Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nanotechnology ; 32(21)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33596559

RESUMEN

The procedure commonly adopted to characterize cell materials using atomic force microscopy neglects the stress state induced in the cell by the adhesion structures that anchor it to the substrate. In several studies, the cell is considered as made from a single material and no specific information is provided regarding the mechanical properties of subcellular components. Here we present an optimization algorithm to determine separately the material properties of subcellular components of mesenchymal stem cells subjected to nanoindentation measurements. We assess how these properties change if the adhesion structures at the cell-substrate interface are considered or not in the algorithm. In particular, among the adhesion structures, the focal adhesions and the stress fibers were simulated. We found that neglecting the adhesion structures leads to underestimate the cell mechanical properties thus making errors up to 15%. This result leads us to conclude that the action of adhesion structures should be taken into account in nanoindentation measurements especially for cells that include a large number of adhesions to the substrate.


Asunto(s)
Células Madre Mesenquimatosas/fisiología , Microscopía de Fuerza Atómica/métodos , Modelos Biológicos , Algoritmos , Fenómenos Biomecánicos , Adhesión Celular , Análisis de Elementos Finitos , Adhesiones Focales/fisiología , Humanos , Fibras de Estrés/fisiología
2.
Sensors (Basel) ; 20(21)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33138092

RESUMEN

Since its beginning at the end of 2019, the pandemic spread of the severe acute respiratory syndrome coronavirus 2 (Sars-CoV-2) caused more than one million deaths in only nine months. The threat of emerging and re-emerging infectious diseases exists as an imminent threat to human health. It is essential to implement adequate hygiene best practices to break the contagion chain and enhance society preparedness for such critical scenarios and understand the relevance of each disease transmission route. As the unconscious hand-face contact gesture constitutes a potential pathway of contagion, in this paper, the authors present a prototype system based on low-cost depth sensors able to monitor in real-time the attitude towards such a habit. The system records people's behavior to enhance their awareness by providing real-time warnings, providing for statistical reports for designing proper hygiene solutions, and better understanding the role of such route of contagion. A preliminary validation study measured an overall accuracy of 91%. A Cohen's Kappa equal to 0.876 supports rejecting the hypothesis that such accuracy is accidental. Low-cost body tracking technologies can effectively support monitoring compliance with hygiene best practices and training people in real-time. By collecting data and analyzing them with respect to people categories and contagion statistics, it could be possible to understand the importance of this contagion pathway and identify for which people category such a behavioral attitude constitutes a significant risk.


Asunto(s)
Personal de Salud , Procesamiento de Imagen Asistido por Computador/métodos , Dispositivos Electrónicos Vestibles , Algoritmos , Betacoronavirus/aislamiento & purificación , COVID-19 , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/virología , Desinfección/economía , Desinfección/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/economía , Procesamiento de Imagen Asistido por Computador/instrumentación , Salud Laboral , Pandemias/prevención & control , Equipo de Protección Personal , Neumonía Viral/diagnóstico , Neumonía Viral/prevención & control , Neumonía Viral/virología , SARS-CoV-2
3.
Int J Med Sci ; 15(1): 16-22, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29333083

RESUMEN

Thanks to the recent advances of three-dimensional printing technologies the design and the fabrication of a large variety of scaffold geometries was made possible. The surgeon has the availability of a wide number of scaffold micro-architectures thus needing adequate guidelines for the choice of the best one to be implanted in a patient-specific anatomic region. We propose a mechanobiology-based optimization algorithm capable of determining, for bone tissue scaffolds with an assigned geometry, the optimal value Lopt of the compression load to which they should be subjected, i.e. the load value for which the formation of the largest amounts of bone is favoured and hence the successful outcome of the scaffold implantation procedure is guaranteed. Scaffolds based on hexahedron unit cells were investigated including pores differently dimensioned and with different shapes such as elliptic or rectangular. The algorithm predicted decreasing values of the optimal load for scaffolds with pores with increasing dimensions. The optimal values predicted for the scaffolds with elliptic pores were found higher than those with rectangular ones. The proposed algorithm can be utilized to properly guide the surgeon in the choice of the best scaffold type/geometry that better satisfies the specific patient requirements.


Asunto(s)
Algoritmos , Huesos , Modelos Biológicos , Ingeniería de Tejidos/métodos , Andamios del Tejido , Materiales Biocompatibles , Fenómenos Biomecánicos , Humanos , Porosidad
4.
Nanotechnology ; 28(4): 045703, 2017 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-27981954

RESUMEN

Characterisation of the mechanical behaviour of cancer cells is an issue of crucial importance as specific cell mechanical properties have been measured and utilized as possible biomarkers of cancer progression. Atomic force microscopy certainly occupies a prominent place in the field of the mechanical characterisation devices. We developed a hybrid approach to characterise different cell lines (SW620 and SW480) of the human colon carcinoma submitted to nanoindentation measurements. An ad hoc algorithm was written that compares the force-indentation curves experimentally retrieved with those predicted by a finite element model that simulates the nanoindentation process and reproduces the cell geometry and the surface roughness. The algorithm perturbs iteratively the values of the cell mechanical properties implemented in the finite element model until the difference between the experimental and numerical force-indentation curves reaches the minimum value. The occurrence of this indicates that the implemented material properties are very close to the real ones. Different hyperelastic constitutive models, such as Arruda-Boyce, Mooney-Rivlin and Neo-Hookean were utilized to describe the structural behaviour of indented cells. The algorithm was capable of separating, for all the cell lines investigated, the mechanical properties of cell cortex and cytoskeleton. Material properties determined via the algorithm were different with respect to those obtained with the Hertzian contact theory. This demonstrates that factors such as: the cell geometry/anatomy and the hyperelastic constitutive behaviour, which are not contemplated in the Hertz's theory hypotheses, do affect the nanoindentation measurements. The proposed approach represents a powerful tool that, only on the basis of nanoindentation measurements, is capable of characterising material at the subcellular level.

5.
Nanotechnology ; 26(32): 325701, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26201503

RESUMEN

Atomic force microscopy (AFM) nanoindentation is very suited for nano- and microscale mechanical characterization of soft materials. Although the structural response of polymeric networks that form soft matter depends on viscous effects caused by the relative slippage of polymeric chains, the usual assumption made in the AFM-based characterization is that the specimen behaves as a purely elastic material and viscous forces are negligible. However, for each geometric configuration of the AFM tip, there will be a limit indentation rate above which viscous effects must be taken into account to correctly determine mechanical properties. A parametric finite element study conducted on 12 geometric configurations of a blunt cone AFM tip (overall, the study included about 200 finite element analyses) allowed us to determine the limit indentation rate for each configuration. The selected tip dimensions cover commercially available products and account for changes in tip geometry caused by serial measurements. Nanoindentation rates cover typical experimental conditions set in AFM bio-measurements on soft matter. Viscous effects appear to be more significant in the case of sharper tips. This implies that, if quantitative data on sample viscosity are not available, using a rounded indenter and carrying out experiments below the limit indentation rate will allow errors in the determination of mechanical properties to be minimized.

6.
J Mech Behav Biomed Mater ; 157: 106645, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38963999

RESUMEN

In a technological context where, thanks to the additive manufacturing techniques, even sophisticated geometries as well as surfaces with specific micrometric features can be realized, we propose a mechano-regulation algorithm to determine the optimal microgeometric parameters of the surface of textured titanium devices for biomedical applications. A poroelastic finite element model was developed including a portion of bone, a portion of a textured titanium device and a layer of granulation tissue separating the bone from the device and occupying the space between them. The algorithm, implemented in the Matlab environment, determines the optimal values of the root mean square and the correlation length that the device surface must possess to maximize bone formation in the gap between the bone and the device. For low levels of compression load acting on the bone, the algorithm predicts low values of root mean square and high values of correlation length. Conversely, high levels of load require high values of root mean square and low values of correlation length. The optimal microgeometrical parameters were determined for various thickness values of the granulation tissue layer. Interestingly, the predictions of the proposed computational model are consistent with the experimental results reported in the literature. The proposed algorithm shows promise as a valuable tool for addressing the demands of precision medicine. In this approach, the device or prosthesis is no longer designed solely based on statistical averages but is tailored to each patient's unique anthropometric characteristics, as well as considerations related to their metabolism, sex, age, and more.

7.
ScientificWorldJournal ; 2013: 871423, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23533364

RESUMEN

AIMS: To measure the friction force generated during sliding mechanics with conventional, self-ligating (Damon 3 mx, Smart Clip, and Time 3) and low-friction (Synergy) brackets using different archwire diameters and ligating systems in the presence of apical and buccal malalignments of the canine. METHODS: An experimental setup reproducing the right buccal segment of the maxillary arch was designed to measure the friction force generated at the bracket/wire and wire/ligature interfaces of different brackets. A complete factorial plan was drawn up and a three-way analysis of variance (ANOVA) was carried out to investigate whether the following factors affect the values of friction force: (i) degree of malalignment, (ii) diameter of the orthodontic wire, and (iii) bracket/ligature combination. Tukey post hoc test was also conducted to evaluate any statistically significant differences between the bracket/ligature combinations analyzed. RESULTS: ANOVA showed that all the above factors affect the friction force values. The friction force released during sliding mechanics with conventional brackets is about 5-6times higher than that released with the other investigated brackets. A quasilinear increase of the frictional forces was observed for increasing amounts of apical and buccal malalignments. CONCLUSION: The Synergy bracket with silicone ligature placed around the inner tie-wings appears to yield the best performance.


Asunto(s)
Fricción , Maloclusión/prevención & control , Diseño de Aparato Ortodóncico/métodos , Soportes Ortodóncicos , Análisis de Varianza , Análisis del Estrés Dental/métodos , Humanos , Ensayo de Materiales , Modelos Anatómicos , Alambres para Ortodoncia , Ortodoncia Correctiva/instrumentación , Acero Inoxidable , Estrés Mecánico
8.
J Funct Biomater ; 14(3)2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36976070

RESUMEN

A growing interest in creating advanced biomaterials with specific physical and chemical properties is currently being observed. These high-standard materials must be capable to integrate into biological environments such as the oral cavity or other anatomical regions in the human body. Given these requirements, ceramic biomaterials offer a feasible solution in terms of mechanical strength, biological functionality, and biocompatibility. In this review, the fundamental physical, chemical, and mechanical properties of the main ceramic biomaterials and ceramic nanocomposites are drawn, along with some primary related applications in biomedical fields, such as orthopedics, dentistry, and regenerative medicine. Furthermore, an in-depth focus on bone-tissue engineering and biomimetic ceramic scaffold design and fabrication is presented.

9.
Artículo en Inglés | MEDLINE | ID: mdl-37946349

RESUMEN

Approximately 50% of the adult global population is projected to suffer from some form of metabolic disease by 2050, including metabolic syndrome and diabetes mellitus. At the same time, this trend indicates a potential increase in the number of patients who will be in need of implant-supported reconstructions of specific bone regions subjected to inflammatory states. Moreover, physiological conditions associated with dysmetabolic subjects have been suggested to contribute to the severity of bone loss after bone implant insertion. However, there is a perspective evidence strengthening the hypothesis that custom-fabricated bioengineered scaffolds may produce favorable bone healing effects in case of altered endocrine or metabolic conditions. This perspective review aims to share a comprehensive knowledge of the mechanisms implicated in bone resorption and remodelling processes, which have driven researchers to develop metallic implants as the cobalt-chromium (Co-Cr) bioscaffolds, presenting optimized geometries that interact in an effective way with the osteogenetic precursor cells, especially in the cases of perturbed endocrine or metabolic conditions.

10.
Int J Med Sci ; 9(8): 642-54, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23055816

RESUMEN

AIMS: To investigate how the interfacial shear strength of the dentin-post interface with and without defects changes for different combinations irrigant/sealer. METHODS: In forty human decoronated and instrumented teeth, fibreglass posts were inserted. The obtained root segments were randomly assigned to four different groups according to the irrigant adopted and the cement used to seal the root canal. The root segments were processed for metyl-methacrylate embedding. Serial sections were obtained and submitted to histomorphometric analyses in order to observe any defect of adhesion at the dentin-post interface and to measure the defects' dimension. The serial sections were also submitted to micro-push-out test. The measured shear strength values were subjected to statistical analysis by one-way ANOVA. The values of bond strength determined for the defective samples were correlated with the dimension of the defects. Finite element models were built to interpret and corroborate the experimental findings. RESULTS: ANOVA showed that the generic combination irrigant/sealer does not affect the interfacial shear strength values. The bond strength of the samples without defects was averagely twice as large as that of the defective samples. The defects occupying more than 12% of the total transverse section area of the endodontic cement layer led to a reduction of the bond strength of about 70%. The predictions of the finite element models were in agreement with the experimental results. CONCLUSION: Defects occupying less than 2% of the total transverse section area of the cement layer were shown to be acceptable as they have rather negligible effects on the shear strength values. Technologies/protocols should be developed to minimize the number and the size of the defects.


Asunto(s)
Dentina , Endodoncia , Selladores de Fosas y Fisuras , Irrigación Terapéutica , Análisis de Varianza , Fenómenos Biomecánicos , Análisis de Elementos Finitos , Soluciones
11.
Minim Invasive Ther Allied Technol ; 21(6): 377-87, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22375618

RESUMEN

Left ventricular assist devices (LVADs) work as a bypass between the left ventricular apex and the ascending aorta. The surgical procedure for their insertion requires the opening of the cardiac cavities and the dissection of the great vessels, the blood is constrained to flow through the device components and the risk can be run of thrombogenesis, haemolysis and infections. A possible strategy to overcome this limitation consists in utilizing external systems that assist the heart in its contraction from the outside without directly transporting the blood. In this study we conduct the feasibility analysis of a novel external LVAD design that does not require the opening of the cardiac cavities and the dissection of the great vessels and that allows the removal procedure to be easily achieved. The device, including a stepper motor, three metallic wires and three elastic elements, works alternatively between a contraction condition where it induces an elastic compulsion on the heart and a release condition where it elastically releases the organ. The values of force acting on the wires and the values of current supplied to the motor were measured and utilized for a preliminary study design. The experimental measurements demonstrated the feasibility of the system.


Asunto(s)
Insuficiencia Cardíaca/cirugía , Corazón Auxiliar , Modelos Biológicos , Remoción de Dispositivos , Diseño de Equipo , Estudios de Factibilidad , Ventrículos Cardíacos , Humanos , Técnicas In Vitro
12.
J Funct Biomater ; 14(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36662061

RESUMEN

During the last decades, metal-based biomaterials have been extensively explored to be used as biocompatible metals for biomedical applications, owing to their superior mechanical properties and corrosion resistance. Consequently, for long-term implanted medical devices, to assure the biomaterials' reliability, functionality, and biocompatibility, studying the various bio-tribological damage mechanisms to obtain the optimum properties is one of the most important goals. In this review, we consider the most important metal-based biomaterials such as stainless steel, alloys of titanium (Ti), cobalt-chromium (Co-Cr), and Nichel-Titatium (Ni-Ti), as well Magnesium (Mg) alloys and with Tantalum (Ta), emphasizing their characteristics, clinical applications, and deterioration over time. The influence of metal elements on biological safety, including significant effects of metal-based biomaterials in dentistry were discussed, considering the perspectives of surface, mechanical properties, corrosion behaviors, including interactions, bio-mechanisms with tissues, and oral environments. In addition, the role of the oral microbiota was explored due to its role in this erosion condition, in order to further understand the mechanism of metal-based biomaterials implanted on the microflora balance of aerobic and anaerobic bacteria in an oral environment.

13.
Materials (Basel) ; 14(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34683577

RESUMEN

The strong impulse recently experienced by the manufacturing technologies as well as the development of innovative biocompatible materials has allowed the fabrication of high-performing scaffolds for bone tissue engineering. The design process of materials for bone tissue scaffolds represents, nowadays, an issue of crucial importance and the object of study of many researchers throughout the world. A number of studies have been conducted, aimed at identifying the optimal material, geometry, and surface that the scaffold must possess to stimulate the formation of the largest amounts of bone in the shortest time possible. This book presents a collection of 10 research articles and 2 review papers describing numerical and experimental design techniques definitively aimed at improving the scaffold performance, shortening the healing time, and increasing the success rate of the scaffold implantation process.

14.
Materials (Basel) ; 13(3)2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32024158

RESUMEN

In spite of the rather large use of the fused deposition modeling (FDM) technique for the fabrication of scaffolds, no studies are reported in the literature that optimize the geometry of such scaffold types based on mechanobiological criteria. We implemented a mechanobiology-based optimization algorithm to determine the optimal distance between the strands in cylindrical scaffolds subjected to compression. The optimized scaffolds were then 3D printed with the FDM technique and successively measured. We found that the difference between the optimized distances and the average measured ones never exceeded 8.27% of the optimized distance. However, we found that large fabrication errors are made on the filament diameter when the filament diameter to be realized differs significantly with respect to the diameter of the nozzle utilized for the extrusion. This feasibility study demonstrated that the FDM technique is suitable to build accurate scaffold samples only in the cases where the strand diameter is close to the nozzle diameter. Conversely, when a large difference exists, large fabrication errors can be committed on the diameter of the filaments. In general, the scaffolds realized with the FDM technique were predicted to stimulate the formation of amounts of bone smaller than those that can be obtained with other regular beam-based scaffolds.

15.
Materials (Basel) ; 13(18)2020 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-32933165

RESUMEN

Despite the wide use of scaffolds with spherical pores in the clinical context, no studies are reported in the literature that optimize the micro-architecture dimensions of such scaffolds to maximize the amounts of neo-formed bone. In this study, a mechanobiology-based optimization algorithm was implemented to determine the optimal geometry of scaffolds with spherical pores subjected to both compression and shear loading. We found that these scaffolds are particularly suited to bear shear loads; the amounts of bone predicted to form for this load type are, in fact, larger than those predicted in other scaffold geometries. Knowing the anthropometric characteristics of the patient, one can hypothesize the possible value of load acting on the scaffold that will be implanted and, through the proposed algorithm, determine the optimal dimensions of the scaffold that favor the formation of the largest amounts of bone. The proposed algorithm can guide and support the surgeon in the choice of a "personalized" scaffold that better suits the anthropometric characteristics of the patient, thus allowing to achieve a successful follow-up in the shortest possible time.

16.
Comput Biol Med ; 112: 103376, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31386970

RESUMEN

Blepharospasm (BSP) is an adult-onset focal dystonia with phenomenologically heterogeneous effects, including, but not limited to, blinks, brief or prolonged spasms, and a narrowing or closure of the eyelids. In spite of the clear and well-known symptomatology, objectively rating the severity of this dystonia is a rather complex task since BSP symptoms are so subtle and hardly perceptible that even expert neurologists can rate the gravity of the pathology differently in the same patients. Software tools have been developed to help clinicians in the rating procedure. Currently, a computerised video-based system is available that is capable of objectively determining the eye closure time, however, it cannot distinguish the typical symptoms of the pathology. In this study, we attempt to take a step forward by proposing a neural network-based software able not only to measure the eye closure, time but also to recognise and count the typical blepharospasm symptoms. The software, after detecting the state of the eyes (open or closed), the movement of specific facial landmarks, and properly implementing artificial neural networks with an optimised topology, can recognise blinking, and brief and prolonged spasms. Comparing the software predictions with the observations of an expert neurologist allowed assessment of the sensitivity and specificity of the proposed software. The levels of sensitivity were high for recognising brief and prolonged spasms but were lower in the case of blinks. The proposed software is an automatic tool capable of making objective 'measurements' of blepharospasm symptoms.


Asunto(s)
Blefaroespasmo , Parpadeo , Diagnóstico por Computador , Redes Neurales de la Computación , Programas Informáticos , Anciano , Blefaroespasmo/diagnóstico , Blefaroespasmo/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad
17.
ACS Biomater Sci Eng ; 5(10): 5392-5411, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33464060

RESUMEN

By combining load adaptive algorithms with mechanobiological algorithms, a computational framework was developed to design and optimize the microarchitecture of irregular load adapted scaffolds for bone tissue engineering. Skeletonized cancellous bone-inspired lattice structures were built including linear fibers oriented along the internal flux of forces induced by the hypothesized boundary conditions. These structures were then converted into solid finite element models, which were optimized with mechanobiology-based optimization algorithms. The design variable was the diameter of the beams included in the scaffold, while the design objective was the maximization of the fraction of the scaffold volume predicted to be occupied by neo-formed bony tissue. The performance of the designed irregular scaffolds, intended as the capability to favor the formation of bone, was compared with that of the regular ones based on different unit cell geometries. Three different boundary and loading conditions were hypothesized, and for all of them, it was found that the irregular load adapted scaffolds perform better than the regular ones. Interestingly, the numerical predictions of the proposed framework are consistent with the results of experimental studies reported in the literature. The proposed framework appears to be a powerful tool that can be utilized to design high-performance irregular load adapted scaffolds capable of bearing complex load distributions.

18.
Am J Orthod Dentofacial Orthop ; 134(2): 260-9, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18675208

RESUMEN

INTRODUCTION: In this study, we aimed to analyze the displacement field and the level of stability for a human mandible that had symphyseal distraction osteogenesis. The mandible was fitted with various orthodontic devices: tooth borne, bone borne, and hybrid. Three-dimensional nonlinear finite element analyses were performed to study differences between the nominal aperture of the device and the actual mandibular distraction. Furthermore, displacement fields of the mandibular arch evaluated with and without mastication forces were compared to determine the level of stability of each appliance. METHODS: Computed tomography scan images of the mandible were processed to create the finite element model, which was completed by modeling the distraction device. Three cases were considered: the distraction device attached to the first molar and the first premolar (tooth borne), to the canine and basal bones (hybrid), or only to the basal bone (bone borne). The nominal aperture of each device was 2 mm. Mandibular displacements in the mastication phase were analyzed in the case of unilateral occlusion on the second premolar. RESULTS AND CONCLUSIONS: Tooth-borne and hybrid devices allow orthodontists to better control the effective displacement transferred to the mandible by the distractor. Displacements of the mandibular arch were closer to the nominal aperture of the distractor than in the case of the bone-borne device. Hybrid devices were more stable under functional loads. However, parasitic rotations of the mandibular arms caused by mastication might counteract the benefits of distraction.


Asunto(s)
Arco Dental/anatomía & histología , Mandíbula/cirugía , Avance Mandibular/instrumentación , Aparatos Ortodóncicos , Osteogénesis por Distracción/instrumentación , Algoritmos , Fenómenos Biomecánicos , Simulación por Computador , Arco Dental/cirugía , Análisis de Elementos Finitos , Humanos , Imagenología Tridimensional , Mandíbula/anatomía & histología , Avance Mandibular/métodos , Modelos Anatómicos , Osteogénesis por Distracción/métodos , Estrés Mecánico
19.
Mater Sci Eng C Mater Biol Appl ; 83: 51-66, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29208288

RESUMEN

In a context more and more oriented towards customized medical solutions, we propose a mechanobiology-driven algorithm to determine the optimal geometry of scaffolds for bone regeneration that is the most suited to specific boundary and loading conditions. In spite of the huge number of articles investigating different unit cells for porous biomaterials, no studies are reported in the literature that optimize the geometric parameters of such unit cells based on mechanobiological criteria. Parametric finite element models of scaffolds with rhombicuboctahedron unit cell were developed and incorporated into an optimization algorithm that combines them with a computational mechanobiological model. The algorithm perturbs iteratively the geometry of the unit cell until the best scaffold geometry is identified, i.e. the geometry that allows to maximize the formation of bone. Performances of scaffolds with rhombicuboctahedron unit cell were compared with those of other scaffolds with hexahedron unit cells. We found that scaffolds with rhombicuboctahedron unit cell are particularly suited for supporting medium-low loads, while, for higher loads, scaffolds with hexahedron unit cells are preferable. The proposed algorithm can guide the orthopaedic/surgeon in the choice of the best scaffold to be implanted in a patient-specific anatomic region.


Asunto(s)
Biofisica/métodos , Andamios del Tejido/química , Algoritmos , Materiales Biocompatibles/química , Análisis de Elementos Finitos , Ingeniería de Tejidos/métodos
20.
J Mech Behav Biomed Mater ; 83: 28-45, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29665454

RESUMEN

Enhancing the performance of scaffolds for bone regeneration requires a multidisciplinary approach involving competences in the fields of Biology, Medicine and Engineering. A number of studies have been conducted to investigate the influence of scaffolds design parameters on their mechanical and biological response. The possibilities offered by the additive manufacturing techniques to fabricate sophisticated and very complex microgeometries that until few years ago were just a geometrical abstraction, led many researchers to design scaffolds made from different unit cell geometries. The aim of this work is to find, based on mechanobiological criteria and for different load regimes, the optimal geometrical parameters of scaffolds made from beam-based repeating unit cells, namely, truncated cuboctahedron, truncated cube, rhombic dodecahedron and diamond. The performance, -expressed in terms of percentage of the scaffold volume occupied by bone-, of the scaffolds based on these unit cells was compared with that of scaffolds based on other unit cell geometries such as: hexahedron and rhombicuboctahedron. A very intriguing behavior was predicted for the truncated cube unit cell that allows the formation of large amounts of bone for low load values and of very small amounts for the medium-high ones. For high values of load, scaffolds made from hexahedron unit cells were predicted to favor the formation of the largest amounts of bone. In a clinical context where medical solutions become more and more customized, this study offers a support to the surgeon in the choice of the best scaffold to be implanted in a patient-specific anatomic region.


Asunto(s)
Huesos/citología , Fenómenos Mecánicos , Andamios del Tejido/química , Fenómenos Biomecánicos , Modelos Moleculares , Conformación Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA