Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 25(3): 448-461, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38351322

RESUMEN

Conventional dendritic cells (cDCs) include functionally and phenotypically diverse populations, such as cDC1s and cDC2s. The latter population has been variously subdivided into Notch-dependent cDC2s, KLF4-dependent cDC2s, T-bet+ cDC2As and T-bet- cDC2Bs, but it is unclear how all these subtypes are interrelated and to what degree they represent cell states or cell subsets. All cDCs are derived from bone marrow progenitors called pre-cDCs, which circulate through the blood to colonize peripheral tissues. Here, we identified distinct mouse pre-cDC2 subsets biased to give rise to cDC2As or cDC2Bs. We showed that a Siglec-H+ pre-cDC2A population in the bone marrow preferentially gave rise to Siglec-H- CD8α+ pre-cDC2As in tissues, which differentiated into T-bet+ cDC2As. In contrast, a Siglec-H- fraction of pre-cDCs in the bone marrow and periphery mostly generated T-bet- cDC2Bs, a lineage marked by the expression of LysM. Our results showed that cDC2A versus cDC2B fate specification starts in the bone marrow and suggest that cDC2 subsets are ontogenetically determined lineages, rather than cell states imposed by the peripheral tissue environment.


Asunto(s)
Células Dendríticas , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico , Animales , Ratones , Diferenciación Celular
2.
Proc Natl Acad Sci U S A ; 120(34): e2300224120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37579157

RESUMEN

Aging is associated with an abnormal increase in DNA methylation (DNAm) in human gene promoters, including in bone marrow stem cells. DNAm patterns are further perturbed in hematological malignancies such as acute myeloid leukemia but the physiological significance of such epigenetic changes is unknown. Using epigenetic editing of human stem/progenitor cells (HSPCs), we show that p15 methylation affects hematopoiesis in vivo. We edited the CDKN2B (p15) promoter and ARF (p14) using dCas9-3A3L and observed DNAm spreading beyond the gRNA location. We find that despite a transient delivery system, DNAm is maintained during myeloid differentiation in vitro, and hypermethylation of the p15 promoter reduces gene expression. In vivo, edited human HSPCs can engraft the bone marrow of mice and targeted DNAm is maintained in HSPCs long term. Moreover, epigenetic changes are conserved and inherited in both myeloid and lymphoid lineages. Although the proportion of myeloid (CD33+) and lymphoid (CD19+) cells is unaffected, monocyte (CD14+) populations decreased and granulocytes (CD66b+) increased in mice engrafted with p15 hypermethylated HSPCs. Monocytes derived from p15 hypermethylated HSPCs appear to be activated and show increased inflammatory transcriptional programs. We believe these findings have clinical relevance since we found p15 promoter methylation in the peripheral blood of patients with clonal hematopoiesis. Our study shows DNAm can be targeted and maintained in human HSPCs and demonstrated functional relevance of aberrant DNAm on the p15 locus. As such, other aging-associated aberrant DNAm may impact hematopoiesis in vivo.


Asunto(s)
Metilación de ADN , Leucemia Mieloide Aguda , Humanos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Hematopoyesis/genética , Leucemia Mieloide Aguda/genética , Regiones Promotoras Genéticas
3.
Blood ; 142(6): 509-518, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37018661

RESUMEN

The ability to isolate and characterize different hematopoietic stem cell (HSC) or progenitor cell populations opens avenues to understand how hematopoiesis is regulated during development, homeostasis, and regeneration as well as in age-related conditions such as clonal hematopoiesis and leukemogenesis. Significant progress has been made in the past few decades in determining the composition of the cell types that exist in this system, but the most significant advances have come from mouse studies. However, recent breakthroughs have made significant strides that have enhanced the resolution of the human primitive hematopoietic compartment. Therefore, we aim to review this subject not only from a historical perspective but also to discuss the progress made in the characterization of the human postnatal CD34+ HSC-enriched populations. This approach will enable us to shed light on the potential future translational applicability of human HSCs.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia , Humanos , Ratones , Animales , Células Madre Hematopoyéticas/metabolismo , Antígenos CD34/metabolismo , Hematopoyesis , Leucemia/metabolismo
4.
Neurobiol Dis ; 198: 106552, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38844244

RESUMEN

Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease leading to demyelination and axonal loss. Current treatments are immunomodulatory or immunosuppressive drugs acting on the inflammatory component. However, these treatments do not adequately address the crucial aspect of neuroprotection. Recently, an association between an altered balance of adipokines and MS has been proposed as both a risk factor for developing MS and a chronic disease aggravating factor. Specifically, a decrease of apelin plasma levels in MS patients compared to controls correlates with the number of relapses and disease severity. Here we report a dramatic downregulation of apelin levels in the CNS of EAE mice which is also detected in MS patients brain samples compared to controls. Exploiting innovative design and synthesis techniques, we engineered a novel fluorinated apelin-13 peptide characterized by enhanced plasmatic stability compared to its native counterpart. With this peptide, we assessed the potential therapeutic benefits of apelin preventive supplementation in the EAE mouse model. We show that the fluorinated Apelin-13 peptide ameliorates EAE clinical score and preserves myelin content in the EAE MOG model recapitulating the progressive form of disease. These results combined with ex-vivo experiments in brain organotypic slices and in vitro studies in neurons and primary microglia and macrophages suggest that apelin has neuroprotective effects and influences the microglia/macrophages function.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Ratones Endogámicos C57BL , Esclerosis Múltiple , Fármacos Neuroprotectores , Animales , Fármacos Neuroprotectores/farmacología , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/patología , Ratones , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología , Femenino , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/patología , Modelos Animales de Enfermedad , Microglía/efectos de los fármacos , Microglía/metabolismo , Apelina/metabolismo , Apelina/farmacología
5.
Bioconjug Chem ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982626

RESUMEN

Fluorogenic dimers with polarity-sensitive folding are powerful probes for live-cell bioimaging. They switch on their fluorescence only after interacting with their targets, thus leading to a high signal-to-noise ratio in wash-free bioimaging. We previously reported the first near-infrared fluorogenic dimers derived from cyanine 5.5 dyes for the optical detection of G protein-coupled receptors. Owing to their hydrophobic character, these dimers are prone to form nonspecific interactions with proteins such as albumin and with the lipid bilayer of the cell membrane resulting in a residual background fluorescence in complex biological media. Herein, we report the rational design of new fluorogenic dimers derived from cyanine 5. By modulating the chemical structure of the cyanine units, we discovered that the two asymmetric cyanine 5.25 dyes were able to form intramolecular H-aggregates and self-quenched in aqueous media. Moreover, the resulting original dimeric probes enabled a significant reduction of the nonspecific interactions with bovine serum albumin and lipid bilayers compared with the first generation of cyanine 5.5 dimers. Finally, the optimized asymmetric fluorogenic dimer was grafted to carbetocin for the specific imaging of the oxytocin receptor under no-wash conditions directly in cell culture media, notably improving the signal-to-background ratio compared with the previous generation of cyanine 5.5 dimers.

6.
Chemistry ; 30(35): e202401296, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38641990

RESUMEN

To fill the need for environmentally sensitive fluorescent unnatural amino acids able to operate in the red region of the spectrum, we have designed and synthesized Alared, a red solvatochromic and fluorogenic amino acid derived from the Nile Red chromophore. The new unnatural amino acid can be easily integrated into bioactive peptides using classical solid-phase peptide synthesis. The fluorescence quantum yield and the emission maximum of Alared-labeled peptides vary in a broad range depending on the peptide's environment, making Alared a powerful reporter of biomolecular interactions. Due to its red-shifted absorption and emission spectra, Alared-labeled peptides could be followed in living cells with minimal interference from cellular autofluorescence. Using ratiometric fluorescence microscopy, we were able to track the fate of the Alared-labeled peptide agonists of the apelin G protein-coupled receptor upon receptor activation and internalization. Due to its color-shifting environmentally sensitive emission, Alared allowed for distinguishing the fractions of peptides that are specifically bound to the receptor or unspecifically bound to different cellular membranes.


Asunto(s)
Aminoácidos , Colorantes Fluorescentes , Microscopía Fluorescente , Péptidos , Colorantes Fluorescentes/química , Péptidos/química , Aminoácidos/química , Humanos , Microscopía Fluorescente/métodos , Oxazinas/química , Técnicas de Síntesis en Fase Sólida , Espectrometría de Fluorescencia
7.
Bioconjug Chem ; 34(1): 162-168, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36534753

RESUMEN

Herein, we describe a catalyst-free thia-Diels-Alder cycloaddition for the chemoselective labeling of fully deprotected phosphonodithioester-peptides in solution with fluorophores functionalized with an exocyclic diene. The reaction was optimized on the model tripeptide 1 containing a lysine residue, which enabled its rapid and straightforward labeling with three different fluorophores (fluorescein, lissamine rhodamine B, and squaraine) in very mild conditions (H2O/iPrOH, 37 °C, 1 h). The reaction was then successfully applied to the chemoselective labeling of fully deprotected apelin-13 with squaraine dye. The resulting fluorescent ligand 18 exhibited a high affinity (0.17 ± 0.03 nM) for apelinR. It enabled the development of time-resolved FRET-based competition assays for high-throughput screening and drug discovery. Thanks to its fluorogenic properties, ligand 18 was also successfully involved in the live-cell optical imaging of apelinR in no-wash conditions.


Asunto(s)
Colorantes Fluorescentes , Péptidos , Apelina , Reacción de Cicloadición , Ligandos , Péptidos/química , Colorantes Fluorescentes/química
8.
Blood ; 136(7): 885-897, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32294156

RESUMEN

Idiopathic aplastic anemia (AA) has 2 key characteristics: an autoimmune response against hematopoietic stem/progenitor cells and regulatory T-cells (Tregs) deficiency. We have previously demonstrated reduction in a specific subpopulation of Treg in AA, which predicts response to immunosuppression. The aims of the present study were to define mechanisms of Treg subpopulation imbalance and identify potential for therapeutic intervention. We have identified 2 mechanisms that lead to skewed Treg composition in AA: first, FasL-mediated apoptosis on ligand interaction; and, second, relative interleukin-2 (IL-2) deprivation. We have shown that IL-2 augmentation can overcome these mechanisms. Interestingly, when high concentrations of IL-2 were used for in vitro Treg expansion cultures, AA Tregs were able to expand. The expanded populations expressed a high level of p-BCL-2, which makes them resistant to apoptosis. Using a xenograft mouse model, the function and stability of expanded AA Tregs were tested. We have shown that these Tregs were able to suppress the macroscopic clinical features and tissue manifestations of T-cell-mediated graft-versus-host disease. These Tregs maintained their suppressive properties as well as their phenotype in a highly inflammatory environment. Our findings provide an insight into the mechanisms of Treg reduction in AA. We have identified novel targets with potential for therapeutic interventions. Supplementation of ex vivo expansion cultures of Tregs with high concentrations of IL-2 or delivery of IL-2 directly to patients could improve clinical outcomes in addition to standard immunosuppressive therapy.


Asunto(s)
Anemia Aplásica/inmunología , Apoptosis/efectos de los fármacos , Proteína Ligando Fas/farmacología , Interleucina-2/farmacología , Linfocitos T Reguladores/efectos de los fármacos , Anemia Aplásica/patología , Animales , Apoptosis/inmunología , Células Cultivadas , Femenino , Humanos , Enfermedades del Sistema Inmune/inmunología , Enfermedades del Sistema Inmune/patología , Tolerancia Inmunológica/efectos de los fármacos , Tolerancia Inmunológica/inmunología , Interleucina-2/deficiencia , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Linfocitos T Reguladores/fisiología
9.
Nature ; 538(7626): 518-522, 2016 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-27750279

RESUMEN

It is widely accepted that complex interactions between cancer cells and their surrounding microenvironment contribute to disease development, chemo-resistance and disease relapse. In light of this observed interdependency, novel therapeutic interventions that target specific cancer stroma cell lineages and their interactions are being sought. Here we studied a mouse model of human T-cell acute lymphoblastic leukaemia (T-ALL) and used intravital microscopy to monitor the progression of disease within the bone marrow at both the tissue-wide and single-cell level over time, from bone marrow seeding to development/selection of chemo-resistance. We observed highly dynamic cellular interactions and promiscuous distribution of leukaemia cells that migrated across the bone marrow, without showing any preferential association with bone marrow sub-compartments. Unexpectedly, this behaviour was maintained throughout disease development, from the earliest bone marrow seeding to response and resistance to chemotherapy. Our results reveal that T-ALL cells do not depend on specific bone marrow microenvironments for propagation of disease, nor for the selection of chemo-resistant clones, suggesting that a stochastic mechanism underlies these processes. Yet, although T-ALL infiltration and progression are independent of the stroma, accumulated disease burden leads to rapid, selective remodelling of the endosteal space, resulting in a complete loss of mature osteoblastic cells while perivascular cells are maintained. This outcome leads to a shift in the balance of endogenous bone marrow stroma, towards a composition associated with less efficient haematopoietic stem cell function. This novel, dynamic analysis of T-ALL interactions with the bone marrow microenvironment in vivo, supported by evidence from human T-ALL samples, highlights that future therapeutic interventions should target the migration and promiscuous interactions of cancer cells with the surrounding microenvironment, rather than specific bone marrow stroma, to combat the invasion by and survival of chemo-resistant T-ALL cells.


Asunto(s)
Células de la Médula Ósea/citología , Leucemia-Linfoma de Células T del Adulto/patología , Trasplante de Neoplasias , Microambiente Tumoral , Animales , Movimiento Celular , Progresión de la Enfermedad , Femenino , Células Madre Hematopoyéticas/citología , Humanos , Microscopía Intravital , Masculino , Ratones , Osteoblastos/citología , Análisis de la Célula Individual
10.
Chembiochem ; 22(4): 657-661, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-32986915

RESUMEN

Conjugation of the bioactive apelin-17 peptide with a fluorocarbon chain results in self-organization of the peptide into micelles. Fluorine NMR spectroscopy studies show that the fluoropeptide's micelles are monodisperse, while proton NMR indicates that the peptide moiety remains largely disordered despite micellization. A very fast exchange rate is measured between the free and micellar states of the peptide which enables the number of molecules present in the micelle to be estimated as 200, in agreement with values found by dynamic light scattering measurements.


Asunto(s)
Flúor/química , Halogenación , Péptidos y Proteínas de Señalización Intercelular/química , Resonancia Magnética Nuclear Biomolecular/métodos , Humanos , Micelas
11.
Blood ; 129(8): 950-958, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-27899358

RESUMEN

Adhesion is a key component of hematopoietic stem cell regulation mediating homing and retention to the niche in the bone marrow. Here, using an RNA interference screen, we identify cytohesin 1 (CYTH1) as a critical mediator of adhesive properties in primary human cord blood-derived hematopoietic stem and progenitor cells (HSPCs). Knockdown of CYTH1 disrupted adhesion of HSPCs to primary human mesenchymal stroma cells. Attachment to fibronectin and ICAM1, 2 integrin ligands, was severely impaired, and CYTH1-deficient cells showed a reduced integrin ß1 activation response, suggesting that CYTH1 mediates integrin-dependent functions. Transplantation of CYTH1-knockdown cells to immunodeficient mice resulted in significantly lower long-term engraftment levels, associated with a reduced capacity of the transplanted cells to home to the bone marrow. Intravital microscopy showed that CYTH1 deficiency profoundly affects HSPC mobility and localization within the marrow space and thereby impairs proper lodgment into the niche. Thus, CYTH1 is a novel major regulator of adhesion and engraftment in human HSPCs through mechanisms that, at least in part, involve the activation of integrins.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Animales , Antígenos CD/metabolismo , Antígenos CD34/metabolismo , Adhesión Celular , Moléculas de Adhesión Celular/metabolismo , Movimiento Celular , Fibronectinas/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Células Madre Hematopoyéticas/metabolismo , Humanos , Integrinas/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos , Interferencia de ARN
12.
Haematologica ; 104(10): 1928-1934, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31515356

RESUMEN

In this review article, we present recent updates on the hematologic tumor microenvironment following the 3rd Scientific Workshop on the Haematological Tumour Microenvironment and its Therapeutic Targeting organized by the European School of Hematology, which took place at the Francis Crick Institute in London in February 2019. This review article is focused on recent scientific advances highlighted in the invited presentations at the meeting, which encompassed the normal and malignant niches supporting hematopoietic stem cells and their progeny. Given the precise focus, it does not discuss other relevant contributions in this field, which have been the scope of other recent reviews. The content covers basic research and possible clinical applications with the major therapeutic angle of utilizing basic knowledge to devise new strategies to target the tumor microenvironment in hematologic cancers. The review is structured in the following sections: (i) regulation of normal hematopoietic stem cell niches during development, adulthood and aging; (ii) metabolic adaptation and reprogramming in the tumor microenvironment; (iii) the key role of inflammation in reshaping the normal microenvironment and driving hematopoietic stem cell proliferation; (iv) current understanding of the tumor microenvironment in different malignancies, such as chronic lymphocytic leukemia, multiple myeloma, acute myeloid leukemia and myelodysplastic syndromes; and (v) the effects of therapies on the microenvironment and some opportunities to target the niche directly in order to improve current treatments.


Asunto(s)
Neoplasias Hematológicas/metabolismo , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Microambiente Tumoral , Neoplasias Hematológicas/patología , Neoplasias Hematológicas/terapia , Células Madre Hematopoyéticas/patología , Humanos
13.
J Immunol ; 199(5): 1696-1705, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28754679

RESUMEN

We recently demonstrated that the major effector function of neonatal CD4+ T cells is to produce CXCL8, a prototypic cytokine of innate immune cells. In this article, we show that CXCL8 expression, prior to proliferation, is common in newly arising T cells (so-called "recent thymic emigrants") in adults, as well as in babies. This effector potential is acquired in the human thymus, prior to TCR signaling, but rather than describing end-stage differentiation, such cells, whether isolated from neonates or adults, can further differentiate into IFN-γ-producing CD4+ T cells. Thus, the temporal transition of host defense from innate to adaptive immunity is unexpectedly mirrored at the cellular level by the capacity of human innate-like CXCL8-producing CD4+ T cells to transition directly into Th1 cells.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Diferenciación Celular , Neuroblastoma/inmunología , Timocitos/inmunología , Tumor de Wilms/inmunología , Inmunidad Adaptativa , Adulto , Animales , Células Cultivadas , Humanos , Inmunidad Innata , Recién Nacido , Interferón gamma/metabolismo , Interleucina-8/metabolismo , Ratones , Ratones SCID , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo
14.
Cell Mol Life Sci ; 75(8): 1377-1391, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29222645

RESUMEN

The bone marrow microenvironment (BMM) regulates the fate of hematopoietic stem cells (HSCs) in homeostatic and pathologic conditions. In myeloid malignancies, new insights into the role of the BMM and its cellular and molecular actors in the progression of the diseases have started to emerge. In this review, we will focus on describing the major players of the HSC niche and the role of the altered niche function in myeloid malignancies, more specifically focusing on the mesenchymal stroma cell compartment.


Asunto(s)
Microambiente Celular/fisiología , Células Mieloides/patología , Neoplasias/patología , Células Madre Neoplásicas/patología , Animales , Células Madre Hematopoyéticas/fisiología , Homeostasis/fisiología , Humanos , Nicho de Células Madre/fisiología
15.
Blood ; 128(16): 2017-2021, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27581360

RESUMEN

The ataxia telangiectasia mutated (ATM)-interacting protein ATMIN mediates noncanonical ATM signaling in response to oxidative and replicative stress conditions. Like ATM, ATMIN can function as a tumor suppressor in the hematopoietic system: deletion of Atmin under the control of CD19-Cre results in B-cell lymphomas in aging mice. ATM signaling is essential for lymphopoiesis and hematopoietic stem cell (HSC) function; however, little is known about the role of ATMIN in hematopoiesis. We thus sought to investigate whether the absence of ATMIN would affect primitive hematopoietic cells in an ATM-dependent or -independent manner. Apart from its role in B-cell development, we show that ATMIN has an ATM-independent function in the common myeloid progenitors (CMPs) by deletion of Atmin in the entire hematopoietic system using Vav-Cre. Despite the lack of lymphoma formation, ATMIN-deficient mice developed chronic leukopenia as a result of high levels of apoptosis in B cells and CMPs and induced a compensatory mechanism in which HSCs displayed enhanced cycling. Consequently, ATMIN-deficient HSCs showed impaired regeneration ability with the induction of the DNA oxidative stress response, especially when aged. ATMIN, therefore, has multiple roles in different cell types, and its absence results in perturbed hematopoiesis, especially during stress conditions and aging.


Asunto(s)
Envejecimiento , Apoptosis/genética , Hematopoyesis/genética , Células Madre Hematopoyéticas , Estrés Oxidativo/genética , Factores de Transcripción , Envejecimiento/genética , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Linfocitos B/metabolismo , Linfocitos B/patología , Enfermedad Crónica , Eliminación de Gen , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Leucopenia/genética , Leucopenia/metabolismo , Leucopenia/patología , Ratones , Ratones Noqueados , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
FASEB J ; 31(2): 687-700, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27815337

RESUMEN

Apelin, a (neuro)vasoactive peptide, plays a prominent role in controlling cardiovascular functions and water balance. Because the in vivo apelin half-life is in the minute range, we aimed to identify metabolically stable apelin-17 (K17F) analogs. We generated P92 by classic chemical substitutions and LIT01-196 by original addition of a fluorocarbon chain to the N terminus of K17F. Both analogs were much more stable in plasma (half-life >24 h for LIT01-196) than K17F (4.6 min). Analogs displayed a subnanomolar affinity for the apelin receptor and behaved as full agonists with regard to cAMP production, ERK phosphorylation, and apelin receptor internalization. Ex vivo, these compounds induced vasorelaxation of rat aortas and glomerular arterioles, respectively, precontracted with norepinephrine and angiotensin II, and increased cardiac contractility. In vivo, after intracerebroventricular administration in water-deprived mice, P92 and LIT01-196 were 6 and 160 times, respectively, more efficient at inhibiting systemic vasopressin release than K17F. Administered intravenously (nmol/kg range) in normotensive rats, these analogs potently increased urine output and induced a profound and sustained decrease in arterial blood pressure. In summary, these new compounds, which favor diuresis and improve cardiac contractility while reducing vascular resistances, represent promising candidates for the treatment of heart failure and water retention/hyponatremic disorders.-Gerbier, R., Alvear-Perez, R., Margathe, J.-F., Flahault, A., Couvineau, P., Gao, J., De Mota, N., Dabire, H., Li, B., Ceraudo, E., Hus-Citharel, A., Esteoulle, L., Bisoo, C., Hibert, M., Berdeaux, A., Iturrioz, X., Bonnet, D., Llorens-Cortes, C. Development of original metabolically stable apelin-17 analogs with diuretic and cardiovascular effects.


Asunto(s)
Fármacos Cardiovasculares/farmacología , Diuréticos/farmacología , Péptidos/química , Péptidos/farmacología , Secuencia de Aminoácidos , Animales , Receptores de Apelina , Células CHO , Fármacos Cardiovasculares/química , Cricetinae , Cricetulus , Diuréticos/química , Femenino , Masculino , Ratones , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Relación Estructura-Actividad , Vasoconstricción
17.
Blood ; 125(26): 4060-8, 2015 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-25896651

RESUMEN

The strategy of enzymatic degradation of amino acids to deprive malignant cells of important nutrients is an established component of induction therapy of acute lymphoblastic leukemia. Here we show that acute myeloid leukemia (AML) cells from most patients with AML are deficient in a critical enzyme required for arginine synthesis, argininosuccinate synthetase-1 (ASS1). Thus, these ASS1-deficient AML cells are dependent on importing extracellular arginine. We therefore investigated the effect of plasma arginine deprivation using pegylated arginine deiminase (ADI-PEG 20) against primary AMLs in a xenograft model and in vitro. ADI-PEG 20 alone induced responses in 19 of 38 AMLs in vitro and 3 of 6 AMLs in vivo, leading to caspase activation in sensitive AMLs. ADI-PEG 20-resistant AMLs showed higher relative expression of ASS1 than sensitive AMLs. This suggests that the resistant AMLs survive by producing arginine through this metabolic pathway and ASS1 expression could be used as a biomarker for response. Sensitive AMLs showed more avid uptake of arginine from the extracellular environment consistent with their auxotrophy for arginine. The combination of ADI-PEG 20 and cytarabine chemotherapy was more effective than either treatment alone resulting in responses in 6 of 6 AMLs tested in vivo. Our data show that arginine deprivation is a reasonable strategy in AML that paves the way for clinical trials.


Asunto(s)
Antineoplásicos/farmacología , Hidrolasas/farmacología , Leucemia Mieloide Aguda/metabolismo , Polietilenglicoles/farmacología , Animales , Arginina/metabolismo , Argininosuccinato Sintasa/biosíntesis , Argininosuccinato Sintasa/genética , Western Blotting , Células Cultivadas , Cromatografía Líquida de Alta Presión , Humanos , Inmunohistoquímica , Leucemia Mieloide Aguda/genética , Espectrometría de Masas , Ratones , Ratones Endogámicos NOD , Ratones SCID , Reacción en Cadena en Tiempo Real de la Polimerasa , Ensayos Antitumor por Modelo de Xenoinjerto
18.
J Org Chem ; 82(6): 3239-3244, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28230990

RESUMEN

Aza-diketopiperazines (aza-DKPs) represent an underprivileged motif obtained by scaffold hopping of 2,5-diketopiperazines (2,5-DKPs). Herein, we compare the synthesis and the structural and physicochemical properties of aza-DKP 4 vs 2,5-DKP 7. Thus, X-ray and 1H NMR studies show that aza-DKP 4 is a rigid and nonflat scaffold like the 2,5-DKP 7. Moreover, the replacement of one Cα-stereogenic center by a nitrogen atom results in a significant improvement of both the water solubility and the microsomal stability.


Asunto(s)
Piperazinas/síntesis química , Animales , Cromatografía de Fase Inversa , Cristalografía por Rayos X , Ratones , Microsomas Hepáticos/efectos de los fármacos , Estructura Molecular , Piperazinas/química , Piperazinas/farmacología , Análisis Espectral
19.
Neuroimmunomodulation ; 24(6): 331-340, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29680839

RESUMEN

OBJECTIVE: The chemokine CXCL12 interacting with the CXC receptor 4 (CXCR4) has been reported to play a role in the development and progression of bronchial asthma, but its mechanism of action is still unknown. The objective of this study was to assess the effect of the CXCL12 neutraligand chalcone 4 on the migration of dendritic cells (DCs) in a murine model of allergic airway inflammation. METHODS: A 21-day ovalbumin (OVA)-induced allergic-airway TH2 inflammation model in BALB/c mice was used. Four groups were sensitized with OVA adsorbed on alum and challenged either with OVA or saline for 4 days. Mice were treated intranasally with chalcone 4 (300 nmol/kg body weight) or solvent 2 h before each OVA or saline challenge; 24 h after the last challenge, CD11c+F4/80- DCs were counted in the bronchoalveolar lavage. Jugular-nodose ganglion complex (JNC) sections were sampled, and for immunofluorescence staining, cryocut sections were prepared. MHC II+F4/80- DCs as well as calcitonin gene-related peptide (CGRP)- and substance P (SP)-positive neuronal cell bodies were analyzed. RESULTS: In OVA-challenged mice, chalcone 4 caused a significantly decreased DC/neuron ratio in the JNC from 51.7% in solvent-treated to 32.6% in chalcone 4-treated mice. In parallel, chalcone 4 also decreased the DC population in BALF from 11.5 × 103 cells in solvent to 4.5 × 103 cells in chalcone 4-treated mice. By contrast, chalcone 4 had no effect on the expression of the neuropeptides CGRP and SP in JNC. CONCLUSION: This study reported the CXCL12 neutraligand chalcone 4 to affect DC infiltration into the airways and airway ganglia as well as to decrease airway eosinophilic inflammation and, therefore, validated CXCL12 as a new target in allergic disease models of asthma.


Asunto(s)
Asma/inmunología , Movimiento Celular/inmunología , Chalcona/farmacología , Quimiocina CXCL12/farmacología , Células Dendríticas/inmunología , Ganglio Nudoso/inmunología , Animales , Asma/inducido químicamente , Asma/tratamiento farmacológico , Movimiento Celular/efectos de los fármacos , Chalcona/uso terapéutico , Quimiocina CXCL12/uso terapéutico , Células Dendríticas/efectos de los fármacos , Ligandos , Masculino , Ratones , Ratones Endogámicos BALB C , Ganglio Nudoso/citología , Ganglio Nudoso/efectos de los fármacos , Ovalbúmina/toxicidad
20.
Br J Haematol ; 172(3): 401-11, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26597595

RESUMEN

Wilms Tumor-1 (WT1) expression level is implicated in the prognosis of acute myeloid leukaemia (AML). We hypothesized that a gene expression profile associated with WT1 expression levels might be a good surrogate marker. We identified high WT1 gene sets by comparing the gene expression profiles in the highest and lowest quartiles of WT1 expression in two large AML studies. Two high WT1 gene sets were found to be highly correlated in terms of the altered genes and expression profiles. We identified a 17-probe set signature of the high WT1 set as the optimal prognostic predictor in the first AML set, and showed that it was able to predict prognosis in the second AML series after adjustment for European LeukaemiaNet genetic groups. The gene signature also proved to be of prognostic value in a third AML series of 163 samples assessed by RNA sequencing, demonstrating its cross-platform consistency. This led us to derive a 4-gene expression score, which faithfully predicted adverse outcome. In conclusion, a short gene signature associated with high WT1 expression levels and the resultant 4-gene expression score were found to be predictive of adverse prognosis in AML. This study provides new clues to the molecular pathways underlying high WT1 states in leukaemia.


Asunto(s)
Biomarcadores de Tumor/sangre , Leucemia Mieloide Aguda/genética , Proteínas WT1/sangre , Adulto , Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica/métodos , Genes del Tumor de Wilms , Marcadores Genéticos , Humanos , Estimación de Kaplan-Meier , Leucemia Mieloide Aguda/sangre , Leucemia Mieloide Aguda/diagnóstico , Persona de Mediana Edad , Pronóstico , Proteínas WT1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA