trastornos del Crecimiento/genética , Mutación , Columna Vertebral/anomalías , Columna Vertebral/patología , Animales , Ciclo Celular , Proliferación Celular , Células Cultivadas , Niño , Preescolar , Cilios/metabolismo , Cilios/patología , Discapacidades del Desarrollo/patología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Trastornos del Crecimiento/patología , Humanos , Lactante , Masculino , Ratones , Ratones Noqueados , Linaje , Fosforilación , Transducción de Señal , Columna Vertebral/metabolismoRESUMEN
Osteocytic osteolysis/perilacunar remodeling is thought to contribute to the maintenance of mineral homeostasis. Here, we utilized a reversible, adult-onset model of secondary hyperparathyroidism to study femoral bone mineralization density distribution (BMDD) and osteocyte lacunae sections (OLS) based on quantitative backscattered electron imaging. Male mice with a non-functioning vitamin D receptor (VDRΔ/Δ) or wild-type mice were exposed to a rescue diet (RD) (baseline) and subsequently to a low calcium challenge diet (CD). Thereafter, VDRΔ/Δ mice received either the CD, a normal diet (ND), or the RD. At baseline, BMDD and OLS characteristics were similar in VDRΔ/Δ and wild-type mice. The CD induced large cortical pores, osteomalacia, and a reduced epiphyseal average degree of mineralization in the VDRΔ/Δ mice relative to the baseline (-9.5%, p < 0.05 after two months and -10.3%, p < 0.01 after five months of the CD). Switching VDRΔ/Δ mice on the CD back to the RD fully restored BMDD to baseline values. However, OLS remained unchanged in all groups of mice, independent of diet. We conclude that adult VDRΔ/Δ animals on an RD lack any skeletal abnormalities, suggesting that VDR signaling is dispensable for normal bone mineralization as long as mineral homeostasis is normal. Our findings also indicate that VDRΔ/Δ mice attempt to correct a calcium challenge by enhanced osteoclastic resorption rather than by osteocytic osteolysis.
Asunto(s)
Calcio de la Dieta/administración & dosificación , Hiperparatiroidismo Secundario/tratamiento farmacológico , Osteocitos/efectos de los fármacos , Osteólisis/tratamiento farmacológico , Receptores de Calcitriol/deficiencia , Animales , Densidad Ósea/efectos de los fármacos , Calcio de la Dieta/farmacología , Modelos Animales de Enfermedad , Homeostasis , Hiperparatiroidismo Secundario/diagnóstico por imagen , Hiperparatiroidismo Secundario/genética , Masculino , Ratones , Osteólisis/diagnóstico por imagen , Fenotipo , Transducción de SeñalRESUMEN
OBJECTIVES: Little is known about bone mineralization and osteocyte lacunae properties in chronic kidney disease mineral bone disorder (CKD-MBD). METHODS: In this retrospective study, we measured the bone mineralization density distribution (BMDD) and osteocyte lacunar section (OLS) 2D-characteristics by quantitative backscatter electron imaging in Straumann drill biopsy samples from n=58 patients with CKD-MBD. Outcomes were studied in relation to serum parathyroid hormone (PTH), alkaline phosphatase (APH), histomorphometric bone turnover and treatment with cinacalcet or phosphate binders. RESULTS: Lower calcium concentrations in bone from high turnover (average degree of bone mineralization -6.2%, p<0.001) versus low turnover patients were observed. OLS-characteristics were distinctly different (p<0.01 to p<0.05) in patients with highest compared to those with lowest turnover. Patients with cinacalcet had different OLS-characteristics (p<0.05) compared to those without cinacalcet. Furthermore, patients with phosphate binders had differences in BMDD and OLS-characteristics (p<0.05) compared to patients without phosphate binders. CONCLUSIONS: Our findings suggest that in patients with CKD-MBD secondary hyperparathyroidism and increased bone turnover decrease the average degree of bone matrix mineralization. Conversely, density and lacunar size of the osteocytes are increased compared to adynamic bone disease pointing at distinct patterns of bone mineralization and osteocyte lacunar properties in these two disease entities.
Asunto(s)
Densidad Ósea/fisiología , Matriz Ósea/fisiopatología , Calcificación Fisiológica/fisiología , Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica/diagnóstico , Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica/fisiopatología , Osteocitos/fisiología , Adulto , Anciano , Remodelación Ósea/fisiología , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios RetrospectivosRESUMEN
The confocal laser scanning microscope (CLSM) enables the collection of images picturing selected planes in depth of thick samples, thus giving 3D information while keeping the sample intact. In this article we give an overview of our CLSM applications in bone research: (i) the characterization of osteoblasts and osteoclasts properties in cell biology, (ii) the visualization of the three dimensional (3D) osteocyte lacunar canalicular network in undemineralized plastic-embedded bone samples, (iii) the observation of tetracycline labels in bone biopsy samples from patients in combination with information on the mineralization density from quantitative backscatter electron imaging, which enables the time course of mineral accumulation in newly formed bone to be followed, (iv) the precise measurement of the thickness of thin ground bone sections, a prerequisite for the mapping of local mechanical properties by scanning acoustic microscopy.
Asunto(s)
Huesos/ultraestructura , Microscopía Confocal/métodos , Osteocitos , Huesos/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Osteoblastos , Osteoclastos , Osteocitos/citologíaRESUMEN
An important determinant of mechanical properties of bone is Young's modulus and its variation in individual osteons of cortical bone tissue. Its mechanical behavior also depends on deformation rate owing to its visco- or poroelastic properties. We developed a method to measure dynamical mechanical properties of bulk bone tissue at osteonal level based on scanning acoustic microscopy (SAM) using time-of-flight (TOF) measurements in combination with quantitative backscattered electron imaging (qBEI). SAM-TOF yields local sound velocities and qBEI corresponding material densities together providing elastic properties. Osteons (n=55) were measured in three human femoral diaphyseal ground bone sections (â¼ 30 µm in thickness). In addition, subchondral bone and mineralized articular cartilage were investigated. The mean mineral contents, the mean sound velocities, and the mean elastic modulus of the osteons ranged from 20 to 26 wt%, from 3,819 to 5,260 m/s, and from 21 to 44 GPa, respectively. There was a strong positive correlation between material density and sound velocity (Pearson's r=0.701; p<0.0001) of the osteons. Sound velocities between cartilage and bone was similar, though material density was higher in cartilage (+4.46%, p<0.0001). These results demonstrate the power of SAM-TOF to estimate dynamic mechanical properties of the bone materials at the osteonal level.
Asunto(s)
Huesos/fisiología , Fenómenos Químicos , Osteón/fisiología , Microscopía Acústica/métodos , Huesos/química , Elasticidad , Fémur/química , Fémur/fisiología , Osteón/química , Humanos , Fenómenos Mecánicos , Energía Filtrada en la Transmisión por Microscopía Electrónica/métodos , Minerales/análisisRESUMEN
PURPOSE: To investigate the flange properties of different iris hooks. SETTING: Vienna Institute for Research in Ocular Surgery (VIROS), Hanusch Hospital, Vienna, Austria. DESIGN: Laboratory study. METHODS: The flanging properties of 4 different iris hooks made from polypropylene (PP), elastic polymer (EP), and nylon were investigated with different heating distances and both with and without forceps gripping. The maximum diameter of the flanges was measured, and the shape of the flanges was evaluated. RESULTS: Although both nylon and EP iris hooks had too small flange diameters for intrascleral fixation, PP iris hooks had a sufficient flange diameter (>330 µm) and mushroom-like shape. Furthermore, in PP hooks, heating distance was directly proportional to flange diameter. CONCLUSIONS: The findings of this study suggest that only PP iris hooks are suitable for flanged intrascleral fixation, which is off-label, to secure adequate fixation.
Asunto(s)
Implantación de Lentes Intraoculares , Lentes Intraoculares , Humanos , Implantación de Lentes Intraoculares/métodos , Nylons , Técnicas de Sutura , Iris/cirugía , Polímeros , Esclerótica/cirugíaRESUMEN
Osteocytes are mechanosensitive, bone-embedded cells which are connected via dendrites in a lacuno-canalicular network and regulate bone resorption and formation balance. Alterations in osteocyte lacunar volume, shape and density have been identified in conditions of aging, osteoporosis and osteolytic bone metastasis, indicating patterns of impaired bone remodeling, osteolysis and disease progression. Osteolytic bone disease is a hallmark of the hematologic malignancy multiple myeloma (MM), in which monoclonal plasma cells in the bone marrow disrupt the bone homeostasis and induce excessive resorption at local and distant sites. Qualitative and quantitative changes in the 3D osteocyte lacunar morphometry have not yet been evaluated in MM, nor in the precursor conditions monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM). In this study, we characterized the osteocyte lacunar morphology in trabecular bone of the iliac crest at the ultrastructural level using high resolution microCT in human bone biopsy samples of three MGUS, two SMM and six newly diagnosed MM. In MGUS, SMM and MM we found a trend for lower lacunar density and a shift towards larger lacunae with disease progression (higher 50 % cutoff of the lacunar volume cumulative distribution) in the small osteocyte lacunae 20-900 µm3 range compared to control samples. In the larger lacunae 900-3000 µm3 range, we detected significantly higher lacunar density and microporosity in the MM group compared to the MGUS/SMM group. Regarding the shape distribution, the MGUS/SMM group showed a trend for flatter, more elongated and anisotropic osteocyte lacunae compared to the control group. Altogether, our findings suggest that osteocytes in human MM bone disease undergo changes in their lacunae density, volume and shape, which could be an indicator for osteolysis and disease progression. Future studies are needed to understand whether alterations of the lacunae architecture affect the mechanoresponsiveness of osteocytes, and ultimately bone adaptation and fracture resistance in MM and its precursors conditions.
Asunto(s)
Mieloma Múltiple , Osteocitos , Microtomografía por Rayos X , Humanos , Osteocitos/patología , Mieloma Múltiple/patología , Mieloma Múltiple/diagnóstico por imagen , Anciano , Masculino , Femenino , Biopsia , Persona de Mediana Edad , Huesos/patología , Huesos/diagnóstico por imagen , Imagenología Tridimensional , Anciano de 80 o más Años , Paraproteinemias/patología , Paraproteinemias/diagnóstico por imagen , Gammopatía Monoclonal de Relevancia Indeterminada/patología , Gammopatía Monoclonal de Relevancia Indeterminada/diagnóstico por imagenRESUMEN
PURPOSE: To assess the diameter of different 30-gauge thin-wall needles and 3-piece intraocular lens (IOL) haptics readily used for the flanged-haptic intrascleral fixation technique. SETTING: Hanusch Hospital, Vienna, Austria. DESIGN: Laboratory investigation. METHODS: 5 30-gauge thin-wall needles and 5 3-piece IOLs were assessed. An upright light microscopy was used for measurements. The inner and outer diameters of the needles and the end thickness of the haptics were analyzed and compared for haptic fitting into the needle. RESULTS: Among the needles, the inner diameter of the T-lab needle was significantly wider compared with all the others (mean 209.3 ± 8.0 µm, P < .001), followed by TSK (194.8 ± 5.0 µm), MST (194.7 ± 5.8 µm), Sterimedix (187.5 ± 9.0 µm) and significantly narrower Meso-relle (mean 178.7 ± 7.0 µm, P < .05). The outer diameter of the T-lab needle was significantly larger of all (mean 316.0 ± 2.0 µm, P < .001). Concerning the IOLs, the AvanseePreset Kowa's haptic was significantly thinner (mean 127.2 ± 0.7 µm) than all the others, such as the TecnisZA900 Johnson & Johnson (143.5 ± 3.1 µm), the CTLucia202 Zeiss (143.8 ± 1.3 µm), and the AcrysofMA60AC Alcon (143.9 ± 1.4 µm). The only haptic that was thicker than all the others assessed was that of SensarAR40 Johnson & Johnson (170.7 ± 1.7 µm, P < .001). CONCLUSIONS: Most of the analyzed haptics would fit into most of the measured needles, with the exception of the Sensar AR40 in combination with the Meso-relle or Sterimedix needles. The combination of a larger needle lumen and a thinner haptic could result in more ease of insertion during surgery. If the dimensions of the needle and IOL haptics used are unknown, we recommend trying insertion before beginning surgery.
Asunto(s)
Implantación de Lentes Intraoculares , Lentes Intraoculares , Humanos , Implantación de Lentes Intraoculares/métodos , Agujas , Tecnología Háptica , Esclerótica/cirugía , Técnicas de SuturaRESUMEN
Osteogenesis imperfecta (OI) and hypophosphatasia (HPP) are rare skeletal disorders caused by mutations in the genes encoding collagen type I (COL1A, COL1A2) and tissue-non-specific isoenzyme of alkaline phosphatase (ALPL), respectively. Both conditions result in skeletal deformities and bone fragility although bone tissue abnormalities differ considerably. Children with OI have low bone mass and hypermineralized matrix, whereas HPP children develop rickets and osteomalacia. We report a family, father and three children, affected with growth retardation, low bone mass and recurrent fractures. None of them had rickets, blue sclera or dentinogenesis imperfecta. ALP serum levels were low and genetics revealed in the four probands heterozygous pathogenic mutations in COL1A2 c.838G > A (p.Gly280Ser) and in ALPL c.1333T > C (p.Ser445Pro). After multidisciplinary meeting, a diagnostic transiliac bone biopsy was indicated for each sibling for therapeutic decision. Bone histology and histomorphometry, as compared to reference values of children with OI type I as well as, to a control pediatric patient harboring the same COL1A2 mutation, revealed similarly decreased trabecular bone volume, increased osteocyte lacunae, but additionally severe osteomalacia. Quantitative backscattered electron imaging demonstrated that bone matrix mineralization was not as decreased as expected for osteomalacia. In summary, we observed within each biopsy samples classical features of OI and classical features of HPP. The apparent nearly normal bone mineralization density distribution results presumably from divergent effects of OI and HPP on matrix mineralization. A combination therapy was initiated with ALP enzyme-replacement and one month later with bisphosphonates. The ongoing treatment led to improved skeletal growth, increased BMD and markedly reduced fracture incidence.
Asunto(s)
Calcinosis , Fracturas Múltiples , Hipofosfatasia , Osteogénesis Imperfecta , Osteomalacia , Raquitismo , Niño , Humanos , Osteogénesis Imperfecta/tratamiento farmacológico , Osteogénesis Imperfecta/genética , Hipofosfatasia/tratamiento farmacológico , Hipofosfatasia/genética , Osteomalacia/genética , Osteomalacia/patología , Mutación , Fosfatasa Alcalina/genéticaRESUMEN
The spatial distribution of mineralization density is an important signature of bone growth and remodeling processes, and its alterations are often related to disease. The extracellular matrix of some vertebrate mineralized tissues is known to be perfused by a lacunocanalicular network (LCN), a fluid-filled unmineralized structure that harbors osteocytes and their fine processes and transports extracellular fluid and its constituents. The current report provides evidence for structural and compositional heterogeneity at an even smaller, subcanalicular scale. The work reveals an extensive unmineralized three-dimensional (3D) network of nanochannels (~30 nm in diameter) penetrating the mineralized extracellular matrix of human femoral cortical bone and encompassing a greater volume fraction and surface area than these same parameters of the canaliculi comprising the LCN. The present study combines high-resolution focused ion beam-scanning electron microscopy (FIB-SEM) to investigate bone ultrastructure in 3D with quantitative backscattered electron imaging (qBEI) to estimate local bone mineral content. The presence of nanochannels has been found to impact qBEI measurements fundamentally, such that volume percentage (vol%) of nanochannels correlates inversely with weight percentage (wt%) of calcium. This mathematical relationship between nanochannel vol% and calcium wt% suggests that the nanochannels could potentially provide space for ion and small molecule transport throughout the bone matrix. Collectively, these data propose a reinterpretation of qBEI measurements, accounting for nanochannel presence in human bone tissue in addition to collagen and mineral. Further, the results yield insight into bone mineralization processes at the nanometer scale and present the possibility for a potential role of the nanochannel system in permitting ion and small molecule diffusion throughout the extracellular matrix. Such a possible function could thereby lead to the sequestration or occlusion of the ions and small molecules within the extracellular matrix. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).