Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur J Neurol ; 31(3): e16153, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38015472

RESUMEN

BACKGROUND: The 30-day hospital re-admission rate is a quality measure of hospital care to monitor the efficiency of the healthcare system. The hospital re-admission of acute stroke (AS) patients is often associated with higher mortality rates, greater levels of disability and increased healthcare costs. The aim of our study was to identify predictors of unplanned 30-day hospital re-admissions after discharge of AS patients and define an early re-admission risk score (RRS). METHODS: This observational, retrospective study was performed on AS patients who were discharged between 2014 and 2019. Early re-admission predictors were identified by machine learning models. The performances of these models were assessed by receiver operating characteristic curve analysis. RESULTS: Of 7599 patients with AS, 3699 patients met the inclusion criteria, and 304 patients (8.22%) were re-admitted within 30 days from discharge. After identifying the predictors of early re-admission by logistic regression analysis, RRS was obtained and consisted of seven variables: hemoglobin level, atrial fibrillation, brain hemorrhage, discharge home, chronic obstructive pulmonary disease, one and more than one hospitalization in the previous year. The cohort of patients was then stratified into three risk categories: low (RRS = 0-1), medium (RRS = 2-3) and high (RRS >3) with re-admission rates of 5%, 8% and 14%, respectively. CONCLUSIONS: The identification of risk factors for early re-admission after AS and the elaboration of a score to stratify at discharge time the risk of re-admission can provide a tool for clinicians to plan a personalized follow-up and contain healthcare costs.


Asunto(s)
Accidente Cerebrovascular , Humanos , Estudios Retrospectivos , Factores de Riesgo , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/terapia , Hospitales , Aprendizaje Automático
2.
Crit Care ; 25(1): 219, 2021 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-34174903

RESUMEN

BACKGROUND: A correlation between unsuccessful noninvasive ventilation (NIV) and poor outcome has been suggested in de-novo Acute Respiratory Failure (ARF) patients. Consequently, it is of paramount importance to identify accurate predictors of NIV outcome. The aim of our preliminary study is to evaluate the Diaphragmatic Thickening Fraction (DTF) and the respiratory rate/DTF ratio as predictors of NIV outcome in de-novo ARF patients. METHODS: Over 36 months, we studied patients admitted to the emergency department with a diagnosis of de-novo ARF and requiring NIV treatment. DTF and respiratory rate/DTF ratio were measured by 2 trained operators at baseline, at 1, 4, 12, 24, 48, 72 and 96 h of NIV treatment and/or until NIV discontinuation or intubation. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the ability of DTF and respiratory rate/DTF ratio to distinguish between patients who were successfully weaned and those who failed. RESULTS: Eighteen patients were included. We found overall good repeatability of DTF assessment, with Intra-class Correlation Coefficient (ICC) of 0.82 (95% confidence interval 0.72-0.88). The cut-off values of DTF for prediction of NIV failure were < 36.3% and < 37.1% for the operator 1 and 2 (p < 0.0001), respectively. The cut-off value of respiratory rate/DTF ratio for prediction of NIV failure was > 0.6 for both operators (p < 0.0001). CONCLUSION: DTF and respiratory rate/DTF ratio may both represent valid, feasible and noninvasive tools to predict NIV outcome in patients with de-novo ARF. Trial registration ClinicalTrials.gov Identifier: NCT02976233, registered 26 November 2016.


Asunto(s)
Diafragma/anatomía & histología , Ventilación no Invasiva/normas , Evaluación de Resultado en la Atención de Salud/estadística & datos numéricos , Anciano , Anciano de 80 o más Años , Diafragma/diagnóstico por imagen , Femenino , Humanos , Unidades de Cuidados Intensivos/organización & administración , Unidades de Cuidados Intensivos/estadística & datos numéricos , Italia/epidemiología , Masculino , Persona de Mediana Edad , Ventilación no Invasiva/métodos , Evaluación de Resultado en la Atención de Salud/métodos , Síndrome de Dificultad Respiratoria/epidemiología , Síndrome de Dificultad Respiratoria/fisiopatología , Síndrome de Dificultad Respiratoria/terapia
3.
Am J Respir Crit Care Med ; 201(3): 303-312, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31687831

RESUMEN

Rationale: High-flow nasal cannula (HFNC) and helmet noninvasive ventilation (NIV) are used for the management of acute hypoxemic respiratory failure.Objectives: Physiological comparison of HFNC and helmet NIV in patients with hypoxemia.Methods: Fifteen patients with hypoxemia with PaO2/FiO2 < 200 mm Hg received helmet NIV (positive end-expiratory pressure ≥ 10 cm H2O, pressure support = 10-15 cm H2O) and HFNC (50 L/min) in randomized crossover order. Arterial blood gases, dyspnea, and comfort were recorded. Inspiratory effort was estimated by esophageal pressure (Pes) swings. Pes-simplified pressure-time product and transpulmonary pressure swings were measured.Measurements and Main Results: As compared with HFNC, helmet NIV increased PaO2/FiO2 (median [interquartile range]: 255 mm Hg [140-299] vs. 138 [101-172]; P = 0.001) and lowered inspiratory effort (7 cm H2O [4-11] vs. 15 [8-19]; P = 0.001) in all patients. Inspiratory effort reduction by NIV was linearly related to inspiratory effort during HFNC (r = 0.84; P < 0.001). Helmet NIV reduced respiratory rate (24 breaths/min [23-31] vs. 29 [26-32]; P = 0.027), Pes-simplified pressure-time product (93 cm H2O ⋅ s ⋅ min-1 [43-138] vs. 200 [168-335]; P = 0.001), and dyspnea (visual analog scale 3 [2-5] vs. 8 [6-9]; P = 0.002), without affecting PaCO2 (P = 0.80) and comfort (P = 0.50). In the overall cohort, transpulmonary pressure swings were not different between treatments (NIV = 18 cm H2O [14-21] vs. HFNC = 15 [8-19]; P = 0.11), but patients exhibiting lower inspiratory effort on HFNC experienced increases in transpulmonary pressure swings with helmet NIV. Higher transpulmonary pressure swings during NIV were associated with subsequent need for intubation.Conclusions: As compared with HFNC in hypoxemic respiratory failure, helmet NIV improves oxygenation, reduces dyspnea, inspiratory effort, and simplified pressure-time product, with similar transpulmonary pressure swings, PaCO2, and comfort.


Asunto(s)
Hipoxia/fisiopatología , Hipoxia/terapia , Ventilación no Invasiva/instrumentación , Insuficiencia Respiratoria/fisiopatología , Insuficiencia Respiratoria/terapia , Enfermedad Aguda , Anciano , Cánula , Estudios Cruzados , Femenino , Humanos , Hipoxia/complicaciones , Masculino , Persona de Mediana Edad , Insuficiencia Respiratoria/complicaciones
4.
JAMA ; 325(17): 1731-1743, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33764378

RESUMEN

Importance: High-flow nasal oxygen is recommended as initial treatment for acute hypoxemic respiratory failure and is widely applied in patients with COVID-19. Objective: To assess whether helmet noninvasive ventilation can increase the days free of respiratory support in patients with COVID-19 compared with high-flow nasal oxygen alone. Design, Setting, and Participants: Multicenter randomized clinical trial in 4 intensive care units (ICUs) in Italy between October and December 2020, end of follow-up February 11, 2021, including 109 patients with COVID-19 and moderate to severe hypoxemic respiratory failure (ratio of partial pressure of arterial oxygen to fraction of inspired oxygen ≤200). Interventions: Participants were randomly assigned to receive continuous treatment with helmet noninvasive ventilation (positive end-expiratory pressure, 10-12 cm H2O; pressure support, 10-12 cm H2O) for at least 48 hours eventually followed by high-flow nasal oxygen (n = 54) or high-flow oxygen alone (60 L/min) (n = 55). Main Outcomes and Measures: The primary outcome was the number of days free of respiratory support within 28 days after enrollment. Secondary outcomes included the proportion of patients who required endotracheal intubation within 28 days from study enrollment, the number of days free of invasive mechanical ventilation at day 28, the number of days free of invasive mechanical ventilation at day 60, in-ICU mortality, in-hospital mortality, 28-day mortality, 60-day mortality, ICU length of stay, and hospital length of stay. Results: Among 110 patients who were randomized, 109 (99%) completed the trial (median age, 65 years [interquartile range {IQR}, 55-70]; 21 women [19%]). The median days free of respiratory support within 28 days after randomization were 20 (IQR, 0-25) in the helmet group and 18 (IQR, 0-22) in the high-flow nasal oxygen group, a difference that was not statistically significant (mean difference, 2 days [95% CI, -2 to 6]; P = .26). Of 9 prespecified secondary outcomes reported, 7 showed no significant difference. The rate of endotracheal intubation was significantly lower in the helmet group than in the high-flow nasal oxygen group (30% vs 51%; difference, -21% [95% CI, -38% to -3%]; P = .03). The median number of days free of invasive mechanical ventilation within 28 days was significantly higher in the helmet group than in the high-flow nasal oxygen group (28 [IQR, 13-28] vs 25 [IQR 4-28]; mean difference, 3 days [95% CI, 0-7]; P = .04). The rate of in-hospital mortality was 24% in the helmet group and 25% in the high-flow nasal oxygen group (absolute difference, -1% [95% CI, -17% to 15%]; P > .99). Conclusions and Relevance: Among patients with COVID-19 and moderate to severe hypoxemia, treatment with helmet noninvasive ventilation, compared with high-flow nasal oxygen, resulted in no significant difference in the number of days free of respiratory support within 28 days. Further research is warranted to determine effects on other outcomes, including the need for endotracheal intubation. Trial Registration: ClinicalTrials.gov Identifier: NCT04502576.


Asunto(s)
COVID-19/complicaciones , Intubación Intratraqueal/estadística & datos numéricos , Ventilación no Invasiva/instrumentación , Terapia por Inhalación de Oxígeno/métodos , Insuficiencia Respiratoria/terapia , Anciano , COVID-19/mortalidad , COVID-19/terapia , Femenino , Mortalidad Hospitalaria , Humanos , Hipoxia/etiología , Masculino , Persona de Mediana Edad , Ventilación no Invasiva/métodos , Insuficiencia Respiratoria/etiología , Insuficiencia del Tratamiento
5.
Crit Care ; 24(1): 529, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32859264

RESUMEN

BACKGROUND: Whether respiratory physiology of COVID-19-induced respiratory failure is different from acute respiratory distress syndrome (ARDS) of other etiologies is unclear. We conducted a single-center study to describe respiratory mechanics and response to positive end-expiratory pressure (PEEP) in COVID-19 ARDS and to compare COVID-19 patients to matched-control subjects with ARDS from other causes. METHODS: Thirty consecutive COVID-19 patients admitted to an intensive care unit in Rome, Italy, and fulfilling moderate-to-severe ARDS criteria were enrolled within 24 h from endotracheal intubation. Gas exchange, respiratory mechanics, and ventilatory ratio were measured at PEEP of 15 and 5 cmH2O. A single-breath derecruitment maneuver was performed to assess recruitability. After 1:1 matching based on PaO2/FiO2, FiO2, PEEP, and tidal volume, COVID-19 patients were compared to subjects affected by ARDS of other etiologies who underwent the same procedures in a previous study. RESULTS: Thirty COVID-19 patients were successfully matched with 30 ARDS from other etiologies. At low PEEP, median [25th-75th percentiles] PaO2/FiO2 in the two groups was 119 mmHg [101-142] and 116 mmHg [87-154]. Average compliance (41 ml/cmH2O [32-52] vs. 36 ml/cmH2O [27-42], p = 0.045) and ventilatory ratio (2.1 [1.7-2.3] vs. 1.6 [1.4-2.1], p = 0.032) were slightly higher in COVID-19 patients. Inter-individual variability (ratio of standard deviation to mean) of compliance was 36% in COVID-19 patients and 31% in other ARDS. In COVID-19 patients, PaO2/FiO2 was linearly correlated with respiratory system compliance (r = 0.52 p = 0.003). High PEEP improved PaO2/FiO2 in both cohorts, but more remarkably in COVID-19 patients (p = 0.005). Recruitability was not different between cohorts (p = 0.39) and was highly inter-individually variable (72% in COVID-19 patients and 64% in ARDS from other causes). In COVID-19 patients, recruitability was independent from oxygenation and respiratory mechanics changes due to PEEP. CONCLUSIONS: Early after establishment of mechanical ventilation, COVID-19 patients follow ARDS physiology, with compliance reduction related to the degree of hypoxemia, and inter-individually variable respiratory mechanics and recruitability. Physiological differences between ARDS from COVID-19 and other causes appear small.


Asunto(s)
Infecciones por Coronavirus/fisiopatología , Neumonía Viral/fisiopatología , Síndrome de Dificultad Respiratoria/fisiopatología , Anciano , Betacoronavirus , COVID-19 , Infecciones por Coronavirus/terapia , Femenino , Humanos , Unidades de Cuidados Intensivos , Italia , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/terapia , Respiración con Presión Positiva , Síndrome de Dificultad Respiratoria/terapia , Pruebas de Función Respiratoria , Mecánica Respiratoria/fisiología , SARS-CoV-2
7.
J Anesth Analg Crit Care ; 4(1): 44, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38992794

RESUMEN

We are in the era of Health 4.0 when novel technologies are providing tools capable of improving the quality and safety of the services provided. Our project involves the integration of different technologies (AI, big data, robotics, and telemedicine) to create a unique system for patients admitted to intensive care units suffering from infectious diseases capable of both increasing the personalization of care and ensuring a safer environment for caregivers.

8.
J Clin Med ; 13(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38541932

RESUMEN

Introduction: Coronavirus disease 2019 (COVID-19) is a significant and novel cause of acute respiratory distress syndrome (ARDS). During the COVID-19 pandemic, there has been an increase in the incidence of cases involving pneumothorax and pneumomediastinum. However, the risk factors associated with poor outcomes in these patients remain unclear. Methods: This observational study collected clinical and imaging data from COVID-19 patients with PTX and/or PNM across five tertiary hospitals in central Italy between 1 March 2020 and 1 March 2022. This study also calculated the incidence of PTX and PNM and utilized multivariable regression analysis and Kaplan-Meier curve analysis to identify predictor factors for 28-day mortality and 3-day orotracheal intubation after PTX/PNM. This study also considered the impact of the three main variants of concern (VoCs) (alfa, delta, and omicron) circulating during the study period. Results: During the study period, a total of 11,938 patients with COVID-19 were admitted. This study found several factors independently associated with a higher risk of death in COVID-19 patients within 28 days of pulmonary barotrauma. These factors included a SOFA score ≥ 4 (OR 3.22, p = 0.013), vasopressor/inotropic therapy (OR 11.8, p < 0.001), hypercapnia (OR 2.72, p = 0.021), PaO2/FiO2 ratio < 150 mmHg (OR 10.9, p < 0.001), and cardiovascular diseases (OR 7.9, p < 0.001). This study also found that a SOFA score ≥ 4 (OR 3.10, p = 0.015), PCO2 > 45 mmHg (OR 6.0, p = 0.003), and P/F ratio < 150 mmHg (OR 2.9, p < 0.042) were factors independently associated with a higher risk of orotracheal intubation (OTI) within 3 days from PTX/PNM in patients with non-invasive mechanical ventilation. SARS-CoV-2 VoCs were not associated with 28-day mortality or the risk of OTI. The estimated cumulative probability of OTI in patients after pneumothorax was 44.0% on the first day, 67.8% on the second day, and 68.9% on the third day, according to univariable survival analysis. In patients who had pneumomediastinum only, the estimated cumulative probability of OTI was 37.5%, 46.7%, and 57.7% on the first, second, and third days, respectively. The overall incidence of PTX/PNM among hospitalized COVID-19 patients was 1.42%, which increased up to 4.1% in patients receiving invasive mechanical ventilation. Conclusions: This study suggests that a high SOFA score (≥4), the need for vasopressor/inotropic therapy, hypercapnia, and PaO2/FiO2 ratio < 150 mmHg in COVID-19 patients with pulmonary barotrauma are associated with higher rates of intubation, ICU admission, and mortality. Identifying these risk factors early on can help healthcare providers anticipate and manage these patients more effectively and provide timely interventions with appropriate intensive care, ultimately improving their outcomes.

9.
Crit Care ; 17(6): R267, 2013 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-24209387

RESUMEN

INTRODUCTION: Endotracheal suctioning (ETS) is essential for patient care in an ICU but may represent a cause of cerebral secondary injury. Ketamine has been historically contraindicated for its use in head injury patients, since an increase of intracranial pressure (ICP) was reported; nevertheless, its use was recently suggested in neurosurgical patients. In this prospective observational study we investigated the effect of ETS on ICP, cerebral perfusion pressure (CPP), jugular oxygen saturation (SjO2) and cerebral blood flow velocity (mVMCA) before and after the administration of ketamine. METHODS: In the control phase, ETS was performed on patients sedated with propofol and remifentanil in continuous infusion. If a cough was present, patients were assigned to the intervention phase, and 100 γ/kg/min of racemic ketamine for 10 minutes was added before ETS. RESULTS: In the control group ETS stimulated the cough reflex, with a median cough score of 2 (interquartile range (IQR) 1 to 2). Furthermore, it caused an increase in mean arterial pressure (MAP) (from 89.0 ± 11.6 to 96.4 ± 13.1 mmHg; P <0.001), ICP (from 11.0 ± 6.7 to 18.5 ± 8.9 mmHg; P <0.001), SjO2 (from 82.3 ± 7.5 to 89.1 ± 5.4; P = 0.01) and mVMCA (from 76.8 ± 20.4 to 90.2 ± 30.2 cm/sec; P = 0.04). CPP did not vary with ETS. In the intervention group, no significant variation of MAP, CPP, mVMCA, and SjO2 were observed in any step; after ETS, ICP increased if compared with baseline (15.1 ± 9.4 vs. 11.0 ± 6.4 mmHg; P <0.05). Cough score was significantly reduced in comparison with controls (P <0.0001). CONCLUSIONS: Ketamine did not induce any significant variation in cerebral and systemic parameters. After ETS, it maintained cerebral hemodynamics without changes in CPP, mVMCA and SjO2, and prevented cough reflex. Nevertheless, ketamine was not completely effective when used to control ICP increase after administration of 100 γ/kg/min for 10 minutes.


Asunto(s)
Traumatismos Craneocerebrales/terapia , Presión Intracraneal/efectos de los fármacos , Ketamina/uso terapéutico , Succión/métodos , Tráquea/efectos de los fármacos , Adulto , Anestésicos Disociativos/efectos adversos , Anestésicos Disociativos/uso terapéutico , Traumatismos Craneocerebrales/complicaciones , Hemodinámica/efectos de los fármacos , Humanos , Hipnóticos y Sedantes/administración & dosificación , Hipnóticos y Sedantes/uso terapéutico , Bombas de Infusión , Italia , Ketamina/efectos adversos , Piperidinas/administración & dosificación , Piperidinas/uso terapéutico , Propofol/administración & dosificación , Propofol/uso terapéutico , Remifentanilo , Succión/efectos adversos
10.
J Stroke Cerebrovasc Dis ; 22(8): e667-70, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23849749

RESUMEN

Pulmonary embolism can be a catastrophic event that can result in early death or serious hemodynamic dysfunction. The dehydration, immobility, and infections occurring in acute stroke patients puts these patients at risk of developing deep vein thrombosis and pulmonary embolism. Recombinant tissue-type plasminogen activator (rt-PA) is the established therapy for acute ischemic stroke, and its prompt administration results in a better outcome in stroke patients. We describe a 73-year-old man who arrived at the emergency room within 2 hours of acute onset of left hemiparesis who was treated with rt-PA and suffered a pulmonary embolism 3 days after acute stroke therapy. rt-PA is also a current therapy for pulmonary embolism, but an ischemic stroke in the previous 3 months is an absolute contraindication to thrombolysis because of the high risk of intracranial hemorrhage. We discuss clinical and therapeutic decisions and review the current literature.


Asunto(s)
Fibrinolíticos/administración & dosificación , Embolia Pulmonar/etiología , Accidente Cerebrovascular/tratamiento farmacológico , Terapia Trombolítica , Activador de Tejido Plasminógeno/administración & dosificación , Anciano , Angiografía Cerebral/métodos , Electrocardiografía , Humanos , Angiografía por Resonancia Magnética , Masculino , Embolia Pulmonar/diagnóstico , Embolia Pulmonar/terapia , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico , Factores de Tiempo , Tomografía Computarizada por Rayos X , Resultado del Tratamiento
11.
World J Psychiatry ; 13(4): 191-217, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37123099

RESUMEN

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic produced changes in intensive care units (ICUs) in patient care and health organizations. The pandemic event increased patients' risk of developing psychological symptoms during and after hospitalisation. These consequences also affected those family members who could not access the hospital. In addition, the initial lack of knowledge about the virus and its management, the climate of fear and uncertainty, the increased workload and the risk of becoming infected and being contagious, had a strong impact on healthcare staff and organizations. This highlighted the importance of interventions aimed at providing psychological support to ICUs, involving patients, their relatives, and the staff; this might involve the reorganisation of the daily routine and rearrangement of ICU staff duties. AIM: To conduct a systematic review of psychological issues in ICUs during the COVID-19 pandemic involving patients, their relatives, and ICU staff. METHODS: We investigated the PubMed and the ClinicalTrials.gov databases and found 65 eligible articles, upon which we commented. RESULTS: Our results point to increased perceived stress and psychological distress in staff, patients and their relatives and increased worry for being infected with severe acute respiratory syndrome coronavirus-2 in patients and relatives. Furthermore, promising results were obtained for some psychological programmes aiming at improving psychological measures in all ICU categories. CONCLUSION: As the pandemic limited direct inter-individual interactions, the role of interventions using digital tools and virtual reality is becoming increasingly important. All considered, our results indicate an essential role for psychologists in ICUs.

12.
Heart Lung ; 62: 193-199, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37562337

RESUMEN

BACKGROUND: COVID-19 patients undergoing ECMO are at highly increased risk of nosocomial infections. OBJECTIVES: To study incidence, clinical outcomes and microbiological features of bloodstream infections (BSI) occurring during ECMO in COVID-19 patients. METHODS: Observational prospective cohort study enrolling consecutive COVID-19 patients undergoing veno-venous-ECMO in an Italian ICU from March 2020 to March 2022. RESULTS: In the study population of 68 patients (age 53 [49-60] years, 82% males), 30 (44%) developed bloodstream infections (BSI group) while 38 did not (N-BSI group) with an incidence of 32 events/1000 days of ECMO. In BSI group pre-ECMO respiratory support was shorter (6 [4-9] vs 9 [5-12] days, p = 0.02) and ECMO treatment was longer (18 [10-29] vs 11 [7-18] days, p = 0.03) than in N-BSI group. The overall ECMO and ICU mortality were 50% and 59%, respectively, without any inter-group difference (p = 1.00). A longer ECMO treatment was independently correlated with higher rate of BSI (p = 0.04, OR [95% CI] 1.06 [1.02-1.11]). Sixteen primary and 14 secondary infectious events were documented. Gram-positive pathogens were more common in primary than secondary BSI (88% vs 43%, p = 0.02) and Enterococcus faecalis (56%) was the most frequent one. Conversely, Gram-negative microorganisms were more often isolated in secondary rather than primary BSI (57% vs 13%, p = 0.02), with Acinetobacter baumannii (21%) and Pseudomonas aeruginosa (21%) as most represented species. The administration of Sars-CoV-2 antiviral drug showed independent correlation with a reduced rate of ICU mortality (p = 0.01, OR [95% CI] 0.22 [0.07-0.73]). CONCLUSIONS: Bloodstream infections represented a frequent complication without worsening clinical outcomes in our COVID-19 patients undergoing ECMO. Primary and secondary BSI events showed peculiar microbiological profiles.

13.
J Intensive Care ; 11(1): 21, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208787

RESUMEN

BACKGROUND: Long-term outcomes of patients treated with helmet noninvasive ventilation (NIV) are unknown: safety concerns regarding the risk of patient self-inflicted lung injury and delayed intubation exist when NIV is applied in hypoxemic patients. We assessed the 6-month outcome of patients who received helmet NIV or high-flow nasal oxygen for COVID-19 hypoxemic respiratory failure. METHODS: In this prespecified analysis of a randomized trial of helmet NIV versus high-flow nasal oxygen (HENIVOT), clinical status, physical performance (6-min-walking-test and 30-s chair stand test), respiratory function and quality of life (EuroQoL five dimensions five levels questionnaire, EuroQoL VAS, SF36 and Post-Traumatic Stress Disorder Checklist for the DSM) were evaluated 6 months after the enrollment. RESULTS: Among 80 patients who were alive, 71 (89%) completed the follow-up: 35 had received helmet NIV, 36 high-flow oxygen. There was no inter-group difference in any item concerning vital signs (N = 4), physical performance (N = 18), respiratory function (N = 27), quality of life (N = 21) and laboratory tests (N = 15). Arthralgia was significantly lower in the helmet group (16% vs. 55%, p = 0.002). Fifty-two percent of patients in helmet group vs. 63% of patients in high-flow group had diffusing capacity of the lungs for carbon monoxide < 80% of predicted (p = 0.44); 13% vs. 22% had forced vital capacity < 80% of predicted (p = 0.51). Both groups reported similar degree of pain (p = 0.81) and anxiety (p = 0.81) at the EQ-5D-5L test; the EQ-VAS score was similar in the two groups (p = 0.27). Compared to patients who successfully avoided invasive mechanical ventilation (54/71, 76%), intubated patients (17/71, 24%) had significantly worse pulmonary function (median diffusing capacity of the lungs for carbon monoxide 66% [Interquartile range: 47-77] of predicted vs. 80% [71-88], p = 0.005) and decreased quality of life (EQ-VAS: 70 [53-70] vs. 80 [70-83], p = 0.01). CONCLUSIONS: In patients with COVID-19 hypoxemic respiratory failure, treatment with helmet NIV or high-flow oxygen yielded similar quality of life and functional outcome at 6 months. The need for invasive mechanical ventilation was associated with worse outcomes. These data indicate that helmet NIV, as applied in the HENIVOT trial, can be safely used in hypoxemic patients. Trial registration Registered on clinicaltrials.gov NCT04502576 on August 6, 2020.

14.
Crit Care Med ; 40(6): 1745-52, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22610180

RESUMEN

OBJECTIVE: To assess the agreement between computed tomography and transcranial sonography in patients after decompressive craniectomy. DESIGN: Prospective study. SETTING: The medical intensive care unit of a university-affiliated teaching hospital. PATIENTS: Thirty head-injured patients consecutively admitted to the intensive care unit of "A. Gemelli" Hospital who underwent decompressive craniectomy were studied. Immediately before brain cranial tomography, transcranial ultrasonography was performed. MEASUREMENTS AND MAIN RESULTS: The mean difference between computed tomography and echography in measuring the dislocation of midline structures was 0.3 ± 1.6 mm (95% confidence interval 0.2-0.9 mm; intraclass correlation coefficient, 0.979; p < .01). An excellent correlation was found between computed tomography and transcranial sonography in assessing volumes of hyperdense lesions (intraclass correlation coefficient, 0.993; p < .01). Lesions that appear hypodense on computed tomography scan were divided in ischemic and late hemorrhagic. No ischemic lesion was localized on echography; a poor correlation was found between computed tomography and echography in assessing the volume of late hemorrhagic lesions (intraclass correlation coefficient, 0.151; p = .53). A quite good correlation between transcranial ultrasonography and computed tomography was found in measuring lateral ventricles width (intraclass correlation coefficient, 0.967; p < .01). Sensitivity and specificity of transcranial ultrasonography in comparison with computed tomography to detect the position of intracranial pressure catheter was 100% and 78%. CONCLUSIONS: Echography may be a valid option to computed tomography in patients with decompressive craniectomy to assess the size of acute hemorrhagic lesions, to measure midline structures and the width of lateral ventricles, and to visualize the tip of the ventricular catheter.


Asunto(s)
Lesiones Encefálicas/diagnóstico por imagen , Craniectomía Descompresiva , Tomografía Computarizada por Rayos X , Ultrasonografía Doppler Transcraneal , Adulto , Anciano , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Sensibilidad y Especificidad
15.
Healthcare (Basel) ; 10(7)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35885695

RESUMEN

Background. To evaluate relationships between lung aeration assessed by lung ultrasound (LUS) with viscoelastic profiles obtained by thromboelastography (TEG) in COVID-19 respiratory failure. Methods. Retrospective analysis in a tertiary ICU in Rome, Italy. Forty invasively ventilated adults with COVID-19 underwent LUS and TEG assessment. A simplified LUS protocol consisting in scanning six areas, three per side, was adopted. A score from 0 to 3 was assigned to each area. TEG®6s was used to obtain viscoelastic hemostatic assay parameters which were compared to LUS score. Results. There was a significant inverse correlation between LUS score and static compliance of the respiratory system (Crs, rs −0.75; p < 0.001). We found a significant association between LUS and functional fibrinogen maximum amplitude (FF-MA): among 18 patients with LUS score ≤ 12, median FF-MA was 31 mm [IQR 28−39] whilst, among 22 patients with LUS score > 12, it was 46.3 mm [IQR 40−53], p = 0.0004. Median of the citrated recalcified kaolin-activated maximum amplitude (CK-MA) was 66.1 mm [64.4−68] in the LUS score ≤ 12 group, and 69.6 [68.5−70.7] when LUS score > 12, p < 0.002. Conclusions. The hypercoagulable profile as defined by elevated FF-MA and CK-MA may be associated with a low degree of lung aeration as assessed by LUS.

16.
Antibiotics (Basel) ; 11(3)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35326768

RESUMEN

Machine learning and cluster analysis applied to the clinical setting of an intensive care unit can be a valuable aid for clinical management, especially with the increasing complexity of clinical monitoring. Providing a method to measure clinical experience, a proxy for that automatic gestalt evaluation that an experienced clinician sometimes effortlessly, but often only after long, hard consideration and consultation with colleagues, relies upon for decision making, is what we wanted to achieve with the application of machine learning to antibiotic therapy and clinical monitoring in the present work. This is a single-center retrospective analysis proposing methods for evaluation of vitals and antimicrobial therapy in intensive care patients. For each patient included in the present study, duration of antibiotic therapy, consecutive days of treatment and type and combination of antimicrobial agents have been assessed and considered as single unique daily record for analysis. Each parameter, composing a record was normalized using a fuzzy logic approach and assigned to five descriptive categories (fuzzy domain sub-sets ranging from "very low" to "very high"). Clustering of these normalized therapy records was performed, and each patient/day was considered to be a pertaining cluster. The same methodology was used for hourly bed-side monitoring. Changes in patient conditions (monitoring) can lead to a shift of clusters. This can provide an additional tool for assessing progress of complex patients. We used Fuzzy logic normalization to descriptive categories of parameters as a form nearer to human language than raw numbers.

17.
Respir Physiol Neurobiol ; 298: 103844, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35038571

RESUMEN

BACKGROUND: Use of high positive end-expiratory pressure (PEEP) and prone positioning is common in patients with COVID-19-induced acute respiratory failure. Few data clarify the hemodynamic effects of these interventions in this specific condition. We performed a physiologic study to assess the hemodynamic effects of PEEP and prone position during COVID-19 respiratory failure. METHODS: Nine adult patients mechanically ventilated due to COVID-19 infection and fulfilling moderate-to-severe ARDS criteria were studied. Respiratory mechanics, gas exchange, cardiac output, oxygen consumption, systemic and pulmonary pressures were recorded through pulmonary arterial catheterization at PEEP of 15 and 5 cmH2O, and after prone positioning. Recruitability was assessed through the recruitment-to-inflation ratio. RESULTS: High PEEP improved PaO2/FiO2 ratio in all patients (p = 0.004), and significantly decreased pulmonary shunt fraction (p = 0.012), regardless of lung recruitability. PEEP-induced increases in PaO2/FiO2 changes were strictly correlated with shunt fraction reduction (rho=-0.82, p = 0.01). From low to high PEEP, cardiac output decreased by 18 % (p = 0.05) and central venous pressure increased by 17 % (p = 0.015). As compared to supine position with low PEEP, prone positioning significantly decreased pulmonary shunt fraction (p = 0.03), increased PaO2/FiO2 (p = 0.03) and mixed venous oxygen saturation (p = 0.016), without affecting cardiac output. PaO2/FiO2 was improved by prone position also when compared to high PEEP (p = 0.03). CONCLUSIONS: In patients with moderate-to-severe ARDS due to COVID-19, PEEP and prone position improve arterial oxygenation. Changes in cardiac output contribute to the effects of PEEP but not of prone position, which appears the most effective intervention to improve oxygenation with no hemodynamic side effects.


Asunto(s)
Presión Sanguínea/fisiología , COVID-19/fisiopatología , COVID-19/terapia , Frecuencia Cardíaca/fisiología , Evaluación de Procesos y Resultados en Atención de Salud , Consumo de Oxígeno/fisiología , Respiración con Presión Positiva , Posición Prona , Resistencia Vascular/fisiología , Anciano , Anciano de 80 o más Años , Femenino , Monitorización Hemodinámica , Humanos , Unidades de Cuidados Intensivos , Italia , Masculino , Persona de Mediana Edad , Posición Prona/fisiología
18.
Intensive Crit Care Nurs ; 68: 103138, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34750044

RESUMEN

OBJECTIVE: Comparison of nurse involvement in end of life decision making in European countries participating in ETHICUS I- 1999 and ETHICUS II- 2015. METHODOLOGY: This was a prospective observational study of 22 European ICUs included in the ETHICUS-II and I. Data were collected as per the ETHICUS-I and ETHICUS-II protocols. Four questions within the ETHICUS protocols related to nurse involvement in end of life decision making were analyzed. This is a comparison of changes in nurse involvement in end of life decisions from 1999 to 2015. SETTING: International e-based questionnaire completed by an intensive care clinician when an end of life decision was performed on any patient. SUBJECTS: Intensive care physicians and nurses, no interventions were performed. MEASUREMENTS: A 20 question survey was used to describe the decision making process, on what basis was the decision made, who was involved in the decision making process, and what precise decisions were made. RESULTS: A total of 4592 cases from 22 centres are included. While there was more agreement between nurses and physicians in ETHICUS-I compared to ETHICUS-I, fewer discussions with nurses occurred in ETHICUS-II. The frequency of end of life decisions that were discussed with nurses decreased in all three regions between ETHICUS-I and ETHICUS-II. CONCLUSION: Based on the results of the current study, nurses should be further encouraged to increase their involvement in end of life decision-making, especially those in southern Europe.


Asunto(s)
Cuidado Terminal , Cuidados Críticos , Muerte , Toma de Decisiones , Humanos , Unidades de Cuidados Intensivos
19.
Prehosp Disaster Med ; 36(2): 175-182, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33345764

RESUMEN

INTRODUCTION: This study was aimed to assess if combining the evaluation of blood glucose level (BGL) and the Triage Revised Trauma Score (T-RTS) may result in a more accurate prediction of the actual clinical outcome, both in general adult population and in elderly patients with trauma. METHODS: This is a retrospective cohort study, conducted in the emergency department (ED) of an urban teaching hospital, with an average ED admission rate of 75,000 patients per year. Those excluded: known diagnosis of diabetes, age <18 years old, pregnancy, and mild trauma (classified as isolate trauma of upper or lower limb, in absence of exposed fractures). A combined Revised Trauma Score Glucose (RTS-G) score was obtained adding to T-RTS: two for BGL <160mg/dL (8.9mmol/L); one for BGL ≥160mg/dL and < 200mg/dL (11.1mmol/L); and zero for BGL ≥ 200mg/dL. The primary outcome was a composite of patient's death in ED or admission to intensive care unit (ICU). Receiver Operating Characteristic (ROC) curve analysis was used to evaluate the overall performance of T-RTS and of the combined RTS-G score. RESULTS: Among a total of 68,933 traumas, 9,436 patients (4,407 females) were enrolled, aged from 18 to 103 years; 4,288 were aged ≥65 years. A total of 577 (6.1%) met the primary endpoint: 38 patients died in ED (0.4%) and 539 patients were admitted to ICU. The T-RTS and BGL were independently associated to primary endpoint at multivariate analysis. The cumulative RTS-G score was significantly more accurate than T-RTS and reached the best accuracy in elderly patients. In general population, ROC area under curve (AUC) for T-RTS was 0.671 (95% CI, 0.661 - 0.680) compared to RTS-G ROC AUC 0.743 (95% CI, 0.734 - 0.752); P <.001. In patients ≥65 years, T-RTS ROC AUC was 0.671 (95% CI, 0.657 - 0.685) compared to RTS-G ROC AUC 0.780 (95% CI, 0.768 - 0.793); P <.001. CONCLUSIONS: Results showed RTS-G could be used effectively at ED triage for the risk stratification for death in ED and ICU admission of trauma patients, and it could reduce under-triage of approximately 20% compared to T-RTS. Comparing ROC AUCs, the combined RTS-G score performs significantly better than T-RTS and gives best results in patients ≥65 years.


Asunto(s)
Glucemia , Heridas y Lesiones , Adolescente , Adulto , Anciano , Servicio de Urgencia en Hospital , Femenino , Mortalidad Hospitalaria , Humanos , Valor Predictivo de las Pruebas , Estudios Retrospectivos , Índices de Gravedad del Trauma , Triaje , Heridas y Lesiones/diagnóstico
20.
J Intensive Med ; 1(2): 110-116, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36785563

RESUMEN

Background: Accurate risk stratification of critically ill patients with coronavirus disease 2019 (COVID-19) is essential for optimizing resource allocation, delivering targeted interventions, and maximizing patient survival probability. Machine learning (ML) techniques are attracting increased interest for the development of prediction models as they excel in the analysis of complex signals in data-rich environments such as critical care. Methods: We retrieved data on patients with COVID-19 admitted to an intensive care unit (ICU) between March and October 2020 from the RIsk Stratification in COVID-19 patients in the Intensive Care Unit (RISC-19-ICU) registry. We applied the Extreme Gradient Boosting (XGBoost) algorithm to the data to predict as a binary outcome the increase or decrease in patients' Sequential Organ Failure Assessment (SOFA) score on day 5 after ICU admission. The model was iteratively cross-validated in different subsets of the study cohort. Results: The final study population consisted of 675 patients. The XGBoost model correctly predicted a decrease in SOFA score in 320/385 (83%) critically ill COVID-19 patients, and an increase in the score in 210/290 (72%) patients. The area under the mean receiver operating characteristic curve for XGBoost was significantly higher than that for the logistic regression model (0.86 vs. 0.69, P < 0.01 [paired t-test with 95% confidence interval]). Conclusions: The XGBoost model predicted the change in SOFA score in critically ill COVID-19 patients admitted to the ICU and can guide clinical decision support systems (CDSSs) aimed at optimizing available resources.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA