Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Neuroeng Rehabil ; 18(1): 4, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407580

RESUMEN

BACKGROUND: Upper limb assistive devices can compensate for muscular weakness and empower the user in the execution of daily activities. Multiple devices have been recently proposed but there is still a lack in the scientific comparison of their efficacy. METHODS: We conducted a cross-over multi-centric randomized controlled trial to assess the functional improvement at the upper limb level of two arms supports on 36 patients with muscular dystrophy. Participants tested a passive device (i.e., Wrex by Jaeco) and a semi-active solution for gravity compensation (i.e., Armon Ayura). We evaluated devices' effectiveness with an externally-assessed scale (i.e., Performance of the Upper Limb-PUL-module), a self-perceived scale (i.e., Abilhand questionnaire), and a usability scale (i.e., System Usability Scale). Friedman's test was used to assess significant functional gain for PUL module and Abilhand questionnaire. Moreover, PUL changes were compared by means of the Friedman's test. RESULTS: Most of the patients improved upper limb function with the use of arm supports (median PUL scores increase of 1-3 points). However, the effectiveness of each device was related to the level of residual ability of the end-user. Slightly impaired patients maintained the same independence without and with assistive devices, even if they reported reduced muscular fatigue for both devices. Moderately impaired patients enhanced their arm functionality with both devices, and they obtained higher improvements with the semi-active one (median PUL scores increase of 9 points). Finally, severely impaired subjects benefited only from the semi-active device (median PUL scores increase of 12 points). Inadequate strength was recognized as a barrier to passive devices. The usability, measured by the System Usability Scale, was evaluated by end-users "good" (70/100 points) for the passive, and "excellent" (80/100 points) for the semi-active device. CONCLUSIONS: This study demonstrated that assistive devices can improve the quality of life of people suffering from muscular dystrophy. The use of passive devices, despite being low cost and easy to use, shows limitations in the efficacy of the assistance to daily tasks, limiting the assistance to a predefined horizontal plane. The addition of one active degree of freedom improves efficacy and usability especially for medium to severe patients. Further investigations are needed to increase the evidence on the effect of arm supports on quality of life and diseases' progression in subjects with degenerative disorders. Trial registration clinicaltrials.gov, NCT03127241, Registered 25th April 2017. The clinical trial was also registered as a post-market study at the Italian Ministry of Health.


Asunto(s)
Distrofias Musculares/rehabilitación , Dispositivos de Autoayuda , Adulto , Estudios Cruzados , Femenino , Humanos , Masculino , Persona de Mediana Edad , Calidad de Vida , Extremidad Superior/fisiopatología
2.
Sci Rep ; 13(1): 1184, 2023 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-36681711

RESUMEN

Nowadays, work-related musculoskeletal disorders have a drastic impact on a large part of the world population. In particular, low-back pain counts as the leading cause of absence from work in the industrial sector. Robotic exoskeletons have great potential to improve industrial workers' health and life quality. Nonetheless, current solutions are often limited by sub-optimal control systems. Due to the dynamic environment in which they are used, failure to adapt to the wearer and the task may be limiting exoskeleton adoption in occupational scenarios. In this scope, we present a deep-learning-based approach exploiting inertial sensors to provide industrial exoskeletons with human activity recognition and adaptive payload compensation. Inertial measurement units are easily wearable or embeddable in any industrial exoskeleton. We exploited Long-Short Term Memory networks both to perform human activity recognition and to classify the weight of lifted objects up to 15 kg. We found a median F1 score of [Formula: see text] (activity recognition) and [Formula: see text] (payload estimation) with subject-specific models trained and tested on 12 (6M-6F) young healthy volunteers. We also succeeded in evaluating the applicability of this approach with an in-lab real-time test in a simulated target scenario. These high-level algorithms may be useful to fully exploit the potential of powered exoskeletons to achieve symbiotic human-robot interaction.


Asunto(s)
Dispositivo Exoesqueleto , Dolor de la Región Lumbar , Humanos , Algoritmos , Fenómenos Biomecánicos , Industrias
3.
PLoS One ; 15(9): e0239064, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32986757

RESUMEN

The Performance of the Upper Limb (PUL) module is an externally-assessed clinical scale, initially designed for the Duchenne muscular dystrophy population. It provides an upper extremity functional score suitable for both weaker ambulatory and non-ambulatory phases up to the severely impaired patients. It is capable of characterizing overall progression and severity of disease and of tracking the stereotypical proximal-to-distal progressive loss of upper limb function in muscular dystrophy. Since the PUL module has been validated only with Duchenne patients, its use also for Becker and Limb-Girdle muscular dystrophy patients has been here evaluated, to verify its reliability and extend its use. In particular, two different assessors performed this scale on 32 dystrophic subjects in two consecutive days. The results showed that the PUL module has high reliability, both absolute and relative, based on the calculation of Pearson's r (0.9942), Intraclass Correlation Coefficient (0.9943), Standard Error of Measurement (1.36), Minimum Detectable Change (3.77), and Coefficient of Variation (3%). The Minimum Detectable Change, in particular, can be used in clinical trials to perform a comprehensive longitudinal evaluation of the effects of interventions with the lapse of time. According to this analysis, an intervention is effective if the difference in the PUL score between subsequent evaluation points is equal or higher than 4 points; otherwise, the observed effect is not relevant. Inter-rater reliability with ten different assessors was evaluated, and it has been demonstrated that deviation from the mean is lower than calculated Minimum Detectable Change. The present work provides evidence that the PUL module is a reliable and valid instrument for measuring upper limb ability in people with different forms of muscular dystrophy. Therefore, the PUL module might be extended to other pathologies and reliably used in multicenter settings.


Asunto(s)
Distrofia Muscular de Duchenne/fisiopatología , Extremidad Superior/fisiopatología , Adolescente , Adulto , Técnicas y Procedimientos Diagnósticos , Progresión de la Enfermedad , Humanos , Distrofia Muscular de Duchenne/diagnóstico , Reproducibilidad de los Resultados , Adulto Joven
4.
Med Eng Phys ; 32(4): 339-48, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20171923

RESUMEN

Functional electrical stimulation (FES) is a well established method in the rehabilitation of stroke patients. Indeed, a bilateral movement such as cycling induced by FES would be crucial for these patients who had an unilateral motor impairment and had to recover an equivalent use of limbs. The aim of this study was to develop a low-cost meteorologically qualified cycle-ergometer, optimized for patients with stroke. A commercial ergometer was instrumented with resistive strain gauges and was able to provide the torque produced at the right and left crank, independently. The developed system was integrated with a stimulator, obtaining a novel FES cycling device able to control in real-time the movement unbalance. A dynamic calibration of the sensors was performed and a total torque uncertainty was computed. The system was tested on a healthy subject and on a stroke patient. Results demonstrated that the proposed sensors could be successfully used during FES cycling sessions where the maximum torque produced is about 9Nm, an order of magnitude less than the torque produced during voluntary cycling. This FES cycling system will assist in future investigations on stroke rehabilitation by means of FES and in new exercise regimes designed specifically for patients with unilateral impairments.


Asunto(s)
Ciclismo , Terapia por Estimulación Eléctrica/instrumentación , Terapia por Estimulación Eléctrica/métodos , Terapia por Ejercicio/instrumentación , Terapia por Ejercicio/métodos , Rehabilitación de Accidente Cerebrovascular , Fenómenos Biomecánicos , Calibración , Estudios de Casos y Controles , Estimulación Eléctrica , Terapia por Estimulación Eléctrica/economía , Diseño de Equipo , Potenciales Evocados Motores/fisiología , Terapia por Ejercicio/economía , Hemiplejía/fisiopatología , Hemiplejía/rehabilitación , Humanos , Actividad Motora/fisiología , Fuerza Muscular , Resistencia Física , Accidente Cerebrovascular/fisiopatología , Factores de Tiempo , Torque
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA