RESUMEN
Rhipicephalus microplus is an ixodid tick with a pantropical distribution that represents a serious threat to livestock. West Africa was free of this tick until 2007, when its introduction into Benin was reported. Shortly thereafter, further invasion of this tick species into other West African countries was identified. In this paper, we describe the first detection of R. microplus in Guinea and list the vector-borne haemoparasites that were detected in the invading and indigenous Boophilus species. In 2018, we conducted a small-scale survey of ticks infesting cattle in three administrative regions of Guinea: N`Zerekore, Faranah, and Kankan. The tick species were identified by examining their morphological characteristics and by sequencing their COI gene and ITS-2 gene fragments. R. microplus was found in each studied region. In the ticks, we found the DNA of Babesia bigemina, Anaplasma marginale, Anaplasma platys, and Ehrlichia sp. The results of this study indicate that R. microplus was introduced into Guinea in association with cows from Mali and/or the Ivory Coast.
Asunto(s)
Anaplasma marginale/aislamiento & purificación , Anaplasma/aislamiento & purificación , Babesia/aislamiento & purificación , Ehrlichia/aislamiento & purificación , Rhipicephalus/microbiología , Rhipicephalus/parasitología , Anaplasma/genética , Anaplasma marginale/genética , Animales , Babesia/genética , Benin , Bovinos , Enfermedades de los Bovinos/parasitología , Côte d'Ivoire , Ehrlichia/genética , Femenino , Guinea , Ganado/parasitología , Infestaciones por Garrapatas/veterinariaRESUMEN
In 2018, a previously unknown Ebola virus, Bombali virus, was discovered in Sierra Leone. We describe detection of Bombali virus in Guinea. We found viral RNA in internal organs of 3 Angolan free-tailed bats (Mops condylurus) trapped in the city of N'Zerekore and in a nearby village.
Asunto(s)
Quirópteros/virología , Brotes de Enfermedades/prevención & control , Reservorios de Enfermedades , Ebolavirus/aislamiento & purificación , Fiebre Hemorrágica Ebola/epidemiología , Animales , Guinea/epidemiología , Fiebre Hemorrágica Ebola/transmisión , Humanos , Liberia/epidemiología , ZoonosisRESUMEN
In 2021, a patient died from Marburg virus (MARV) disease in Guinea and it was the first confirmed case in West Africa. The origin of the outbreak has not been identified. It was revealed that the patient didn't travel anywhere before the illness. Prior to outbreak, MARV had been found in bats in the neighboring Sierra Leone, but never in Guinea. Therefore, the origin of infection is unclear: was it an autochthonous case with spillover from a local population of bats or an imported case with spillover from fruit bats foraging/migrating from Sierra Leone? In this paper, we studied Rousettus aegyptiacus in Guinea as the possible source of MARV infection caused the patient death in 2021 in Guinea. We caught bats in 32 sites of Guéckédou prefecture, including seven caves and 25 locations of the flight path. A total of 501 fruit bats (Pteropodidae) were captured, including 66 R. aegyptiacus. The PCR screening showed three positive MARV R. aegyptiacus, roosting in two caves discovered in Guéckédou prefecture. After Sanger sequencing and phylogenetic analyses it was shown that found MARV belongs to the Angola-like lineage but it is not identical to the isolate obtained during the outbreak of 2021.
Asunto(s)
Quirópteros , Enfermedad del Virus de Marburg , Marburgvirus , Animales , Humanos , Guinea/epidemiología , Marburgvirus/genética , Filogenia , Egipto , Enfermedad del Virus de Marburg/epidemiología , Brotes de EnfermedadesRESUMEN
The Zika virus (ZIKV) is a widespread mosquito-borne pathogen. Phylogenetically, two lineages of ZIKV are distinguished: African and Asian-American. The latter became the cause of the 2015-2016 pandemic, with severe consequences for newborns. In West African countries, the African lineage was found, but there is evidence of the emergence of the Asian-American lineage in Cape Verde and Angola. This highlights the need to not only monitor ZIKV but also sequence the isolates. In this article, we present a case report of Zika fever in a pregnant woman from Guinea identified in 2018. Viral RNA was detected through qRT-PCR in a serum sample. In addition, the seroconversion of anti-Zika IgM and IgG antibodies was detected in repeated blood samples. Subsequently, the virus was isolated from the C6/36 cell line. The detected ZIKV belonged to the African lineage, the Nigerian sublineage. The strains with the closest sequences were isolated from mosquitoes in Senegal in 2011 and 2015. In addition, we conducted the serological screening of 116 blood samples collected from patients presenting to the hospital of Faranah with fevers during the period 2018-2021. As a result, it was found that IgM-positive patients were identified each year and that the seroprevalence varied between 5.6% and 17.1%.
Asunto(s)
Culicidae , Infección por el Virus Zika , Virus Zika , Recién Nacido , Animales , Femenino , Embarazo , Humanos , Infección por el Virus Zika/diagnóstico , Infección por el Virus Zika/epidemiología , Virus Zika/genética , Guinea/epidemiología , Estudios Seroepidemiológicos , Inmunoglobulina MRESUMEN
BACKGROUND: Q fever is a zoonotic infectious disease characterized by fever, malaise, chills, significant weakness, and muscle pain. In some cases, the disease can become chronic and affect the inner membranes of the heart, such as the valves, leading to endocarditis and a high risk of death. Coxiella burnetii (C. burnetii) is the primary causative agent of Q fever in humans. This study aims to monitor the presence of C. burnetii in ticks collected from small mammals and cattle in the Republic of Guinea (RG). METHODS: Rodents were trapped in the Kindia region of RG during 2019-2020, and ticks were collected from cattle in six regions of RG. Total DNA was extracted using a commercial kit (RIBO-prep, InterLabService, Russia) following the manufacturer's instructions. Real-time PCR amplification was conducted using the kit (AmpliSens Coxiella burnetii-FL, InterLabService, Russia) to detect C. burnetii DNA. RESULTS AND CONCLUSIONS: Bacterial DNA was detected in 11 out of 750 (1.4%) small mammals and 695 out of 9620 (7.2%) tick samples. The high number of infected ticks (7.2%) suggests that they are the main transmitters of C. burnetii in RG. The DNA was detected in the liver and spleen of a Guinea multimammate mouse, Mastomys erythroleucus. These findings demonstrate that C. burnetii is zoonotic in RG, and measures should be taken to monitor the bacteria's dynamics and tick prevalence in the rodent population.
RESUMEN
Intraerythrocytic protozoan parasites from the genera Babesia and Theileria may infect a wide range of animals and humans. The purpose of this study was to detect the 18S ribosomal RNA gene of Babesia spp. and Theileria spp. in ticks collected from household cows in the Republic of Guinea from 2017 to 2018 by PCR and then genotype the gene fragments by sequencing. A total of 907 ticks from 319 cows were collected in seven prefectures of Guinea (Boke, Faranah, Kankan, Kindia, Labe, Mamou and N'Zerekore). The following tick species on cattle were identified: Amblyomma variegatum (44.2%), Rhipicephalus decoloratus (34.7%), Rh. annulatus (10.3%), Rh. geigyi (7.3%) Hyalomma truncatum (2.4%), Rh. senegalensis (0.8%) and Haemaphysalis leachi (0.6%). Genetic markers for piroplasms were found in Am. variegatum, Rh. decoloratus, Rh. annulatus, and Rh. geigyi ticks, and the total infection rate for these ticks was 4.2%. The highest infection rate was found in Rh. annulatus ticks (10.9%). The piroplasms were genotyped as Babesia caballi, Theileria mutans and Theileria velifera by phylogenetic analysis of the 1150 bp 18S ribosomal RNA gene fragments. These pathogens were discovered in practically all studied prefectures in Guinea except for Mamou Prefecture. We propose that these ixodid ticks might play a major role in the transmission of piroplasm infections in domestic animals in Guinea.
Asunto(s)
Babesia , Enfermedades de los Bovinos , Ixodidae , Rhipicephalus , Theileria , Infestaciones por Garrapatas , Animales , Babesia/genética , Bovinos , Enfermedades de los Bovinos/parasitología , Femenino , Guinea , Ixodidae/parasitología , Filogenia , Theileria/genética , Infestaciones por Garrapatas/veterinariaRESUMEN
Ngari virus is a mosquito-borne virus belonging to the genus Orthobunyavirus (Peribunyaviridae family). This virus is pathogenic to humans and causes severe illness. Ngari virus is present in several African countries, including Madagascar. Here, we report the detection of Ngari virus in ixodid ticks collected from cows in Guinea. A tick survey was conducted in March-November of 2018 in six regions of Guinea. The sample comprised 710 pools, with a total of 2067 ticks belonging to five species collected from 197 cows. At the initial stage, we screened a subsample of tick pools of vector-borne viruses with a multiplex genus-specific primer panel. In the second stage of the study, we narrowed the search and screened all the samples by qPCR for the detection of Ngari virus. All positive samples were sequenced with primers flanking Ngari virus-specific fragments on the S and M segments. We found Ngari virus in 12 pools that were formed from engorged ticks collected from livestock in three villages of the Kindia and Kankan regions. Sequencing of the S and M segments confirmed that the detected viruses belong to Ngari virus, and the viruses were most similar to the strain Adrar, which was isolated in Mauritania. We detected viral RNA in ticks of the following species: Amblyomma variegatum, Rhipicephalus geigyi, and Rh. (Boophilus) spp. There is no evidence that ixodid ticks are competent vectors of the Ngari virus. Most likely, the ticks obtained the virus through blood from an infected host. The study of engorged ticks can be recommended as a simpler approach for the wide screening of the Ngari virus and subsequent testing of cattle and mosquitos in those locations where the PCR-positive ticks were collected.
Asunto(s)
Infecciones por Bunyaviridae/veterinaria , Enfermedades de los Bovinos/epidemiología , Ixodidae/virología , Orthobunyavirus/aislamiento & purificación , Infestaciones por Garrapatas/veterinaria , Animales , Infecciones por Bunyaviridae/epidemiología , Infecciones por Bunyaviridae/transmisión , Bovinos , Enfermedades de los Bovinos/parasitología , Enfermedades de los Bovinos/transmisión , Enfermedades de los Bovinos/virología , Femenino , Guinea/epidemiología , Humanos , Orthobunyavirus/genética , Infestaciones por Garrapatas/epidemiología , Infestaciones por Garrapatas/parasitologíaRESUMEN
Adolescent idiopathic scoliosis (AIS) is the most common form of scoliosis that affects a significant number of young teenagers, mainly females (0.2-6 % of the population). Historically, several hypothesis were postulated to explain the aetiology of AIS, including genetic factors, biochemical factors, mechanics, neurological, muscular factors and hormonal factors. The neuroendocrine hypothesis involving a melatonin deficiency as the source for AIS has generated great interest. This hypothesis stems from the fact that experimental pinealectomy in chicken, and more recently in rats maintained in a bipedal mode, produces a scoliosis. The biological relevance of melatonin in idiopathic scoliosis is controversial since no significant decrease in circulating melatonin level has been observed in a majority of studies. Analysis of melatonin signal transduction in musculoskeletal tissues of AIS patients demonstrated for the first time a defect occurring in a cell autonomous manner in different cell types isolated from AIS patients suffering of the most severe form of that disease. These results have led to a classification of AIS patients in three different functional groups depending on their response to melatonin, suggesting that the cause of AIS involves several genes. Molecular analysis showed that melatonin signaling dysfunction is triggered by an increased phosphorylation of Gi proteins inactivating their function. This discovery has led to development of a first scoliosis screening assay. This test, using blood sample, is currently in clinical validation process in Canada and could be used for screening children at high risk of developing AIS.
Asunto(s)
Escoliosis/etiología , Escoliosis/genética , Adolescente , Huesos/patología , Femenino , Humanos , Masculino , Músculo Esquelético/patología , Sistemas Neurosecretores/fisiopatología , Escoliosis/patología , Razón de MasculinidadRESUMEN
BACKGROUND: In Guinea Elapids are responsible for 20% of envenomations. The associated case fatality rate (CFR) ranged 15-27%, irrespective of treatment. RESULTS: We studied 77 neurotoxic envenomations divided in 3 groups: a set of patients that received only traditional or symptomatic treatments, and two other groups that received either 2 or 4 initial vials of Antivipmyn® Africa renewed as necessary. CFR was 27.3%, 15.4% and 17.6%, respectively. Although antivenom treatment was likely to reduce CFR, it didn't seem to have an obvious clinical benefit for the patients, suggesting a low treatment efficacy. Mean delay to treatment or clinical stages were not significantly different between the patients who recovered and the patients who died, or between groups. Interpretation of these results is complicated by the lack of systematic studies under comparable conditions. Of particular importance is the absence of assisted ventilation, available to patients in all the other clinical studies of neurotoxic envenomation. CONCLUSION: The apparent lack of clinical benefit may have several causes. The hypothesis of a limited therapeutic window, i.e. an insufficient formation of antigen-antibody complexes once toxins are bound to their targets and/or distributed beyond the reach of antivenom, should be explored.
RESUMEN
Background In Guinea Elapids are responsible for 20% of envenomations. The associated case fatality rate (CFR) ranged 15-27%, irrespective of treatment. Results We studied 77 neurotoxic envenomations divided in 3 groups: a set of patients that received only traditional or symptomatic treatments, and two other groups that received either 2 or 4 initial vials of Antivipmyn® Africa renewed as necessary. CFR was 27.3%, 15.4% and 17.6%, respectively. Although antivenom treatment was likely to reduce CFR, it didn’t seem to have an obvious clinical benefit for the patients, suggesting a low treatment efficacy. Mean delay to treatment or clinical stages were not significantly different between the patients who recovered and the patients who died, or between groups. Interpretation of these results is complicated by the lack of systematic studies under comparable conditions. Of particular importance is the absence of assisted ventilation, available to patients in all the other clinical studies of neurotoxic envenomation. Conclusion The apparent lack of clinical benefit may have several causes. The hypothesis of a limited therapeutic window, i.e. an insufficient formation of antigen-antibody complexes once toxins are bound to their targets and/or distributed beyond the reach of antivenom, should be explored. .
Asunto(s)
Humanos , Masculino , Femenino , Antivenenos/uso terapéutico , Venenos Elapídicos/toxicidad , Elapidae , Antivenenos/efectos adversos , Guinea/epidemiología , Neurotoxinas , Intoxicación/mortalidadRESUMEN
In Guinea Elapids are responsible for 20% of envenomations. The associated case fatality rate (CFR) ranged 15-27%, irrespective of treatment. Results We studied 77 neurotoxic envenomations divided in 3 groups: a set of patients that received only traditional or symptomatic treatments, and two other groups that received either 2 or 4 initial vials of Antivipmyn® Africa renewed as necessary. CFR was 27.3%, 15.4% and 17.6%, respectively. Although antivenom treatment was likely to reduce CFR, it didnt seem to have an obvious clinical benefit for the patients, suggesting a low treatment efficacy. Mean delay to treatment or clinical stages were not significantly different between the patients who recovered and the patients who died, or between groups. Interpretation of these results is complicated by the lack of systematic studies under comparable conditions. Of particular importance is the absence of assisted ventilation, available to patients in all the other clinical studies of neurotoxic envenomation. Conclusion The apparent lack of clinical benefit may have several causes. The hypothesis of a limited therapeutic window, i.e. an insufficient formation of antigen-antibody complexes once toxins are bound to their targets and/or distributed beyond the reach of antivenom, should be explored.