Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Cancer ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935523

RESUMEN

Protein function alteration and protein mislocalization are cancer hallmarks that drive oncogenesis. N6-methyladenosine (m6A) deposition mediated by METTL3, METTL16, and METTL5 together with the contribution of additional subunits of the m6A system, has shown a dramatic impact on cancer development. However, the cellular localization of m6A proteins inside tumor cells has been little studied so far. Interestingly, recent evidence indicates that m6A methyltransferases are not always confined to the nucleus, suggesting that epitranscriptomic factors may also have multiple oncogenic roles beyond m6A that still represent an unexplored field. To date novel epigenetic drugs targeting m6A modifiers, such as METTL3 inhibitors, are entering into clinical trials, therefore, the study of the potential onco-properties of m6A effectors beyond m6A is required. Here we will provide an overview of methylation-independent functions of the m6A players in cancer, describing the molecular mechanisms involved and the future implications for therapeutics.

2.
Int J Cancer ; 153(3): 464-475, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36444503

RESUMEN

Chromatin has an extremely flexible structure that allows the fine regulation of gene expression. To orchestrate this process, small chemical modifications are dynamically added or removed on DNA, RNA and histone substrates. Epigenetic modifications govern a plethora of key cellular functions, whose dysregulation contributes to oncogenesis. The interrelationship between (irreversible) genetic mutations and (reversible) epigenetic alterations and how this crosstalk regulates gene expression has long been a major area of interest. Marks modulating the RNA code (epitranscriptome), such as the well-studied N6 -methyladenosine (m6 A), are known to influence stability, metabolism and life cycle of many mRNAs, including cancer-associated transcripts. Together, epigenetic and epitranscriptomic pathways therefore control the entire cellular expression profile and, eventually, cell fate. Recently, previously undescribed crosstalk between these two pathways has started to be unrevealed. For example, m6 A and its effectors cooperate with histone modifications to localize chromatin-modifying complexes to their target regions. Epigenetic marks governing the expression of m6 A factors can also be found at specific genetic loci. m6 A itself can mark noncoding RNAs (including lncRNAs, circRNAs and miRNAs), influencing their structure, maturation and function. These interactions affect both cell physiology and pathology. Clear evidence that dysregulation of this network plays a role in cancer has emerged, suggesting a new layer of complexity in the landscape of gene expression. Here, we summarize current knowledge on the interplay between m6 A epitranscriptome and epigenome, focusing on cancer processes. We also discuss strategies to target m6 A machinery for future therapeutic intervention.


Asunto(s)
MicroARNs , Neoplasias , Humanos , Epigenoma , Epigénesis Genética , Neoplasias/genética , Neoplasias/metabolismo , Cromatina/genética
3.
Int J Cancer ; 153(3): 476-488, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36479695

RESUMEN

Glioblastoma, the most common and heterogeneous tumor affecting brain parenchyma, is dismally characterized by a very poor prognosis. Thus, the search of new, more effective treatments is a vital need. Here, we will review the druggable epigenetic features of glioblastomas that are, indeed, currently explored in preclinical studies and in clinical trials for the development of more effective, personalized treatments. In detail, we will review the studies that have led to the identification of epigenetic signatures, IDH mutations, MGMT gene methylation, histone modification alterations, H3K27 mutations and epitranscriptome landscapes of glioblastomas, in each case discussing the corresponding targeted therapies and their potential efficacy. Finally, we will emphasize how recent technological improvements permit to routinely investigate many glioblastoma epigenetic biomarkers in clinical practice, further enforcing the hope that personalized drugs, targeting specific epigenetic features, could be in future a therapeutic option for selected patients.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/diagnóstico , Glioblastoma/genética , Glioblastoma/terapia , Pronóstico , Proteínas Supresoras de Tumor/genética , Metilación de ADN , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Metilasas de Modificación del ADN/genética , Mutación , Epigénesis Genética , Enzimas Reparadoras del ADN/genética , Biomarcadores de Tumor/genética
4.
Mol Cancer ; 21(1): 125, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35681235

RESUMEN

BACKGROUND: The dynamic epigenome and proteins specialized in the interpretation of epigenetic marks critically contribute to leukemic pathogenesis but also offer alternative therapeutic avenues. Targeting newly discovered chromatin readers involved in leukemogenesis may thus provide new anticancer strategies. Accumulating evidence suggests that the PRC1 complex member CBX2 is overexpressed in solid tumors and promotes cancer cell survival. However, its role in leukemia is still unclear. METHODS: We exploited reverse genetic approaches to investigate the role of CBX2 in human leukemic cell lines and ex vivo samples. We also analyzed phenotypic effects following CBX2 silencing using cellular and molecular assays and related functional mechanisms by ATAC-seq and RNA-seq. We then performed bioinformatic analysis of ChIP-seq data to explore the influence of histone modifications in CBX2-mediated open chromatin sites. Lastly, we used molecular assays to determine the contribution of CBX2-regulated pathways to leukemic phenotype. RESULTS: We found CBX2 overexpressed in leukemia both in vitro and ex vivo samples compared to CD34+ cells. Decreased CBX2 RNA levels prompted a robust reduction in cell proliferation and induction of apoptosis. Similarly, sensitivity to CBX2 silencing was observed in primary acute myeloid leukemia samples. CBX2 suppression increased genome-wide chromatin accessibility followed by alteration of leukemic cell transcriptional programs, resulting in enrichment of cell death pathways and downregulation of survival genes. Intriguingly, CBX2 silencing induced epigenetic reprogramming at p38 MAPK-associated regulatory sites with consequent deregulation of gene expression. CONCLUSIONS: Our results identify CBX2 as a crucial player in leukemia progression and highlight a potential druggable CBX2-p38 MAPK network in AML.


Asunto(s)
Cromatina , Leucemia Mieloide Aguda , Complejo Represivo Polycomb 1 , Cromatina/genética , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
5.
Am J Med Genet C Semin Med Genet ; 190(1): 57-71, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35112477

RESUMEN

The OFD1 protein is necessary for the formation of primary cilia and left-right asymmetry establishment but additional functions have also been ascribed to this multitask protein. When mutated, this protein results in a variety of phenotypes ranging from multiorgan involvement, such as OFD type I (OFDI) and Joubert syndromes (JBS10), and Primary ciliary dyskinesia (PCD), to the engagement of single tissues such as in the case of retinitis pigmentosa (RP23). The inheritance pattern of these condition differs from X-linked dominant male-lethal (OFDI) to X-linked recessive (JBS10, PCD, and RP23). Distinctive biological peculiarities of the protein, which can contribute to explain the extreme clinical variability and the genetic mechanisms underlying the different disorders are discussed. The extensive spectrum of clinical manifestations observed in OFD1-mutated patients represents a paradigmatic example of the complexity of genetic diseases. The elucidation of the mechanisms underlying this complexity will expand our comprehension of inherited disorders and will improve the clinical management of patients.


Asunto(s)
Anomalías Múltiples , Enfermedades Renales Quísticas , Retinitis Pigmentosa , Anomalías Múltiples/genética , Cilios/genética , Femenino , Humanos , Masculino , Mutación/genética , Fenotipo , Proteínas/genética , Retinitis Pigmentosa/genética
6.
J Enzyme Inhib Med Chem ; 37(1): 1987-1994, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35880250

RESUMEN

We have recently developed a new synthetic methodology that provided both N-aryl-5-hydroxytriazoles and N-pyridine-4-alkyl triazoles. A selection of these products was carried through virtual screening towards targets that are contemporary and validated for drug discovery and development. This study determined a number of potential structure target dyads of which N-pyridinium-4-carboxylic-5-alkyl triazole displayed the highest score specificity towards KAT2A. Binding affinity tests of abovementioned triazole and related analogs towards KAT2A confirmed the predictions of the in-silico assay. Finally, we have run in vitro inhibition assays of selected triazoles towards KAT2A; the ensemble of binding and inhibition assays delivered pyridyl-triazoles carboxylates as the prototype of a new class of inhibitors of KAT2A.


Asunto(s)
Acetiltransferasas , Triazoles , Ácidos Carboxílicos/química , Estructura Molecular , Relación Estructura-Actividad , Triazoles/química , Triazoles/farmacología
7.
Clin Epigenetics ; 16(1): 121, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39252109

RESUMEN

Gene expression is an intricate biological process that bridges gap between the genotype and the phenotype. Canonical and hereditable epigenetic mechanisms, such as histone and DNA modifications, regulate the release of genetic information encoded in DNA without altering the underlying sequence. Many other non-canonical players, such as chromatin regulators and noncoding RNAs, are also involved in regulating gene expression. Recently, RNA modifications (epitranscriptomics) have been shown to hold enormous potential in shaping cellular transcriptomes. However, their co-transcriptional nature and uncertain heritability mean that they fall outside the current definition of epigenetics, sparking an ongoing debate in the field. Here we will discuss the relationship between canonical and non-canonical epigenetic mechanisms that govern gene expression and offer our perspective on whether (or not) epitranscriptomic modifications can be classified as epigenetic mechanisms.


Asunto(s)
Epigénesis Genética , Humanos , Epigénesis Genética/genética , Transcriptoma/genética , Epigenómica/métodos , Metilación de ADN/genética , ARN no Traducido/genética , Histonas/genética , Histonas/metabolismo
8.
Front Oncol ; 12: 926967, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875139

RESUMEN

Glioblastomas are the most frequent and malignant brain tumor hallmarked by an invariably poor prognosis. They have been classically differentiated into primary isocitrate dehydrogenase 1 or 2 (IDH1 -2) wild-type (wt) glioblastoma (GBM) and secondary IDH mutant GBM, with IDH wt GBMs being commonly associated with older age and poor prognosis. Recently, genetic analyses have been integrated with epigenetic investigations, strongly implementing typing and subtyping of brain tumors, including GBMs, and leading to the new WHO 2021 classification. GBM genomic and epigenomic profile influences evolution, resistance, and therapeutic responses. However, differently from other tumors, there is a wide gap between the refined GBM profiling and the limited therapeutic opportunities. In addition, the different oncogenes and tumor suppressor genes involved in glial cell transformation, the heterogeneous nature of cancer, and the restricted access of drugs due to the blood-brain barrier have limited clinical advancements. This review will summarize the more relevant genetic alterations found in GBMs and highlight their potential role as potential therapeutic targets.

9.
Eur J Pharmacol ; 936: 175349, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36309047

RESUMEN

The latest studies identified the histone deacetylase (HDAC) class of enzymes as strategic components of the complex molecular machinery underlying inflammation in cystic fibrosis (CF). Compelling new support has been provided for HDAC6 isoform as a key player in the generation of the dysregulated proinflammatory phenotype in CF, as well as in the immune response to the persistent bacterial infection accompanying CF patients. We herein provide in vivo proof-of-concept (PoC) of the efficacy of selective HDAC6 inhibition in contrasting the pro-inflammatory phenotype in a mouse model of chronic P. aeruginosa respiratory infection. Upon careful selection and in-house re-profiling (in vitro and cell-based assessment of acetylated tubulin level through Western blot analysis) of three potent and selective HDAC6 inhibitors as putative candidates for the PoC, we engaged the best performing compound 2 for pre-clinical studies. Compound 2 demonstrated no toxicity and robust anti-inflammatory profile in a mouse model of chronic P. aeruginosa respiratory infection upon repeated aerosol administration. A significant reduction of leukocyte recruitment in the airways, in particular neutrophils, was observed in compound 2-treated mice in comparison with the vehicle; moreover, quantitative immunoassays confirmed a significant reduction of chemokines and cytokines in lung homogenate. This effect was also associated with a modest reduced bacterial load after compound 2-treatment in mice compared to the vehicle. Our study is of particular significance since it demonstrates for the first time the utility of selective drug-like HDAC6 inhibitors in a relevant in vivo model of chronic P. aeruginosa infection, thus supporting their potential application for reverting CF phenotype.


Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Ratones , Animales , Infecciones por Pseudomonas/complicaciones , Infecciones por Pseudomonas/tratamiento farmacológico , Fibrosis Quística/complicaciones , Fibrosis Quística/tratamiento farmacológico , Histona Desacetilasa 6 , Pseudomonas aeruginosa , Aerosoles y Gotitas Respiratorias , Inflamación , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA