Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 42(11): e112590, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36912146

RESUMEN

During development, the lymphatic vasculature forms as a second network derived chiefly from blood vessels. The transdifferentiation of embryonic venous endothelial cells (VECs) into lymphatic endothelial cells (LECs) is a key step in this process. Specification, differentiation and maintenance of LEC fate are all driven by the transcription factor Prox1, yet the downstream mechanisms remain to be elucidated. We here present a single-cell transcriptomic atlas of lymphangiogenesis in zebrafish, revealing new markers and hallmarks of LEC differentiation over four developmental stages. We further profile single-cell transcriptomic and chromatin accessibility changes in zygotic prox1a mutants that are undergoing a LEC-VEC fate shift. Using maternal and zygotic prox1a/prox1b mutants, we determine the earliest transcriptomic changes directed by Prox1 during LEC specification. This work altogether reveals new downstream targets and regulatory regions of the genome controlled by Prox1 and presents evidence that Prox1 specifies LEC fate primarily by limiting blood vascular and haematopoietic fate. This extensive single-cell resource provides new mechanistic insights into the enigmatic role of Prox1 and the control of LEC differentiation in development.


Asunto(s)
Vasos Linfáticos , Pez Cebra , Animales , Pez Cebra/genética , Proteínas de Homeodominio/genética , Proteínas Supresoras de Tumor/genética , Células Endoteliales , Células Cultivadas , Diferenciación Celular , Linfangiogénesis/genética , Factores de Transcripción/genética , Análisis de la Célula Individual
2.
Development ; 147(18)2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32839180

RESUMEN

The lymphatic vasculature develops primarily from pre-existing veins. A pool of lymphatic endothelial cells (LECs) first sprouts from cardinal veins followed by migration and proliferation to colonise embryonic tissues. Although much is known about the molecular regulation of LEC fate and sprouting during early lymphangiogenesis, we know far less about the instructive and permissive signals that support LEC migration through the embryo. Using a forward genetic screen, we identified mbtps1 and sec23a, components of the COP-II protein secretory pathway, as essential for developmental lymphangiogenesis. In both mutants, LECs initially depart the cardinal vein but then fail in their ongoing migration. A key cargo that failed to be secreted in both mutants was a type II collagen (Col2a1). Col2a1 is normally secreted by notochord sheath cells, alongside which LECs migrate. col2a1a mutants displayed defects in the migratory behaviour of LECs and failed lymphangiogenesis. These studies thus identify Col2a1 as a key cargo secreted by notochord sheath cells and required for the migration of LECs. These findings combine with our current understanding to suggest that successive cell-to-cell and cell-matrix interactions regulate the migration of LECs through the embryonic environment during development.


Asunto(s)
Movimiento Celular/fisiología , Colágeno Tipo II/metabolismo , Embrión de Mamíferos/metabolismo , Células Endoteliales/metabolismo , Vasos Linfáticos/metabolismo , Pez Cebra/metabolismo , Animales , Comunicación Celular/fisiología , Proliferación Celular/fisiología , Linfangiogénesis/fisiología , Morfogénesis/fisiología , Venas/metabolismo
3.
Genes Dev ; 29(15): 1618-30, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26253536

RESUMEN

The lymphatic vasculature plays roles in tissue fluid balance, immune cell trafficking, fatty acid absorption, cancer metastasis, and cardiovascular disease. Lymphatic vessels form by lymphangiogenesis, the sprouting of new lymphatics from pre-existing vessels, in both development and disease contexts. The apical signaling pathway in lymphangiogenesis is the VEGFC/VEGFR3 pathway, yet how signaling controls cellular transcriptional output remains unknown. We used a forward genetic screen in zebrafish to identify the transcription factor mafba as essential for lymphatic vessel development. We found that mafba is required for the migration of lymphatic precursors after their initial sprouting from the posterior cardinal vein. mafba expression is enriched in sprouts emerging from veins, and we show that mafba functions cell-autonomously during lymphatic vessel development. Mechanistically, Vegfc signaling increases mafba expression to control downstream transcription, and this regulatory relationship is dependent on the activity of SoxF transcription factors, which are essential for mafba expression in venous endothelium. Here we identify an indispensable Vegfc-SoxF-Mafba pathway in lymphatic development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Linfangiogénesis/genética , Vasos Linfáticos/embriología , Factor de Transcripción MafB/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal , Factor C de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Movimiento Celular/genética , Embrión no Mamífero , Factor de Transcripción MafB/genética , Mutación , Proteínas del Tejido Nervioso/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/embriología , Proteínas de Pez Cebra/genética
4.
Dev Dyn ; 251(2): 336-349, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34174014

RESUMEN

BACKGROUND: Lymphatic vascular development is regulated by well-characterized signaling and transcriptional pathways. These pathways regulate lymphatic endothelial cell (LEC) migration, motility, polarity, and morphogenesis. Canonical and non-canonical WNT signaling pathways are known to control LEC polarity and development of lymphatic vessels and valves. PKD1, encoding Polycystin-1, is the most commonly mutated gene in polycystic kidney disease but has also been shown to be essential in lymphatic vascular morphogenesis. The mechanism by which Pkd1 acts during lymphangiogenesis remains unclear. RESULTS: Here we find that loss of non-canonical WNT signaling components Wnt5a and Ryk phenocopy lymphatic defects seen in Pkd1 knockout mice. To investigate genetic interaction, we generated Pkd1;Wnt5a double knockout mice. Loss of Wnt5a suppressed phenotypes seen in the lymphatic vasculature of Pkd1-/- mice and Pkd1 deletion suppressed phenotypes observed in Wnt5a-/- mice. Thus, we report mutually suppressive roles for Pkd1 and Wnt5a, with developing lymphatic networks restored to a more wild type state in double mutant mice. This genetic interaction between Pkd1 and the non-canonical WNT signaling pathway ultimately controls LEC polarity and the morphogenesis of developing vessel networks. CONCLUSION: Our work suggests that Pkd1 acts at least in part by regulating non-canonical WNT signaling during the formation of lymphatic vascular networks.


Asunto(s)
Vasos Linfáticos , Enfermedades Renales Poliquísticas , Animales , Vasos Linfáticos/metabolismo , Ratones , Ratones Noqueados , Morfogénesis/genética , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/metabolismo , Proteína Quinasa C , Proteínas Tirosina Quinasas Receptoras/metabolismo , Vía de Señalización Wnt/genética , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
5.
Development ; 145(12)2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29752386

RESUMEN

Atrial natriuretic peptide (nppa/anf) and brain natriuretic peptide (nppb/bnp) form a gene cluster with expression in the chambers of the developing heart. Despite restricted expression, a function in cardiac development has not been demonstrated by mutant analysis. This is attributed to functional redundancy; however, their genomic location in cis has impeded formal analysis. Using genome editing, we have generated mutants for nppa and nppb, and found that single mutants were indistinguishable from wild type, whereas nppa/nppb double mutants displayed heart morphogenesis defects and pericardial oedema. Analysis of atrioventricular canal (AVC) markers show expansion of bmp4, tbx2b, has2 and versican expression into the atrium of double mutants. This expanded expression correlates with increased extracellular matrix in the atrium. Using a biosensor for hyaluronic acid to measure the cardiac jelly (cardiac extracellular matrix), we confirmed cardiac jelly expansion in nppa/nppb double mutants. Finally, bmp4 knockdown rescued the expansion of has2 expression and cardiac jelly in double mutants. This definitively shows that nppa and nppb function redundantly during cardiac development to restrict gene expression to the AVC, preventing excessive cardiac jelly synthesis in the atrial chamber.


Asunto(s)
Factor Natriurético Atrial/genética , Corazón/embriología , Péptido Natriurético Encefálico/genética , Receptores del Factor Natriurético Atrial/genética , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Edición Génica , Cardiopatías Congénitas/genética , Hialuronano Sintasas/metabolismo , Proteínas de Dominio T Box/metabolismo , Versicanos/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
6.
Dev Dyn ; 249(10): 1201-1216, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32525258

RESUMEN

BACKGROUND: Lymphatic vessels play key roles in tissue fluid homeostasis, immune cell trafficking and in diverse disease settings. Lymphangiogenesis requires lymphatic endothelial cell (LEC) differentiation, proliferation, migration, and co-ordinated network formation, yet the transcriptional regulators underpinning these processes remain to be fully understood. The transcription factor MAFB was recently identified as essential for lymphangiogenesis in zebrafish and in cultured human LECs. MAFB is activated in response to VEGFC-VEGFR3 signaling and acts as a downstream effector. However, it remains unclear if the role of MAFB in lymphatic development is conserved in the mammalian embryo. RESULTS: We generated a Mafb loss-of-function mouse using CRISPR/Cas9 gene editing. Mafb mutant mice presented with perinatal lethality associated with cyanosis. We identify a role for MAFB in modifying lymphatic network morphogenesis in the developing dermis, as well as developing and postnatal diaphragm. Furthermore, mutant vessels displayed excessive smooth muscle cell coverage, suggestive of a defect in the maturation of lymphatic networks. CONCLUSIONS: This work confirms a conserved role for MAFB in murine lymphatics that is subtle and modulatory and may suggest redundancy in MAF family transcription factors during lymphangiogenesis.


Asunto(s)
Linfangiogénesis/fisiología , Vasos Linfáticos/metabolismo , Factor de Transcripción MafB/fisiología , Animales , Sistemas CRISPR-Cas , Cruzamientos Genéticos , Genoma , Genotipo , Hibridación in Situ , Ratones , Ratones Noqueados , Mutación , ARN Mensajero/metabolismo , Transducción de Señal , Factores de Tiempo
7.
Development ; 144(3): 507-518, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28087639

RESUMEN

Vascular endothelial growth factors (VEGFs) control angiogenesis and lymphangiogenesis during development and in pathological conditions. In the zebrafish trunk, Vegfa controls the formation of intersegmental arteries by primary angiogenesis and Vegfc is essential for secondary angiogenesis, giving rise to veins and lymphatics. Vegfd has been largely thought of as dispensable for vascular development in vertebrates. Here, we generated a zebrafish vegfd mutant by genome editing. vegfd mutants display significant defects in facial lymphangiogenesis independent of vegfc function. Strikingly, we find that vegfc and vegfd cooperatively control lymphangiogenesis throughout the embryo, including during the formation of the trunk lymphatic vasculature. Interestingly, we find that vegfd and vegfc also redundantly drive artery hyperbranching phenotypes observed upon depletion of Flt1 or Dll4. Epistasis and biochemical binding assays suggest that, during primary angiogenesis, Vegfd influences these phenotypes through Kdr (Vegfr2) rather than Flt4 (Vegfr3). These data demonstrate that, rather than being dispensable during development, Vegfd plays context-specific indispensable and also compensatory roles during both blood vessel angiogenesis and lymphangiogenesis.


Asunto(s)
Linfangiogénesis/fisiología , Neovascularización Fisiológica/fisiología , Factor D de Crecimiento Endotelial Vascular/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Pez Cebra/fisiología , Animales , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/fisiología , Linfangiogénesis/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Modelos Biológicos , Mutagénesis , Neovascularización Fisiológica/genética , Eliminación de Secuencia , Transducción de Señal , Regulación hacia Arriba , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/fisiología , Factor D de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/fisiología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/fisiología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
8.
Circ Res ; 128(1): 59-61, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33411628
9.
Dev Biol ; 411(1): 115-27, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26769101

RESUMEN

The mechanisms underlying organ vascularization are not well understood. The zebrafish intestinal vasculature forms early, is easily imaged using transgenic lines and in-situ hybridization, and develops in a stereotypical pattern thus making it an excellent model for investigating mechanisms of organ specific vascularization. Here, we demonstrate that the sub-intestinal vein (SIV) and supra-intestinal artery (SIA) form by a novel mechanism from angioblasts that migrate out of the posterior cardinal vein and coalesce to form the intestinal vasculature in an anterior to posterior wave with the SIA forming after the SIV. We show that vascular endothelial growth factor aa (vegfaa) is expressed in the endoderm at the site where intestinal vessels form and therefore likely provides a guidance signal. Vegfa/Vegfr2 signaling is required for early intestinal vasculature development with mutation in vegfaa or loss of Vegfr2 homologs causing nearly complete inhibition of the formation of the intestinal vasculature. Vegfc and Vegfr3 function, however, are dispensable for intestinal vascularization. Interestingly, ubiquitous overexpression of Vegfc resulted in an overgrowth of the SIV, suggesting that Vegfc is sufficient to induce SIV development. These results argue that Vegfa signaling directs endothelial cells to migrate out of existing vasculature and coalesce to form the intestinal vessels. It is likely that a similar mechanism is utilized during vascularization of other organs.


Asunto(s)
Células Endoteliales/fisiología , Intestinos/irrigación sanguínea , Neovascularización Fisiológica/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Movimiento Celular , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Intestinos/embriología , Morfolinos/genética , Neovascularización Fisiológica/fisiología , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética
10.
Development ; 141(6): 1239-49, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24523457

RESUMEN

The VEGFC/VEGFR3 signaling pathway is essential for lymphangiogenesis (the formation of lymphatic vessels from pre-existing vasculature) during embryonic development, tissue regeneration and tumor progression. The recently identified secreted protein CCBE1 is indispensible for lymphangiogenesis during development. The role of CCBE1 orthologs is highly conserved in zebrafish, mice and humans with mutations in CCBE1 causing generalized lymphatic dysplasia and lymphedema (Hennekam syndrome). To date, the mechanism by which CCBE1 acts remains unknown. Here, we find that ccbe1 genetically interacts with both vegfc and vegfr3 in zebrafish. In the embryo, phenotypes driven by increased Vegfc are suppressed in the absence of Ccbe1, and Vegfc-driven sprouting is enhanced by local Ccbe1 overexpression. Moreover, Vegfc- and Vegfr3-dependent Erk signaling is impaired in the absence of Ccbe1. Finally, CCBE1 is capable of upregulating the levels of fully processed, mature VEGFC in vitro and the overexpression of mature VEGFC rescues ccbe1 loss-of-function phenotypes in zebrafish. Taken together, these data identify Ccbe1 as a crucial component of the Vegfc/Vegfr3 pathway in the embryo.


Asunto(s)
Linfangiogénesis/fisiología , Factor C de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Secuencia de Bases , ADN/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Linfangiogénesis/genética , Sistema de Señalización de MAP Quinasas , Ratones , Datos de Secuencia Molecular , Mutación Puntual , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Transducción de Señal , Factor C de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
11.
Hum Mol Genet ; 23(5): 1286-97, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24163130

RESUMEN

Mutations in SOX18, VEGFC and Vascular Endothelial Growth Factor 3 underlie the hereditary lymphatic disorders hypotrichosis-lymphedema-telangiectasia (HLT), Milroy-like lymphedema and Milroy disease, respectively. Genes responsible for hereditary lymphedema are key regulators of lymphatic vascular development in the embryo. To identify novel modulators of lymphangiogenesis, we used a mouse model of HLT (Ragged Opossum) and performed gene expression profiling of aberrant dermal lymphatic vessels. Expression studies and functional analysis in zebrafish and mice revealed one candidate, ArfGAP with RhoGAP domain, Ankyrin repeat and PH domain 3 (ARAP3), which is down-regulated in HLT mouse lymphatic vessels and necessary for lymphatic vascular development in mice and zebrafish. We position this known regulator of cell behaviour during migration as a mediator of the cellular response to Vegfc signalling in lymphatic endothelial cells in vitro and in vivo. Our data refine common mechanisms that are likely to contribute during both development and the pathogenesis of lymphatic vascular disorders.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Activadoras de GTPasa/genética , Regulación de la Expresión Génica , Hipotricosis/genética , Linfangiogénesis/genética , Linfedema/genética , Telangiectasia/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Movimiento Celular/genética , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Femenino , Proteínas Activadoras de GTPasa/metabolismo , Vasos Linfáticos/metabolismo , Ratones , Ratones Noqueados , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo , Síndrome , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra
12.
FASEB J ; 29(5): 1999-2009, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25667221

RESUMEN

CEP55 was initially described as a centrosome- and midbody-associated protein and a key mediator of cytokinesis. More recently, it has been implicated in PI3K/AKT pathway activation via an interaction with the catalytic subunit of PI3K. However, its role in embryonic development is unknown. Here we describe a cep55 nonsense mutant zebrafish with which we can study the in vivo physiologic role of Cep55. Homozygous mutants underwent extensive apoptosis by 24 hours postfertilization (hpf) concomitant with cell cycle defects, and heterozygous carriers were indistinguishable from their wild-type siblings. A similar phenotype was also observed in zebrafish injected with a cep55 morpholino, suggesting the mutant is a cep55 loss-of-function model. Further analysis revealed that Akt was destabilized in the homozygous mutants, which partially phenocopied Akt1 and Akt2 knockdown. Expression of either constitutively activated PIK3CA or AKT1 could partially rescue the homozygous mutants. Consistent with a role for Cep55 in regulation of Akt stability, treatment with proteasome inhibitor, MG132, partially rescued the homozygous mutants. Taken together, these results provide the first description of Cep55 in development and underline the importance of Cep55 in the regulation of Pi3k/Akt pathway and in particular Akt stability.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centrosoma/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-akt/química , Proteínas de Pez Cebra/metabolismo , Pez Cebra/crecimiento & desarrollo , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Western Blotting , Ciclo Celular , Proteínas de Ciclo Celular/genética , Citocinesis/fisiología , Técnica del Anticuerpo Fluorescente , Heterocigoto , Homocigoto , Datos de Secuencia Molecular , Mutación/genética , Proteínas Nucleares/genética , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Proteínas de Pez Cebra/genética
13.
Am J Med Genet A ; 170(10): 2694-7, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27345729

RESUMEN

Hennekam lymphangiectasia-lymphedema syndrome is an autosomal recessive disorder, with 25% of patients having mutations in CCBE1. We identified a family with two brothers presenting with primary lymphedema, and performed exome sequencing to determine the cause of their disease. Analysis of four family members showed that both affected brothers had the same rare compound heterozygous mutations in CCBE1. The presumed paternally inherited NM_133459.3:c.310G>A; p.(Asp104Asn), lies adjacent to other known pathogenic CCBE1 mutations, while the maternally inherited NM_133459.3:c.80T>C; p.(Leu27Pro) lies in the CCBE1 signal peptide, which has not previously been associated with disease. Functional analysis in a zebrafish model of lymphatic disease showed that both mutations lead to CCBE1 loss of function, confirming the pathogenicity of these variants and expanding the genotypic spectrum of lymphatic disorders. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Proteínas de Unión al Calcio/genética , Anomalías Craneofaciales/diagnóstico , Anomalías Craneofaciales/genética , Genotipo , Linfangiectasia Intestinal/diagnóstico , Linfangiectasia Intestinal/genética , Linfedema/diagnóstico , Linfedema/genética , Mutación , Proteínas Supresoras de Tumor/genética , Alelos , Secuencia de Aminoácidos , Animales , Línea Celular , Expresión Génica , Frecuencia de los Genes , Humanos , Recién Nacido , Masculino , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Pez Cebra
14.
J Biol Chem ; 287(52): 43936-49, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23076145

RESUMEN

Stac3 was identified as a nutritionally regulated gene from an Atlantic salmon subtractive hybridization library with highest expression in skeletal muscle. Salmon Stac3 mRNA was highly correlated with myogenin and myoD1a expression during differentiation of a salmon primary myogenic culture and was regulated by amino acid availability. In zebrafish embryos, stac3 was initially expressed in myotomal adaxial cells and in fast muscle fibers post-segmentation. Morpholino knockdown resulted in defects in myofibrillar protein assembly, particularly in slow muscle fibers, and decreased levels of the hedgehog receptor patched. The function of Stac3 was further characterized in vitro using the mammalian C2C12 myogenic cell line. Stac3 mRNA expression increased during the differentiation of the C2C12 myogenic cell line. Knockdown of Stac3 by RNAi inhibited myotube formation, and microarray analysis revealed that transcripts involved in cell cycle, focal adhesion, cytoskeleton, and the pro-myogenic factors Igfbp-5 and Igf2 were down-regulated. RNAi-treated cells had suppressed Akt signaling and exogenous insulin-like growth factor (Igf) 2 was unable to rescue the phenotype, however, Igf/Akt signaling was not blocked. Overexpression of Stac3, which results in increased levels of Igfbp-5 mRNA, did not lead to increased differentiation. In synchronized cells, Stac3 mRNA was most abundant during the G(1) phase of the cell cycle. RNAi-treated cells were smaller, had higher proliferation rates and a decreased proportion of cells in G(1) phase when compared with controls, suggesting a role in the G(1) phase checkpoint. These results identify Stac3 as a new gene required for myogenic differentiation and myofibrillar protein assembly in vertebrates.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas de Peces/biosíntesis , Regulación de la Expresión Génica/fisiología , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/biosíntesis , Salmo salar/metabolismo , Animales , Línea Celular , Proteínas de Peces/genética , Puntos de Control de la Fase G1 del Ciclo Celular/fisiología , Perfilación de la Expresión Génica , Fibras Musculares Esqueléticas/citología , Proteínas Musculares/genética , Salmo salar/genética , Transducción de Señal/fisiología , Pez Cebra
15.
J Biol Chem ; 287(35): 29312-23, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22773843

RESUMEN

Wnts are essential for a wide range of developmental processes, including cell growth, division, and differentiation. Some of these processes signal via the planar cell polarity (PCP) pathway, which is a ß-catenin-independent Wnt signaling pathway. Previous studies have shown that Ryk, a member of the receptor tyrosine kinase family, can bind to Wnts. Ryk is required for normal axon guidance and neuronal differentiation during development. Here, we demonstrate that mammalian Ryk interacts with the Wnt/PCP pathway. In vitro analysis showed that the Wnt inhibitory factor domain of Ryk was necessary for Wnt binding. Detailed analysis of two vertebrate model organisms showed Ryk phenotypes consistent with PCP signaling. In zebrafish, gene knockdown using morpholinos revealed a genetic interaction between Ryk and Wnt11 during the PCP pathway-regulated process of embryo convergent extension. Ryk-deficient mouse embryos displayed disrupted polarity of stereociliary hair cells in the cochlea, a characteristic of disturbed PCP signaling. This PCP defect was also observed in mouse embryos that were double heterozygotes for Ryk and Looptail (containing a mutation in the core Wnt/PCP pathway gene Vangl2) but not in either of the single heterozygotes, suggesting a genetic interaction between Ryk and Vangl2. Co-immunoprecipitation studies demonstrated that RYK and VANGL2 proteins form a complex, whereas RYK also activated RhoA, a downstream effector of PCP signaling. Overall, our data suggest an important role for Ryk in Wnt/planar cell polarity signaling during vertebrate development via the Vangl2 signaling pathway, as demonstrated in the mouse cochlea.


Asunto(s)
Polaridad Celular/fisiología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/fisiología , Proteínas de Pez Cebra/metabolismo , Animales , Células CHO , Cóclea/citología , Cóclea/embriología , Cricetinae , Cricetulus , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Células HEK293 , Heterocigoto , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Mutantes , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Wnt/genética , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
16.
Br J Nutr ; 108(12): 2148-57, 2012 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-22464448

RESUMEN

We investigated postprandial changes in transcript abundance following a single satiating meal in juvenile Atlantic salmon (Salmo salar L.) (about 70 g body mass) following fasting for 1 week at 12°C. The expression of twenty-three growth-related genes was determined in fast myotomal muscle using quantitative real-time PCR at the following postprandial time points: - 12, 0, 1, 3, 6, 12, 24, 48 and 96 h. The gut was fullest 1-6 h after feeding and emptied within 48-96 h. IGF-I, MyoD1c, MRF4 and myf5 transcripts were sharply up-regulated within 1 h of refeeding and are promising candidate genes involved in a fast-response signalling system that regulates fish myotomal muscle growth. These genes clustered together with MyoD1b and suggest a coordinated regulation to favour resumption of myogenesis as an early response to feeding. Insulin-like growth factor (IGF)-II and the ubiquitin ligase MAFbx/atrogin-1 were initially down-regulated but restored to initial values after 12 h. It is also suggested that local production of IGF-I within the muscle might suppress catabolic pathways depressing MAFbx/atrogin-1.


Asunto(s)
Ayuno/fisiología , Alimentos , Expresión Génica/fisiología , Desarrollo de Músculos/genética , Salmo salar/crecimiento & desarrollo , Salmo salar/genética , Animales , Proteínas de Peces/genética , Factor II del Crecimiento Similar a la Insulina/genética , Proteínas Musculares/genética , Periodo Posprandial , ARN Mensajero/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Salmo salar/metabolismo , Saciedad , Somatomedinas/genética , Ubiquitina-Proteína Ligasas/genética
17.
Nucleic Acids Res ; 38(21): e194, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20846956

RESUMEN

Amplification of the 5' ends of cDNA, although simple in theory, can often be difficult to achieve. We describe a novel method for the specific amplification of cDNA ends. An oligo-dT adapter incorporating a dUTP-containing PCR primer primes first-strand cDNA synthesis incorporating dUTP. Using the Cap finder approach, another distinct dUTP containing adapter is added to the 3' end of the newly synthesized cDNA. Second-strand synthesis incorporating dUTP is achieved by PCR, using dUTP-containing primers complimentary to the adapter sequences incorporated in the cDNA ends. The double-stranded cDNA-containing dUTP serves as a universal template for the specific amplification of the 3' or 5' end of any gene. To amplify the ends of cDNA, asymmetric PCR is performed using a single gene-specific primer and standard dNTPs. The asymmetric PCR product is purified and non-target transcripts containing dUTP degraded by Uracil DNA glycosylase, leaving only those transcripts produced during the asymmetric PCR. Subsequent PCR using a nested gene-specific primer and the 3' or 5' T-RACE primer results in specific amplification of cDNA ends. This method can be used to specifically amplify the 3' and 5' ends of numerous cDNAs from a single cDNA synthesis reaction.


Asunto(s)
ADN Complementario/biosíntesis , Reacción en Cadena de la Polimerasa/métodos , Animales , Secuencia de Bases , ADN Complementario/química , Nucleótidos de Desoxiuracil/metabolismo , Salmo salar/genética , Moldes Genéticos , Uracil-ADN Glicosidasa , Pez Cebra/genética
18.
J Exp Biol ; 214(Pt 10): 1617-28, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21525308

RESUMEN

Teleost muscle first arises in early embryonic life and its development is driven by molecules present in the egg yolk and modulated by environmental stimuli including temperature and oxygen. Several populations of myogenic precursor cells reside in the embryonic somite and external cell layer and contribute to muscle fibres in embryo, larval, juvenile and adult stages. Many signalling proteins and transcription factors essential for these events are known. In all cases, myogenesis involves myoblast proliferation, migration, fusion and terminal differentiation. Maturation of the embryonic muscle is associated with motor innervation and the development of a scaffold of connective tissue and complex myotomal architecture needed to generate swimming behaviour. Adult muscle is a heterogeneous tissue composed of several cell types that interact to affect growth patterns. The development of capillary and lymphatic circulations and extramuscular organs--notably the gastrointestinal, endocrine, neuroendocrine and immune systems--serves to increase information exchange between tissues and with the external environment, adding to the complexity of growth regulation. Teleosts often exhibit an indeterminate growth pattern, with body size and muscle mass increasing until mortality or senescence occurs. The dramatic increase in myotomal muscle mass between embryo and adult requires the continuous production of muscle fibres until 40-50% of the maximum body length is reached. Sarcomeric proteins can be mobilised as a source of amino acids for energy metabolism by other tissues and for gonad generation, requiring the dynamic regulation of muscle mass throughout the life cycle. The metabolic and contractile phenotypes of muscle fibres also show significant plasticity with respect to environmental conditions, migration and spawning. Many genes regulating muscle growth are found as multiple copies as a result of paralogue retention following whole-genome duplication events in teleost lineages. The extent to which indeterminate growth, ectothermy and paralogue preservation have resulted in modifications of the genetic pathways regulating muscle growth in teleosts compared to mammals largely remains unknown. This review describes the use of compensatory growth models, transgenesis and tissue culture to explore the mechanisms of muscle growth in teleosts and provides some perspectives on future research directions.


Asunto(s)
Peces/fisiología , Duplicación de Gen/genética , Modelos Biológicos , Desarrollo de Músculos/fisiología , Músculo Esquelético/embriología , Músculo Esquelético/crecimiento & desarrollo , Transducción de Señal/fisiología , Animales , Peces/genética , Músculo Esquelético/anatomía & histología , Transducción de Señal/genética , Especificidad de la Especie
19.
Pharmaceuticals (Basel) ; 14(7)2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34206901

RESUMEN

Lymphangiogenesis, the formation of new lymphatic vessels from pre-existing vasculature, plays critical roles in disease, including in cancer metastasis and chronic inflammation. Preclinical and recent clinical studies have now demonstrated therapeutic utility for several anti-lymphangiogenic agents, but optimal agents and efficacy in different settings remain to be determined. We tested the anti-lymphangiogenic property of 3,4-Difluorobenzocurcumin (CDF), which has previously been implicated as an anti-cancer agent, using zebrafish embryos and cultured vascular endothelial cells. We used transgenic zebrafish labelling the lymphatic system and found that CDF potently inhibits lymphangiogenesis during embryonic development. We also found that the parent compound, Curcumin, does not inhibit lymphangiogenesis. CDF blocked lymphatic and venous sprouting, and lymphatic migration in the head and trunk of the embryo. Mechanistically, CDF impaired VEGFC-VEGFR3-ERK signalling in vitro and in vivo. In an in vivo pathological model of Vegfc-overexpression, treatment with CDF rescued endothelial cell hyperplasia. CDF did not inhibit the kinase activity of VEGFR3 yet displayed more prolonged activity in vivo than previously reported kinase inhibitors. These findings warrant further assessment of CDF and its mode of action as a candidate for use in metastasis and diseases of aberrant lymphangiogenesis.

20.
Nat Cell Biol ; 23(11): 1136-1147, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34750583

RESUMEN

The development of a functional vasculature requires the coordinated control of cell fate, lineage differentiation and network growth. Cellular proliferation is spatiotemporally regulated in developing vessels, but how this is orchestrated in different lineages is unknown. Here, using a zebrafish genetic screen for lymphatic-deficient mutants, we uncover a mutant for the RNA helicase Ddx21. Ddx21 cell-autonomously regulates lymphatic vessel development. An established regulator of ribosomal RNA synthesis and ribosome biogenesis, Ddx21 is enriched in sprouting venous endothelial cells in response to Vegfc-Flt4 signalling. Ddx21 function is essential for Vegfc-Flt4-driven endothelial cell proliferation. In the absence of Ddx21, endothelial cells show reduced ribosome biogenesis, p53 and p21 upregulation and cell cycle arrest that blocks lymphangiogenesis. Thus, Ddx21 coordinates the lymphatic endothelial cell response to Vegfc-Flt4 signalling by balancing ribosome biogenesis and p53 function. This mechanism may be targetable in diseases of excessive lymphangiogenesis such as cancer metastasis or lymphatic malformation.


Asunto(s)
Proliferación Celular , ARN Helicasas DEAD-box/metabolismo , Células Endoteliales/enzimología , Linfangiogénesis , Vasos Linfáticos/enzimología , ARN Ribosómico/biosíntesis , Ribosomas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Factor C de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Puntos de Control del Ciclo Celular , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , ARN Helicasas DEAD-box/genética , Regulación del Desarrollo de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/enzimología , Humanos , Vasos Linfáticos/embriología , ARN Ribosómico/genética , Ribosomas/genética , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Factor C de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA